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Abstract: We investigated the relationship between ‘epigenetic age’ (EA) derived from DNA methyla-
tion (DNAm) and myocardial infarction (MI)/acute coronary syndrome (ACS). A random population
sample was examined in 2003/2005 (n = 9360, 45–69, the HAPIEE project) and followed up for
15 years. From this cohort, incident MI/ACS (cases, n = 129) and age- and sex-stratified controls
(n = 177) were selected for a nested case-control study. Baseline EA (Horvath’s, Hannum’s, PhenoAge,
Skin and Blood) and the differences between EA and chronological age (CA) were calculated (∆AHr,
∆AHn, ∆APh, ∆ASB). EAs by Horvath’s, Hannum’s and Skin and Blood were close to CA (median
absolute difference, MAD, of 1.08, –1.91 and –2.03 years); PhenoAge had MAD of −9.29 years vs. CA.
The adjusted odds ratios (ORs) of MI/ACS per 1–year increments of ∆AHr, ∆AHn, ∆ASB and ∆APh
were 1.01 (95% CI 0.95–1.07), 1.01 (95% CI 0.95–1.08), 1.02 (95% CI 0.97–1.06) and 1.01 (0.93–1.09),
respectively. When classified into tertiles, only the highest tertile of ∆APh showed a suggestion of
increased risk of MI/ACS with OR 2.09 (1.11–3.94) independent of age and 1.84 (0.99–3.52) in the
age- and sex-adjusted model. Metabolic modulation may be the likely mechanism of this association.
In conclusion, this case-control study nested in a prospective population-based cohort did not find
strong associations between accelerated epigenetic age markers and risk of MI/ACS. Larger cohort
studies are needed to re-examine this important research question.

Keywords: DNA methylation; epigenetic age; myocardial infarction; acute coronary syndrome;
population; nested case-control; HAPIEE project

1. Introduction

Increasing life expectancy worldwide is accompanied by an aging population. Cur-
rently, there are at least 900 million people over 60 years old in the world and, according to
the United Nations estimates, the world’s population is expected to reach 8.6 billion people
by 2030, of which more than 1.4 billion will be over the age of 60 [1].

Cardiovascular diseases (CVDs), particularly atherosclerotic CVDs such as coronary
heart disease (CHD) and cerebrovascular diseases, are the leading cause of mortality and
morbidity, being responsible for about 30% of global deaths [2], and aging is a major
risk factor. In the multidimensional process of decline in health status during aging,
molecular markers of ‘biological age’ are regarded as determinants of the rate of aging.
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Epigenetic modifications such as DNA methylation (DNAm) have been shown to be the
most accurate molecular readout of aging but their possible functional role remains poorly
understood [3,4]. Altered epigenetic patterns may therefore be important causes and/or
signals of this aging process.

Epigenetic modifications are mitotically (and in some cases meiotically) heritable.
They can change gene and genome function independently of changes in the nucleotide
sequence of the DNA [5]. The epigenetic phenomenon of DNAm involves the addition
or removal of a methyl group to the 5’ cytosines, most commonly in the context of CpG
dinucleotides; areas of relatively high CpG density are referred to as CpG islands which
are often associated with a gene promoter [6]. DNAm can be measured quantitatively, and
it is increasingly used in human studies [7].

It has been repeatedly shown that DNAm levels at specific sites in the genome are
strongly associated with age and that, in some cases, it has been used to accurately predict
chronological age [6,8–10]. These sites underline the concept of ‘epigenetic clocks’ and
several DNAm-based estimators of chronological age, referred to as ‘epigenetic age’, have
been constructed [11]. Hannum’s Blood-based clock is based on 71 CpG sites [9], Horvath’s
Pan-Tissue clock is based on 353 CpG sites [12], Levine’s PhenoAge clock is based on
513 CpG sites capturing age-related and functional phenotype modifications [13] and
Horvath’s Skin and Blood clock is based on 391 CpGs for human fibroblasts and other cell
types [14]. Further to these, over 30 epigenetic clocks have been published [15], including
those recently developed on the base of the Illumina Methylation EPIC 850 BeadChip
(850 K) [16].

In our study, we chose to use Horvath’s and Hannum’s clocks because they are among
the most popular first-generation clocks and are featured (and continue to be used) in many
studies of associations between age and phenotypes. The Skin and Blood clock was chosen
as an example of a specialized second-generation clock which is known in the research
community as the most accurate chronological age predictor reported to date. PhenoAge,
which is another second-generation clock, was also chosen based on its popularity among
age–trait association studies, including mortality.

We would like to note that second-generation clocks (PhenoAge, GrimAge [17], etc.)
are less precise in terms of chronological age prediction in comparison to first-generation
or specialized epigenetic clocks. This is because those clocks were designed to incorporate
other phenotypes (or comorbidities) and were not primarily aimed at reflecting chronologi-
cal age. In our experience, PhenoAge is usually well below the chronological age in the vast
majority of moderately healthy individuals, which is supported by several publications,
including [13,18].

