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Abstract

Parkinsonism has heterogeneous nature, showing distinctive patterns of disease

progression and prognosis. We aimed to find clusters of parkinsonism based on
18F-fluoropropyl-carbomethoxyiodophenylnortropane (FP-CIT) PET as a data-driven

approach to evaluate heterogenous dopaminergic neurodegeneration patterns. Two

different cohorts of patients who received FP-CIT PET were collected. A labeled

cohort (n = 94) included patients with parkinsonism who underwent a clinical follow-

up of at least 3 years (mean 59.0 ± 14.6 months). An unlabeled cohort (n = 813)

included all FP-CIT PET data of a single-center. All PET data were clustered by a

dimension reduction method followed by hierarchical clustering. Four distinct clus-

ters were defined according to the imaging patterns. When the diagnosis of the

labeled cohort of 94 patients was compared with the corresponding cluster, parkin-

sonism patients were mostly included in two clusters, cluster “0” and “2.” Specifically,

patients with progressive supranuclear palsy were significantly more included in clus-

ter 0. The two distinct clusters showed significantly different clinical features. Fur-

thermore, even in PD patients, two clusters showed a trend of different clinical

features. We found distinctive clusters of parkinsonism based on FP-CIT PET-derived

heterogeneous neurodegeneration patterns, which were associated with different

clinical features. Our results support a biological underpinning for the heterogeneity

of neurodegeneration in parkinsonism.
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1 | INTRODUCTION

Parkinsonism is a clinical syndrome with distinctive disease entities,

including idiopathic Parkinson's disease, multiple system atrophy (MSA)

and progressive supranuclear palsy (PSP). By sharing dopaminergic

neurodegeneration in common, parkinsonism can be characterized

by a combination of clinical features such as bradykinesia, rigidity,

resting tremor, and postural instability (Hughes, Daniel, & Lees, 1993;

Jankovic, 2008). Despite considerable common motor symptoms, clinical

presentations and prognosis of parkinsonism are heterogeneous among

each of disease entities (Aleksovski, Miljkovic, Bravi, & Antonini, 2018;

Fereshtehnejad et al., 2015; Foltynie, Brayne, & Barker, 2002; Marras &
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Chaudhuri, 2016; Marras & Lang, 2013; Thenganatt & Jankovic, 2014;

Titova, Padmakumar, Lewis, & Chaudhuri, 2017; van Rooden et al.,

2011). Because of broad clinical overlap, an objective and reproducible

biomarker based on the neurodegeneration pattern is needed to better

understand the disease progression and to predict patient's prognosis

in a personalized manner, which may eventually aid establishing efficient

treatment strategies of parkinsonism (Espay et al., 2017; Tolosa,

Wenning, & Poewe, 2006).

The dopamine transporter (DAT) is known to be the single most

important factor of extracellular dopamine concentration, reflecting the

axonal dysfunction (Nutt, Carter, & Sexton, 2004; Saari et al., 2017).

DAT imaging does not directly reflect dopaminergic neurons, but still, as

from the previous study, showing a positive correlation of DAT binding

and symptom duration, it reflects the dopaminergic neuronal functional-

ity (Saari et al., 2017). Furthermore, the loss of dopaminergic function

is associated with phenotypic changes in the nigrostriatal systems

and affects clinical presentation in the early disease state (Kordower

et al., 2013). DAT imaging using SPECT (Single-photon emission com-

puted tomography) or positron emission tomography (PET) is a well-

established method for evaluating dopaminergic neurodegeneration.

Thus, it has now been widely used due to the clinical utility in the

diagnosis of parkinsonism (Catafau, Tolosa, & Da, 2004). In particular,
18F-fluoropropyl-carbomethoxyiodophenylnortropane (FP-CIT) PET has

a relatively higher resolution than SPECT, which enables us to find spa-

tial patterns of neurodegeneration of parkinsonism(Lee et al., 2018; Oh

et al., 2012). Accordingly, the heterogeneity of parkinsonism in terms

of dopaminergic dysfunction and its related clinical presentation may be

associated with the spatial degeneration patterns identified by FP-

CIT PET.

