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ABSTRACT Klebsiella pneumoniae is a commonly antibiotic-resistant human patho-
gen. This report describes the complete genome sequence and important features
of Sin4, a siphophage infecting carbapenemase-producing K. pneumoniae. By its ge-
nome size, predicted packaging mechanism, protein similarity, and classification
given to its closest relatives, Sin4 was determined to be a T1-like phage.

Carbapenemase-producing K. pneumoniae is a pathogenic Gram-negative bacterium
within the Enterobacteriaceae family of microorganisms (1). Sequence type 258

(ST258), a multidrug-resistant clade spreading in hospital settings around the world,
was used here to isolate new bacteriophages from the environment (2). We report here
the complete genome sequence of the K. pneumoniae siphophage Sin4.

Bacteriophage Sin4 was isolated from a filtered (0.2-�m pore size) sample collected
at a wastewater treatment plant in College Station, TX, based on its ability to grow on
a pKpQIL plasmid-cured derivative of K. pneumoniae strain 1776c (2). The K. pneumoniae
host was grown aerobically in tryptic soy broth or agar (Difco) at 37°C, and phage
propagation was done using the soft agar overlay method (3). Morphology was
determined using transmission electron microscopy performed at the Texas A&M
University Microscopy and Imaging Center on 2% (wt/vol) uranyl acetate-stained
samples (4). Phage genomic DNA was prepared by the shotgun library preparation
protocol modification of the Promega Wizard DNA clean-up system (5). Library prep-
aration was done using a TruSeq Nano low-throughput kit, and sequencing occurred on
an Illumina MiSeq platform with v2 500-cycle chemistry. There were 707,310 total
paired-end 250-bp reads in the phage-containing index. The reads were quality con-
trolled using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Af-
ter trimming with the FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), a
single contig was assembled at 983-fold coverage using SPAdes v3.5.0 (6). The genome
was confirmed to be complete and accurate by Sanger sequencing of a PCR product off
the contig ends (forward primer, 5=-CCGAAAGGCCTGGTATAGTT-3=, and reverse primer,
5=-CAGTCTGCTTGTCGTTGATTTG-3=). The program PhageTerm predicts that Sin4 uses a
headful packaging mechanism (7). To identify Rho-independent terminators, the pro-
gram TransTermHP v2.09 was used (8). Protein-coding genes were predicted using
Glimmer v3.0 and MetaGeneAnnotator v1.0 and corrected using tools available on the
Center for Phage Technology Galaxy instance with Web Apollo (https://cpt.tamu.edu/
galaxy-pub) (9–12). According to an ARAGORN v2.36 scan, Sin4 does not contain tRNA
genes (13). The prediction of protein function was performed using primarily Inter-
ProScan v5.22-61 and BLAST v2.2.31 with the NCBI nonredundant and UniProtKB
Swiss-Prot/TrEMBL databases (14–16). Additionally, TMHMM v2.0 for transmembrane
domains and HHpred (multiple sequence alignment [MSA] generation with the HHblits
ummiclus30_2018_08 database and modeling with PDB_mmCIF70, HHSuite v3.0) pre-
dictions provided further support for the annotation (17, 18). Unless otherwise stated,
default parameters were used for all tools listed.

Citation Castillo M, Tran R, Newkirk H, Liu M,
Gill JJ, Ramsey J. 2019. Complete genome
sequence of Sin4, a siphophage infecting
carbapenemase-producing Klebsiella
pneumoniae. Microbiol Resour Announc
8:e01048-19. https://doi.org/10.1128/MRA
.01048-19.

Editor Catherine Putonti, Loyola University
Chicago

Copyright © 2019 Castillo et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Jolene Ramsey,
jolenerr@tamu.edu.

Received 26 August 2019
Accepted 7 September 2019
Published 26 September 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 39 e01048-19 mra.asm.org 1

https://orcid.org/0000-0002-9494-6053
https://orcid.org/0000-0002-3774-5896
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
https://cpt.tamu.edu/galaxy-pub
https://cpt.tamu.edu/galaxy-pub
https://doi.org/10.1128/MRA.01048-19
https://doi.org/10.1128/MRA.01048-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jolenerr@tamu.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01048-19&domain=pdf&date_stamp=2019-9-26
https://mra.asm.org


Sin4 is a siphophage with a 49,916-bp genome, a coding density of 91.6%, and a
G�C content of 50.3%. Of the 78 predicted genes in Sin4, 42 are not assigned a
function. Sin4 is most closely related to Klebsiella phage 1513 (GenBank accession
number KP658157), with which it shares 85.4% nucleotide sequence identity across the
entire genome according to progressiveMauve v2.4.0 (19). Phages 1513 and Sin4 also
share 69 proteins.

By genome size, predicted packaging mechanism, and the classification given to its
closest relatives, Sin4 is a T1-like phage with 42 proteins similar to phage T1 (GenBank
accession number NC_005833) (20). Notable Sin4 genes include those for a DNA
cytosine methyltransferase (NCBI accession number QEG07100) and a DNA adenine
methyltransferase (NCBI accession number QEG07085).

Data availability. The genome sequence and associated data for phage Sin4 were
deposited under GenBank accession number MK931442, BioProject accession number
PRJNA222858, SRA accession number SRR8869237, and BioSample accession number
SAMN11360409.
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