A number of studies have shown an association between epigenetic age and risk of
mortality, as summarized in various meta-analyses [19–24]. Both positive and negative
correlations have been made on the relationship between epigenetic age and CVD and,
specifically, CHD [15,21,24,25], however, these studies are limited, heterogeneous in design
and the findings remain largely inconclusive.

In Russia, the proportion of the elderly population is growing, but life expectancy
at birth remains on average 8 years lower than in Western Europe [26,27], although the
causes of this gap remain unclear [28–30]. This points toward the need to understand all
aspects of aging in the Russian population. There have been no longitudinal studies of
the relationship between epigenetic measures of age and CVD and chronic diseases in the
Russian population. For these reasons, the current analysis is relevant both locally and
across the world at large.

Objective of our study was to investigate the relationship between epigenetic age (EA)
and myocardial infarction (MI)/acute coronary syndrome (ACS) in a population-based
nested case-control study.
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2. Methods
2.1. Study Population and Design

A random population sample was examined in the Russian arm of the HAPIEE study
at baseline in 2003/05 (n = 9360, age 45–69) and re-examined in 2006–2008 and 2015–2017
The cohort was followed up until 31.12.2019 for an average of 15.9 (SD 0.64, median 15.9)
years for fatal and non-fatal cardiovascular events and all-cause mortality.

Data on fatal and non-fatal coronary heart disease (CHD) (ICD–10: I20–I25) events
were collected at the Research Institute of Internal and Preventive Medicine (IIPM) using a
Register of Myocardial Infarction originally established in the WHO MONICA project by
combining ‘hot pursuit’ and ‘cold pursuit’ methods and using medical records and hospital
discharge reports. The data on all-cause and cause-specific mortality were collected at the
IIPM using various sources, including the Population Registration Bureau (ZAGS) and
the Novosibirsk Office of the State Statistical Bureau (Rosstat), and information received
at repeated waves of the study (this includes the address bureau, as well as contacts with
relatives of deceased study participants).

2.2. Sample Selection Process

During a 15-year follow-up period, 1475 events of myocardial infarction (MI) or acute
coronary syndrome (ACS) were ascertained in 9360 unique persons including serial events
in some individuals. Using a nested case-control study design, we applied the following
exclusion criteria for selecting MI/ACS cases in this study: prevalent baseline CVD (MI,
ACS, stroke), data not available for DNA analysis. Exclusion criteria for selection in the
control group of this study were the same, with additional exclusion of controls with
baseline cancer or those who died before the end of follow-up. We then randomly selected
participants with incident MI/ACS (cases) and age- and sex-frequency matched controls.
Assuming that a small proportion of DNA samples would be unavailable or rejected by
quality control, we selected initially 161 cases and 243 controls. Among them, 139 cases
and 187 controls were available and appropriate for DNAm profiling. After DNAm quality
control (procedures are described below), 129 cases and 177 controls were included in the
analysis. DNAm profiles of 88 subjects available from the earlier pilot study [31] were
included in the sampling algorithm and were included in the ‘expanded control group’
(n = 265) for additional analyses. The general characteristics of expanded controls are
summarized in Table S2.

2.3. Ethics

All study participants provided informed consent and study protocols were approved
by the ethical committee of the Research Institute of Internal and Preventive Medicine. The
study was conducted in accordance with the relevant ethical guidelines and regulations.

2.4. Data Collection

Baseline data collection in the HAPIEE study was conducted using a comprehensive
questionnaire, medical examination and the collection of venous blood samples. The
protocol included assessment of history of cardiovascular and other chronic diseases,
lifestyle habits and health, socio-economic circumstances, objective measurement of blood
pressure (BP), anthropometric parameters and physical performance. The details of the
protocol are reported elsewhere [32].

The lifestyle habits, health and socio-economic circumstances were assessed by struc-
tured interview. A person who smoked at least one cigarette a day was classified as a smoker.
Smoking status was categorized as current smoker, former smoker and never smoked.

The level of education was categorized into 4 categories (high, secondary, vocational
and primary or less than primary education). For the current analysis, marital status
was dichotomized as married (or cohabiting) and single (never been married, divorced or
widower/widow).
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The height and weight were measured with accuracy to 1 mm and 100 g, respectively;
body mass index (BMI) was calculated as kg/m2. Blood pressure (BP) was measured three
times (Omron M-5 tonometer) on the right arm in a sitting position after a 5 min rest period
with a 2 min interval between measurements. The average of three BP measurements
was calculated.