In this study, we aimed to identify the heterogeneity of parkinson-

ism in terms of the spatial patterns of dopaminergic neurodegeneration.

As a data-driven approach, a large dataset of FP-CIT PET was used to

capture spatial patterns of FP-CIT PET and to find clusters. Since this

approach is a type of work discovering different groups using only imag-

ing patterns without clinical diagnostic labels, it is possible to propose

a robust and reproducible parkinsonism cluster, which is expected to

eventually be used as an imaging biomarker to objectively evaluate par-

kinsonism (Choi, Jin, & Initiative, 2018).

2 | MATERIALS AND METHODS

2.1 | Subjects

Two different cohorts were included for this study: labeled and

unlabeled cohorts. The labeled cohort consists of 94 patients with

parkinsonism who underwent FP-CIT PET in the early stage of the dis-

ease and then followed for at least 3 years (mean 59.0 ± 14.6 months)

when a diagnostic re-appraisal was made. Diagnosis of PD, MSA-P

(parkinsonian type), and PSP was made according to the clinical diag-

nostic criteria and all patients were assessed by neurologists special-

ized in movement disorders (Gilman et al., 2008; Hughes, Daniel,

Kilford, & Lees, 1992; Litvan et al., 1996). Among these 94 patients,

49 patients were idiopathic Parkinson's disease, 17 patients were

MSA-P and 10 patients were PSP. Sixteen patients had parkinsonism

with uncertain diagnosis even at re-appraisal. One patient was found

not to have parkinsonism through follow-up. Corresponding clinical

features such as autonomic nerve symptom (ANS), cognitive deficit,

dyskinesia, and freezing of gait (FOG) were assessed at the time of

the last diagnosis. All patients underwent FP-CIT PET at baseline for

differentiating parkinsonism, the mean period between motor symp-

tom onset and FP-CIT PET was 1.98 ± 1.87 years. FP-CIT PET studies

were acquired from July 2009 to Sep 2013.

Another cohort, the unlabeled cohort (n = 813), included all FP-

CIT PET data acquired from Jan 2015 to June 2018. This cohort

included all FP-CIT PET data acquired in a single-center, which were

acquired for evaluating patients with parkinsonism and other neuro-

degenerative disorders.

This study was approved by the Institutional Review Board of our

institute, and informed consent was waived as a retrospective design.

All procedures performed in this study were under the ethical stan-

dards of the institutional research committee and with the 1964 Hel-

sinki declaration and its later amendments or comparable ethical

standards.

2.2 | FP-CIT PET/CT acquisition

As a clinical routine protocol, patients underwent PET/CT imaging,

2 hr after 185 MBq (5 mCi) of 18F-FP-CIT injection. Emission scans

were acquired for 10 min using dedicated PET/CT scanners (Biograph

40 or mCT, Siemens, Erlangen, Germany), followed by CT scans for

attenuation correction. PET images were reconstructed by an iterative

algorithm (ordered-subset expectation maximization, OSEM) with

24 subsets and 5 iterations. Images were reconstructed with the same

matrix size with 256 × 256. Four millimeters of Gaussian post-

reconstruction filter was applied.

2.3 | Image preprocessing and calculation
of binding ratio

All the PET images were spatially normalized into an in-house 18F-FP-

CIT PET template (Choi et al., 2016; Kim et al., 2012). The spatial

normalization was performed using statistical parametric mapping

software (SPM8, University College of London, London, UK). Voxel

counts were changed to binding ratio, defined as BR = Cspecific/

Cnonspecific, where C represented PET counts. Mean counts of occipital

cortex were regarded as nonspecific binding, Cnonspecific. Automated

Anatomical Labeling (AAL) was used for predefined volume-of-

interests to define the occipital cortex as well as the striatum. The

voxel size of spatially normalized BR maps was 2.0 × 2.0 × 2.0 mm.

The binding ratio of the putamen and caudate was obtained by the

predefined AAL VOIs. BR of bilateral putamen and caudate were cal-

culated by the volume-of-interests and mean values were used.

We also included qualitative evaluation of FP-CIT PET of all data using
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the formal reading reports. All reports of all FP-CIT PET was made

by a consensus of more than two nuclear medicine brain imaging

experts. We classified all FP-CIT PET images into two classes of

whether imaging patterns suggested dopaminergic neurodegeneration

or not.

2.4 | Unsupervised clustering of FP-CIT PET data

All FP-CIT PET data (n = 907) were clustered according to the brain

BR of FP-CIT patterns. Firstly, principal component analyses (PCA)

were applied for data dimension reduction. PCA determines a set of

linearly uncorrelated features that account for variability in a dataset.

All spatially normalized FP-CIT PET data were changed to a matrix

Mi,j, where i is the number of subjects and j is the number of voxels

of the brain. Principal components (PCs) were computed from the

SVD (singular value decomposition) of the matrix. The matrix was cen-

tered by subtracting the mean image and then decomposed to

n components: M = USVT. PCs are given by SVT and the contribution

of the kth PC to the ith subject is given by the U(i,k). We extracted

10 PCs from FP-CIT PET data.

Samples were clustered by a hierarchical clustering method. Using

PCs of all FP-CIT PET data, the similarity was determined by the aver-

age distance between elements of each hierarchical cluster. A given

cutoff of the hierarchical dendrogram provides a number of clusters,

resulting in four clusters that reflect FP-CIT PET patterns.

2.5 | Data visualization by 2-dimensional
projection

To intuitively visualize FP-CIT PET patterns, another dimension reduc-

tion method, t-distributed stochastic neighborhood embedding (t-SNE),

was employed (Maaten & Hinton, 2008). t-SNE retains local similarities

between data in a way that similar FP-CIT PET are modeled by nearby

points and dissimilar samples are modeled by distant points. The

similarity between data is modeled as Gaussian with a given number of

neighbors, perplexity. Here, we set the perplexity to 30 and we

reduced dimension to two axes.

2.6 | Statistics

As all data including the labeled and unlabeled cohorts were clustered

by FP-CIT PET patterns, final clinical diagnosis, and clinical symptoms

were compared for patients with different clusters in the labeled

cohort. In particular, clinical symptoms including the freezing of gait,

autonomic nerve symptoms, and dyskinesia were compared for

patients with different clusters. Student's t-test was used to compare

continuous variables including BR of two different clusters. The differ-

ences between groups were considered statistically significant at

p-value < .05. Pearson's chi-square test was performed to analyze the

categorical variables including clinical symptoms.

3 | RESULTS

3.1 | Four clusters identified from FP-CIT PET
patterns

Brief demographics of labeled and unlabeled cohorts were summa-

rized in Table 1. PCs, the sets of linearly uncorrelated image-based

patterns, were extracted from all FP-CIT PET data (Figure 1a). The

anatomical location of peak voxels is summarized in Table S1. Notably,

these patterns were extracted from all subjects using a data-driven

unsupervised manner without labels such as clinical diagnosis. Imaging

patterns were divided into four clusters by hierarchical clustering. A

heatmap for PCs of all cohorts and conventional BR quantification

results is presented in Figure 1b. Averaged FP-CIT PET images across

the patients with the same cluster was represented in Figure 1c.

All data were intuitively visualized by 2-dimensional embedding

using t-SNE plots (Figure 2, Figure S1). All images were divided into

visually normal and abnormal patterns according to the formal report

which includes visual interpretation of FP-CIT PET (Figure 2a). By

mapping with the quantification of caudate and putamen BR, Putamen

and caudate BR were differently associated with data distribution pat-

terns on the t-SNE plot (Figure 2b,c). The t-SNE map was also plotted

with the four clusters (Figure 2d). The cluster 0 and cluster 2 were

mostly overlapped with visually abnormal patterns and cluster 1 and

cluster 3 were mostly overlapped with visually normal patterns.