Blood samples were drawn following at least 8 h of fasting. Serum was stored at
minus 80 ◦C and analyses for lipids and glucose were conducted within one month after
sample collection. The levels of total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDLC) and glucose in blood serum were measured enzymatically
by a KoneLab Prime 30i autoanalyzer (Thermo Fisher Scientific Inc., Waltham, MA, USA)
using kits from Thermo Fisher Scientific (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Low-density lipoprotein cholesterol (LDLC) was calculated using the Friedewald formula.

Genomic DNA was isolated from whole blood cells by phenol-chloroform extraction
and stored at minus 70 ◦C until further laboratory analysis.

2.5. DNAm Profiling

Whole blood DNAm profiling was performed using Illumina Infinium Methylation
EPIC BeadChip arrays following the manufacturer’s recommended protocol (Illumina Inc,
San Diego, CA, USA). The arrays were scanned using the iScan Microarray Scanner with
an autoloader (Illumina Inc, San Diego, CA, USA) to produce the raw signal intensity files
(.idat files) in accordance with standard operating procedures.

2.6. Data Preprocessing and Quality Control (QC)

All the data preprocessing and QC procedures were performed using R version
4.1.0 (R Foundation for Statistical Computing, Vienna, Austria) and dedicated R libraries
minfi [33], ChAMP [34] and ENmix [35], following the steps described in [36]. In particular,
our QC checks included array control probes’ metrics as described in Illumina Bead Control
Reporter guidelines, detection p-values and bead count numbers. In addition, we inspected
the concordance of the reported sex with one inferred from DNAm data, and for the
samples with available repeated DNAm profiling at a different time point, we performed
sample matching using the data from 59 EPIC array SNP control probes. In our analysis,
we only used data from the samples with less than 1% CpGs with detection p-values above
the threshold 0.01, and probes (CpGs) with bead count numbers of at least 3 and p-values
below 0.01 across at least 99% of samples.

2.7. DNAm Age Calculation

Baseline EA was calculated using Horvath’s [12], Hannum’s [9], PhenoAge [13] and
Skin and Blood DNAm clocks [14]. The missing probes required for the DNAm age
calculation were imputed using the kNN method [37,38], implemented in the ENmix R
library. Following the definition in [12], we calculated age acceleration as a difference
between EA and chronological age (CA) for each clock. Corresponding age accelerations
for Horvath’s, Hannum’s, PhenoAge and Skin and Blood clocks were denoted as ∆AHr,
∆AHn, ∆APh and ∆ASB, respectively.

2.8. Statistical Analysis

Statistical analysis was conducted using SPSS (v19.0, Inc., Chicago, IL, USA) and R
(v4.1.0) software packages (R Foundation for Statistical Computing, Vienna, Austria). The
dataset includes 129 MI/ACS cases and 177 controls.

First, descriptive analysis compared chronological age (CA), EA and general charac-
teristics of case and control groups using ANOVA and cross-tabulation techniques.

Second, logistic regression was used to estimate odds ratios of MI/ACS per 1–year
increment of EA as a continuous variable. The dependent variable was cases of incident
MI/ACS. Model 1 was adjusted for baseline age; Model 2 was adjusted for age and sex;
Model 3a was adjusted for age, sex and smoking; Model 4 was adjusted for age, sex,
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smoking, systolic blood pressure (SBP), total cholesterol (TC), body mass index (BMI) and
education level.

Finally, we classified subjects into tertiles of the difference between EA and CA for
the four EA measures (∆AHr, ∆AHn, ∆APh, ∆ASB), and logistic regression was used
to estimate odds ratios of MI/ACS by EA tertile using cases of incident MI/ACS as the
dependent variable. For the independent variable (difference between EA and CA), the
reference category consisted of the tertile of participants with the smallest EA–CA difference.
The tertile cutpoints were ∆AHr (−1.38; 3.26), ∆AHn (−3.95; 0.13), ∆APh (−11.50; −6.21),
∆ASB (−3.52; −0.31). Age-adjusted and multivariable-adjusted models were estimated
with the same covariates as above.

3. Results
3.1. Cases and Controls Have Significant Differences in Basic Phenotype Characteristics

After the quality control procedures, the analytical sample consisted of 129 cases and
177 controls. The general characteristics of case and control participants are summarized in
Table 1.

Table 1. Distribution of baseline covariates among cases of incident MI/ACS and control (the Russian
arm of the HAPIEE study).

Covariates Cases (Incident MI/ACS) Controls p-Value a

Observed 129 177
Age at baseline, years (mean, SD) 59.8 (6.87) 54.5 (6.45) <0.001

Females (%) 62 (48.1) 73 (58.8) 0.064
Systolic blood pressure, mmHg (mean, SD) 151.6 (26.93) 133.2 (21.87) <0.001
Diastolic blood pressure, mmHg (mean, SD) 92.3 (14.36) 86.0 (12.69) <0.001

Body mass index, kg/sqm (mean, SD) 28.8 (5.73) 27.50 (4.90) 0.031
Waist/hip ratio, unit (mean, SD) 0.90 (0.077) 0.87 (0.087) 0.002

Total cholesterol mmol/L (mean, SD) 6.61 (1.27) 6.42 (1.28) 0.204
LDL cholesterol, mmol/L (mean, SD) 4.32 (1.14) 4.15 (1.13) 0.207
Glucose, plasma, mmol/L mean, SD) 6.41 (2.29) 5.77 (0.85) 0.001

Hypertension (%) 96 (74.4) 80 (45.2) <0.001
HT treatment (among HT), (%) 46 (47.9) 46 (27.5) 0.006

Diabetes mellitus type 2 (%) 24 (18.9) 10 (5.8) <0.001
DM2 treatment (among DM2), (%) 8 (33.3) 3.(30.0) 0.850

Frequency of drinking (%)
Non-drinkers 24 (18.6) 15 (8.5)

0.050
<1/month 55 (42.6) 76 (42.9)
1–3/month 25 (19.4) 35 (19.8)
1–4/week 22 (17.1) 48 (27.1)
5+/week 3 (2.3) 3 (1.7)

Smoking (%)
Never smoked 75 (58.1) 105 (59.3)

0.066Former smoking 10 (7.8) 27 (15.3)
Present smoker 44 (34.1) 56 (31.6)

Married (%) 96 (74.4) 135 (76.3) 0.405
University education (%) 27 (20.9) 56 (31.6) <0.001

Difference EA–chronological age
by four measures:

∆AHr, year 0.055 (5.35) 1.663 (5.09) 0.008
∆AHn, year −2.702 (5.36) −1.161 (4.82) 0.009
∆APh, year −8.945 (6.43) −8.762 (6.38) 0.806
∆ASB, year −2.551 (4.06) −1.550 (3.58) 0.023

SD—standard deviation; EA—epigenetic age; CVD—cardiovascular disease. a—ANOVA or chi-square test.

The individuals with incident cases of MI/ACS were slightly older, as expected, they
had higher BP, anthropometric measures (body mass index, BMI, and waist/hip ratio,
WHR) and levels of plasma glucose, more frequently had hypertension (HT) and type 2
diabetes (DM2) and were less educated compared to controls.

DNAm ages calculated by Horvath’s, Hannum’s and Skin and Blood clocks were
similar to participants’ CA; the corresponding median absolute differences (MADs) were
1.08, −1.91 and −2.03 years (Figure 1). Means (SD) were 0.98 (5.25), −1.81 (5.10) and −1.97
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(3.81) for ∆AHr, ∆AHn and ∆ASB, respectively. As expected, PhenoAge’s predictions
were less precise with MAD = −9.29 and ∆APh mean (SD) −8.84 (6.39). Scatterplots
of chronological vs. epigenetic age by Horvath’s, Hannum’s, PhenoAge and Skin and
Blood clocks are presented in Figure 2 and Figure S1 (Supplementary Material). The
correlation coefficients between CA and EA were between 0.688, p < 0.001 (for PhenoAge)
and 0.856, p < 0.001 (for Skin and Blood age), Figure S2 (Supplementary Material). Sex-
specific distribution of the epigenetic age acceleration for all four clocks is shown on
Supplementary Figure S3.

Figure 1. Boxplots of differences between chronological and epigenetic age (cases and controls,
n = 306).

The mean ∆AHr, ∆AHn and ∆ASB were significantly lower in MI/ACS cases com-
pared to controls, 0.055 (5.35) vs. 1.66 (5.09), p = 0.008, −2.70 (5.36) vs. −1.16 (4.82), p =
0.009 and −2.55 (4.06) vs. −1.55 (3.58), p = 0.023, correspondingly (Table 1). ∆APh was
similar in cases and controls. Sex-specific distribution of the epigenetic age acceleration for
all four clocks is shown on Supplementary Figure S3.

3.2. Association between Age Acceleration and Risk of MI/ACS

Odds ratios of MI/ACS per 1–year increment of EA measures, modeled as a continuous
variable, are presented in Table 2. ORs of MI/ACS per 1–year increment of EA measures
were 1.016 (95% CI 0.96–1.07) for ∆AHr; 1.023 (95% CI 0.95–1.08) for ∆AHn; 1.032 (95%
CI 0.99–1.07) for ∆APh; and 1.002 (95% CI 0.94–1.07) for ∆ASB in age-adjusted models
(Table 2). In multivariable analyses (fully adjusted Model 4), the ORs were 1.009 (95% CI
0.95–1.07), 1.012 (95% CI 0.95–1.08), 1.017 (95% CI 0.97–1.06) and 1.009 (95% CI 0.93–1.09),
respectively, and were not statistically significant.
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Figure 2. Scatterplots of chronological vs. epigenetic age by Horvath’s, Hannum’s, PhenoAge and
Skin and Blood clocks. Diagonal green line corresponds to the predicted age equal to the chronological
age, blue straight line corresponds to the linear regression.