3.2 | FP-CIT PET-based clusters associated
with different diagnosis of parkinsonism

We then applied the clusters to the labeled cohort, which included

94 patients who were clinically diagnosed as Parkinson's disease, PSP,

MSA-P, or parkinsonism with uncertain diagnosis (Figure 3a). Cluster

0 and cluster 2 showed different patterns particularly in PC1 and PC2,

TABLE 1 Demographics and clusters based on FP-CIT PET

Labeled cohort
(n = 94)

Unlabeled
cohort (n = 813)

Age 61.9 ± 10.3

(range: 30.4–80.5)
67.5 ± 10.4

(range: 12.9–95.9)

Sex M:F = 41:53 M:F = 357:456

Clusters 0–41
1–5
2–47
3–1

0–258
1–272
2–189
3–94

Diagnosis Parkinson's disease – 49

Progressive Supranuclear

palsy – 10

Multiple system atrophy

(Parkinsonian type) – 17

Diffuse Lewy body disease – 1

Other parkinsonism – 16

Non-parkinsonian disorder – 1

N/A
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while PC3 of cluster 0 and cluster 2 were not significantly different

(Figure S2). Notably, PC1 was associated with BR of the whole puta-

men, while PC2 was associated with BR of posterior putamen. The

frequency of clinical diagnosis was significantly different according

to the FP-CIT PET-based clusters (chi-square = 35.4, p = .0004)

(Figure 3b,c). Among 94 patients, 88 patients with parkinsonism

were classified as either cluster 0 or cluster 2. PSP was significantly

more classified as the cluster 0 compared with other clusters

F IGURE 1 Unsupervised clustering of FP-CIT PET. (a) Spatial patterns extracted by the principal component analysis were represented. Note
that red color represented positively associated voxels and blue color represented negatively associated voxels of a given principal component
(PC). (b) A total of 907 FP-CIT PET images were clustered by a hierarchical clustering method using principal components. Four different clusters
were identified. (c) Mean FP-CIT PET images of the four different clusters were represented

SUH ET AL. 4747



(chi-square = 9.7, p = .002). In cluster 2, only one patient was PSP,

while nine patients with PSP were classified as cluster 0 (Figure 3b).

The deviation of diagnosis in different clusters were presented by an

association plot (Figure 3c). The colored bar indicated more frequent

diagnosis in the cluster.

Onset age and disease duration of both clusters were not signifi-

cantly different (cluster 0 vs. cluster 2:60.4 ± 11.6 vs. 58.1 ± 9.0 and

2.3 ± 1.8 vs. 2.3 ± 1.7 for onset age and duration between onset to

PET scan, respectively). Patients in the cluster 0 showed poor

response to levodopa treatment compared with cluster 2 (73.2% and

89.3% in cluster 0 and cluster 2, respectively, p = .049). FOG (cluster

0 vs. cluster 2; 53.6% vs. 23.4%, p = .003), ANS (70.7% vs. 46.8%,

p = .023) and cognitive deficit (39.0% vs. 14.9%, p = .010) were signifi-

cantly more common in cluster 0 (Table 2).

F IGURE 2 Spatial patterns of FP-CIT PET. To visualize the relationship of PET images, a 2-dimensional projection map was drawn using
t-distributed stochastic neighborhood embedding (t-SNE). (a) The t-SNE map was represented with two different groups according to visual
interpretation. The points of the t-SNE map were colored with conventional quantification results of FP-CIT PET, including binding ratio (BR) of
the putamen (b) and caudate (c). (d) FP-CIT PET images of the labeled cohort which has diagnostic label according to clinical follow-up were
represented on the t-SNE map. Colors represented the clusters estimated by the unsupervised clustering

4748 SUH ET AL.



F IGURE 3 Association of FP-CIT PET-based clusters and clinical diagnosis. (a) A heatmap was drawn for the labeled cohort with diagnosis
and clinical presentations. (b) The number of patients of each diagnostic label was represented with FP-CIT PET-based clusters. Most patients
were included in cluster 0 and cluster 2. (c) An association plot was drawn for assessing the deviation of diagnostic labels according to the
clusters. Blue color represented a positive deviation of diagnostic labels for each cluster, suggesting the high frequent diagnosis in a given cluster
compared with other clusters. BR, binding ratio; MSA, multiple system atrophy; PD, Parkinson's disease; PSP, progressive supranuclear palsy

TABLE 2 Clinical features of patients
with parkinsonism according to FP-CIT
PET-based clusters

Features Cluster 2 (n = 47) Cluster 0 (n = 41) p-Value

Onset age 58.1 ± 9.0 60.4 ± 11.6 N.S.