Table 2. Relationship between MI/ACS and epigenetic age acceleration, per 1–year increment of the
difference between baseline EA and CA (cases, n = 129 and controls, n = 177).

Measure of
Epigenetic Age n, Case/Control

Model 1 Model 2 Model 3 Model 4

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

∆AHr,
per 1 year 129/177 1.016 (0.96–1.07) 1.003 (0.87–1.36) 1.008 (0.95–1.06) 1.009 (0.95–1.07)

p-value for trends 0.563 0.911 0.785 0.763
∆AHn,

per 1 year 129/177 1.023 (0.95–1.08) 1.001 (0.95–1.06) 1.006 (0.95–1.07) 1.012 (0.95–1.08)

p-value for trends 0.418 0.961 0.842 0.708
∆APh,

per 1 year 129/177 1.032 (0.99–1.07) 1.021 (0.98–1.06) 1.017 (0.98–1.06) 1.017 (0.97–1.06)

p-value for trends 0.126 0.310 0.430 0.459
∆ASB,

per 1 year 129/177 1.002 (0.94–1.07) 0.991 (0.93–1.06) 0.997 (0.93–1.07) 1.009 (0.93–1.09)

p-value for trends 0.962 0.802 0.927 0.825

∆AHr—difference between EA by Horvath’s and chronological age; ∆AHn—difference between EA by Hannum’s
and chronological age; ∆APh—difference between phenotypic EA and chronological age; ∆ASB—difference
between Skin and Blood EA and chronological age; OR—odds ratio; CI—confidence interval; Model 1: age-
adjusted; Model 2: adjusted for age and sex; Model 3: adjusted for age, sex and smoking; Model 4: adjusted for
age, sex, smoking, SBP, TC, BMI and education.

The results are presented separately for men and women in Table S1 and Figure S4
(Supplementary materials). The relationships between EAA and MI/ACS were of the same
directions compared to pooled results and were not statistically significant.

Odds ratios of MI/ACS by tertiles of EA measures are presented in Table 3. After
controlling for age, the risk of MI/ACS was modestly higher in ∆AHr tertile 3 vs. tertile
1: OR = 1.26 (95% CI 0.65–2.44). Similarly, the risk of MI/ACS was higher in tertile
3 of ∆AHn compared with the lowest tertile, the OR was 1.57 (95% CI 0.79–3.14). In
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multivariable models adjusted for age, sex, smoking, SBP, BMI, total cholesterol and
education, the ORs were 1.24 (95% CI 0.60–2.56) and 1.36 (95% CI 0.63–2.96), respectively.
However, as the lower margin of 95% confidence intervals was always less than 1.00, it is
possible that these results arose by chance alone.

Table 3. Relationship between MI/ACS and epigenetic age acceleration by tertiles of the difference
between baseline EA and CA (cases, n = 129 and controls, n = 177).

Measure of
Epigenetic

Age

n,
Case/Control Tertiles

Absolute
Difference

T1-T2
T2-T3

Model 1 Model 2 Model 3 Model 4

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

∆AHr,
year 129/177

T1 (ref) 1.0 1.0 1.0 1.0
T2 5.64 0.89 (0.49–1.63) 0.83 (0.45–1.53) 0.83 (0.44–1.54) 0.91 (0.47–1.77)
T3 5.48 1.26 (0.65–2.44) 1.14 (0.59–2.22) 1.21 (0.61–2.40) 1.24 (0.60–2.56)

p-value for trends 0.510 0.738 0.624 0.593

∆AHn,
year 129/177

T1 (ref) 1.0 1.0 1.0 1.0
T2 5.35 1.28 (0.68–2.39) 1.20 (0.63–2.24) 1.26 (0.66–2.40) 1.22 (0.61–2.44)
T3 5.40 1.57 (0.79–3.14) 1.26 (0.61–2.60) 1.36 (0.65–2.85) 1.36 (0.63–2.96)

p-value for trends 0.198 0.526 0.408 0.437

∆APh,
year 129/177

T1 (ref) 1.0 1.0 1.0 1.0
T2 6.49 1.19 (0.64–2.21) 1.18 (0.63–2.20) 1.21 (0.65–2.28) 1.17 (0.61–2.27)
T3 7.40 2.09 (1.11–3.94) 1.84 (0.99–3.52) 1.78 (0.92–3.43) 1.64 (0.82–3.31)

p-value for trends 0.022 0.065 0.088 0.171

∆ASB,
year 129/177

T1 (ref) 1.0 1.0 1.0 1.0
T2 3.94 0.88 (0.47–1.62) 0.80 (0.43–1.51) 0.84 (0.45–1.58) 0.99 (0.50–1.94)
T3 4.06 1.13 (0.60–2.11) 1.00 (0.53–1.89) 1.09 (0.57–2.09) 1.18 (0.60–2.37)

p-value for trends 0.699 0.948 0.738 0.637

∆AHr—difference between EA by Horvath’s and chronological age; ∆AHn—difference between EA by Hannum’s
and chronological age; ∆APh—difference between phenotypic EA and chronological age; ∆ASB—difference
between Skin and Blood EA and chronological age; OR—odds ratio; CI—confidence interval; Model 1: age-
adjusted; Model 2: adjusted for age and sex; Model 3: adjusted for age, sex and smoking; Model 4: adjusted for
age, sex, smoking, SBP, TC, BMI and education.

The risk of MI/ACS increased in tertile 3 vs. tertile 1 of ∆APh, with OR = 2.09
(95% CI 1.11–3.94), p = 0.022 independent of age, and a statistically not significant OR of
1.8 (CI 95% 0.99-3.52), p = 0.065 was found in the sex- and age-adjusted Model 2 (Table 2).
This association was partly explained (or mediated) by smoking and metabolic factors
(blood pressure, body mass index, total and LDL cholesterol). The relationships between
tertiles of ∆AHn and MI/ACS were also positive but statistically not significant. The
second tertile of ∆AHr was negatively related to MI/ACS in any type of adjustment. There
was no association found between tertiles of baseline ∆ASB and the risk of MI/ACS.

For internal validation, we also assessed the association between MI/ACS and EA
measures in case and expanded control groups (Tables S2–S4). The results were similar
but somewhat weaker for continuous epigenetic age acceleration (EAA) and for EAA by
tertiles than in the original case-control groups. In the expanded sample, the age-adjusted
OR of MI/ACS per 1–year increment of EAA was 1.014 (95% CI 0.98–1.05) for ∆APh. The
risk of MI/ACS was higher in the top tertile 3 vs. tertile 1 for ∆APh, with OR = 1.42
(95% CI 0.85–2.42), but statistically not significant in the age-adjusted model and with
further adjustment. For ∆AHn, the relationships with MI/ACS were of a similar direction
but weaker still; ∆AHr and ∆ASB were not associated with the risk of MI/ACS.

4. Discussion

In this nested case-control study in Novosibirsk (Russia), we selected CVD-free partic-
ipants with incident MI/ACS (cases) and age- and sex-frequency matched controls from a
population-based cohort (HAPIEE); participants were followed up over 15 years. Epige-
netic ages derived from DNAm with Horvath’s, Hannum’s and Skin and Blood clocks were
close to the chronological ages, but PhenoAge’s predictions were less close to CA. From
the EA indices tested in this study, the relationship between incident MI/ACS and 1–year
increments of the difference between baseline EA and CA assessed by the PhenoAge clock
was positive but statistically not significant. The relationships between the risk of MI/ACS
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and acceleration of EA assessed by ∆AHr, ∆AHn and ∆ASB were of the same direction but
were weaker and also statistically not significant.

When EAA was classified into tertiles, the risk of MI/ACS modestly increased in
tertile 3 vs. tertile 1 of EAA assessed by the PhenoAge clock only in the minimally adjusted
model independent of age and was borderline in the age- and sex-adjusted model. This
association appeared to be explained (or mediated) by smoking and metabolic factors. We
did not find significant associations between EAA tertiles of other studied DNAm clocks
and MI/ACS in our sample.

Age is one of the strongest risk factors for many human diseases, including CVD and,
specifically, CHD [16,24]. Given the significance of biological aging, a variety of estimators
of biological age were constructed. DNAm-based estimators (epigenetic age) precisely
predict chronological age and their positive deviation from chronological age is considered
as ‘accelerated biological aging’ (EAA).

In our dataset, EAA was higher in the control group than in MI/ACS cases. That could
be explained by the differences in chronological ages in case and control group subjects.
Indeed, it is known that EAA is non-linear and tends to decrease with age [10], and in our
sample, the chronological age at the time of blood draw in the control subjects is lower than
that of the cases. To address the potential interaction between chronological age at baseline
and EAA, an analysis stratified by age group would be needed; unfortunately, our study
was not large enough to do so.

Evidence is growing on the association between epigenetic age and risk of all-cause
mortality and some cause-specific mortality [13,19–24]. In a recent meta-analysis, Fransquet
et al. (2019) (41,607 subjects) defined that each 5–year increase in epigenetic age acceleration
(EAA) was associated with 8% and 15% increased risk of all-cause mortality (by Hannum’s
and Horvath’s, correspondingly) [24]. Another meta-analysis of Marioni et al. (2015) [22],
based on four large cohorts (two Lothian Birth Cohorts, Framingham Heart Study and
Normative Aging Study), revealed a pooled effect of 16% and 9% increases in total mortality
risk by 5–year higher EAA (by Hannum’s and Horvath’s, respectively).

EAA has been extensively investigated in relation to age-dependent diseases, health,
lifestyle and environmental factors, with inconsistent results [15,21,25,39–42]. In our study,
the relationship between MI/ACS and PhenoAge acceleration by 1–year was positive
but statistically not significant. We found modestly increased risk of incident MI/ACS
in the top vs. the lowest tertile of baseline difference between EA and CA confined to
the PhenoAge clock in the minimally adjusted model. The direction of association for
PhenoAge is broadly in line with associations between EA acceleration and MI or CHD
risk reported in a meta-analysis of five cohorts [13], in the NAS and KORA F4 cohorts [43]
and in comparative analysis between GrimAge and other EA estimators [17]. For instance,
in the meta-analysis of the NAS cohort (n = 737 white men) and KORA F4 cohort (n = 1725)
with follow-up ranging from 8.5–14 years, the HR of MI was 1.15 per 1 SD of PhenoAge
acceleration [43]. In a meta-analysis of five cohorts (WHI (two cohorts), FHS, NAS, JHS),
a 1–year increase in PhenoAge was associated with CHD risk with β=0.016 to 0.073 [13].
A recent systematic review based on 156 publications and a meta-analysis of 57 factors
by Oblack et al. [15] obtained similar effects, with HR for CVD risk ranging from 1.011
to 1.083 per year assessed by four epigenetic clocks (Horvath’s, Hannum’s, PhenoAge
and GrimAge).

We observed ORs of MI/ACS ranging from 1.009–1.012 per 1 year of EAA and from
1.2–1.3 in the top tertile vs. the lowest tertile of EAA by Horvath’s and Hannum’s clocks;
these coefficients were not statistically significant but close to those previously reported
in the ARIC study [44], a German ESTHER case cohort [20] and cumulative data from
a recent meta-analysis [15]. For example, in the ARIC study of a sub-cohort of black
participants (n = 2543) followed for 21 years, the HR of fatal CHD was 1.17 and 1.22 per
5–year increment of Hannum’s and Horvath’s EAA independent of other factors; the HR
for MI modestly increased by 1.12 for Hannum’s EAA [44]. In the ESTHER case cohort
study (n = 1864), the HR of CVD mortality was 1.19 for a 5–year increment of Horvath’s
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EAA independent of other factors and similar but weaker for Hannum’s EAA measure [20].
On the other hand, for example, Horvath et al. (2016) [25] did not report an association
between EAA and incident CHD in the Women’s Health Initiative dataset.

The OR in our analysis for EAA by PhenoAge tertile was substantially attenuated after
controlling for metabolic factors (BMI, SBP, TC) and education. The residual associations,
although still of meaningful magnitude, had wide confidence intervals, and they may
have arisen by chance alone on account of our relatively small sample size. This is in
contrast to some of the larger aforementioned studies that have reported associations in
multivariable-adjusted models.

The impact of metabolic risk factors to mediate the relationship between epigenetic
age and risk of atherosclerotic CVD and acute coronary outcomes is well supported. Orig-
inal studies and comprehensive reviews consistently demonstrate that BMI is strongly
correlated with epigenetic age, independent of other covariates [15,21,39,45]. Obesity is
a known risk factor for many age-related diseases; it is associated with oxidative stress
and a pro-inflammatory state that enhances white blood cell turnover and is considered as
pro-aging [39]. The exact mechanisms linking DNA methylation profiles and CVD are not
entirely clear, but DNAm is considered as a key player in the genetic regulation of genes
related to cardiac homeostasis [46]. In the last decade, several DNAm studies (including
EWASs) have linked CHD and atherosclerosis to differentially methylated sites related to
genes most commonly involved to the pathways of obesity, adiposity, lipid and carbohy-
drate metabolism, inflammation, macrophage activity, smooth muscle cell proliferation and
renin–angiotensin regulation [45,47–51].

The diversity across previous studies in the relationship between EA and CVD/CHD
regarding the presence and magnitude of association might be related to the heterogeneity
of the studied outcomes and study design, age, ethnic and sex composition and volume
of the sample, population-specific characteristics of morbidity, risk factor profiles and
environmental exposure, covariates and multiple statistical testing, as well as the exact
DNAm platform and EA clocks used in the analysis.

5. Study Limitations and Advantages

The study has several limitations, particularly the relatively small sample size. In
this nested case-control study, we randomly selected cases of incident fatal and non-fatal
MI and ACS among all new-onset CHD events occurring in a large population cohort
(9360) during a 15-year follow-up; the cases and controls were frequency matched by age
and sex. This makes it more likely that we obtained a representative sample of typical
acute coronary disease for this population, but the study was under-powered to study
relatively small effects. The sample size was determined by the numbers of eligible events
with DNA samples and by the cost of the lab analyses. In post hoc power calculations
(with 160 cases and 240 controls), the estimated statistical power of the analysis to detect a
difference between cases and controls in delta (epigenetic age–chronological age) of 1.5 and
2 years was 80% > 90%, respectively. For internal validation, we repeated the analysis using
another (expanded) control group which did not significantly alter the results. However,
further enlarging of the MI/ACS sample would certainly improve the statistical power to
detect significant associations for EAA metrics.

For practical reasons, we used frequency matching of cases and controls by 5–year age
groups and sex instead of an individual matching procedure. After exclusions by quality
control, the distribution of age groups between cases and controls slightly changed but the
statistical adjustment would take this into account. Sex distribution remained practically
uniform (50–60%) between cases and controls. We also conducted internal validation using
an expanded control sample with age–sex distribution closer to cases (mean age 59.8 years
in cases vs. 57.5 years in expanded controls); the use of an expanded sample did not
significantly alter the results.

To protect against misclassification which could not be excluded for CHD as a po-
tentially heterogonous outcome, we focused on the most strictly defined categories of
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CHD (MI and ACS) ascertained from the data of ‘MI Register’ using standardized and
internationally validated criteria. To ensure completeness of registration, we additionally
used overlapping sources of case ascertainment and both hot-pursuit and cold-pursuit
approaches were combined by MI Register.

Another potential limitation relates to the arguable differences in DNAm between
sexes [50]. To overcome this limitation, the sampling procedure kept the sex distribution
uniform among cases and controls (nearly 50–60%), and we adjusted the estimates by sex
(Model 2). Finally, in the sensitivity analysis split by sex we received ORs of the same
directions and similar values compared to pooled results and they were insignificant (data
are shown in Supplement Material, Table S1).

Our study also has several strengths. First, it is the first population-based prospective
nested case-control study exploring the relationship between epigenetic age and risk of
incident MI/ACS in the Russian population as well as in the Eastern European population.

Second, we used the latest platform, Illumina Epic 850 BeadChip, for DNA methylation
analysis, applied standardized multistep quality control and included longitudinal analysis
at a different time point. We only used high-quality data from samples with less than
1% CpGs with detection p-values above the threshold 0.01, and CpGs with bead count
numbers of at least 3 and p-values below 0.01 across at least 99% of samples.

Third, we used four estimators of epigenetic age (Horvath’s, Hannum’s, PhenoAge
and Skin and Blood clocks) with established precision in estimating chronological age,
age-related diseases and mortality [16] and constructed with a variety of approaches (blood-
based, pan-tissue or phenotype-based).

Finally, our data provide the first evidence of the magnitude and potential conse-
quences of EAA in the Russian population.

6. Conclusions

In this case-control study nested in a prospective population-based cohort, we did not
find strong associations between accelerated epigenetic age markers and risk of MI/ACS.
There was a modest association between acceleration of epigenetic age and increased risk
of MI/ACS confined only to the highest tertile of the PhenoAge clock, which appeared to
be partly modulated by smoking and metabolic factors. However, this isolated positive
finding may have been a false positive result and needs to be interpreted with caution. If
confirmed in larger studies, however, epigenetic age acceleration may prove to be a useful
predictor of the risk of acute coronary events in older age, with a potential for practical
implications for CVD prevention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm12010110/s1, Figure S1: Boxplots showing age distribution in case and control groups for
A—all samples, B—males and C—females. Figure S2: Scatterplots of chronological vs. epigenetic
age by Horvath’s, Hannum’s, PhenoAge and Skin and Blood clocks. Black line corresponds to the
predicted age equal to the chronological age. Figure S3: Correlation chart for the chronological
age and four DNAm age predictions. The panels on the main diagonal show distributions of the
CA and DNAm clock results, the panels below the diagonal are scatter plots with a fitted line, the
panels above the diagonal show the corresponding Pearson correlation coefficients with significance
level below 0.001. Figure S4: Density plots and boxplots of the age acceleration distribution for (A)
Horvath’s, (B) Hannum’s, (C) PhenoAge, (D) Skin and Blood epigenetic clocks for sex- and case-
control-specific groups. The numbers on the right side of the figure corresponds to t-test p-values.
Table S1: Relationship between MI/ACS and epigenetic age acceleration, per 1–year increment of
the difference between baseline EA minus CA in men and women (men, n = 171, women, n = 135).
Table S2: Distribution of baseline covariates among cases of incident MI/ACS and expanded control
sample (cases, n = 129 and controls, n = 265). Table S3: Relationship between MI/ACS and epigenetic
age acceleration, per 1–year increment of the difference between baseline EA and CA in the expanded
sample (cases, n = 129 and controls, n = 265). Table S4: Relationship between MI/ACS and epigenetic
age acceleration in the expanded sample, by tertiles of the difference between baseline EA and CA
(cases, n = 129 and controls, n = 265).
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