Duration (onset to scan) 2.3 ± 1.8 2.3 ± 1.7 N.S.

Symptoms

DOPA response 42 (89.3%) 30 (73.2%) .049

Freezing of gait 11 (23.4%) 22 (53.6%) .003

Autonomic nerve symptoms 22 (46.8%) 29 (70.7%) .023

Cognitive deficit 7 (14.9%) 16 (39.0%) .010

Dyskinesia 12 (25.5%) 7 (17.1%) N.S.
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3.3 | Difference of clinical presentation in FP-CIT
PET-based clusters of Parkinson's disease patient

Among 49 Parkinson's disease patients, 32 were included in the

cluster 2 and 14 were included in the cluster 0. The Parkinson's dis-

ease patients with the different clusters show different patterns of

clinical features as well as FP-CIT BR. Both BR of putamen and cau-

date were significantly lower in Parkinson's disease patients of the

cluster 0 than those of the cluster 2 (2.44 ± 0.29 vs. 2.85 ± 0.21,

p = .0001 for putamen; 2.33 ± 0.25 vs. 2.75 ± 0.19, p < .0001

for caudate) (Figure S3). Onset age and disease duration were not

significantly different between two clusters (cluster 0 vs. cluster 2;

56.2 ± 12.6 vs. 55.4 ± 9.0 and 1.71 ± 1.38 vs. 2.16 ± 1.69 years, onset

age and disease duration, respectively) (Figure S3). FOG was signifi-

cantly more common in the cluster 0 (35.7% and 9.4% of Parkinson's

disease patients in cluster 0 and cluster 2, respectively, p = .03). On

the other hand, dyskinesia appeared more common in the Parkinson's

disease patients in the cluster 2, though it did not reach a statistical

significance (34.4% for the cluster 2 vs. 14.3% for the cluster

0, p = .16) (Table 3).

4 | DISCUSSION

In the present study, four distinct clusters were defined according to the

spatial patterns of dopaminergic degeneration on DAT imaging. Two

clusters, cluster 0 and cluster 2, mainly comprised DAT images with a

visually abnormal pattern, which has been a clinically routine and con-

ventional qualitative interpretation. When the labeled cohort, which

included patients with parkinsonism according to the clinical diagnosis,

was analyzed with corresponding clusters, Parkinson's disease and other

atypical parkinsonism mostly occupied cluster 0 and cluster 2. These

two clusters showed a different distribution of disease entities, diagno-

sis based on 3 years follow-up, and distinctive clinical features. Further-

more, even among patients with the diagnosis of Parkinson's disease,

different clinical features were observed between two clusters. Our

finding suggested the heterogeneity of parkinsonism in terms of the var-

ious dopaminergic neurodegeneration patterns.

The image patterns used for the clustering were in a similar vein

with previous studies regarding different sub-regional DAT loss patterns

according to each entity of parkinsonism. Kahraman et al. revealed

visually distinct DAT patterns between atypical parkinsonism and idio-

pathic Parkinson's disease using 123I-FP-CIT SPECT (Kahraman, Eggers,

Schicha, Timmermann, & Schmidt, 2012). Diffuse and severe DAT loss

pattern was a predictive marker for atypical parkinsonism. More

recently, PSP patients show extensive and symmetric DAT loss across

the whole striatum, while Parkinson's disease and MSA-P patients show

relatively preserved binding in the caudate nucleus and anterior puta-

men (Antonini et al., 2003; Filippi et al., 2006; Oh et al., 2012). These

DAT image studies were supported by the Post-mortem study revealing

excessive neuronal loss in PSP compared with Parkinson's disease

(Murphy, Karaconji, Hardman, & Halliday, 2008). In our results, cluster

0 mainly showed an extensive DAT loss in the whole striatum associ-

ated with PC1, and atypical parkinsonism patients, specifically PSP, were

mainly included in this cluster. Cluster 2, which was more relevant to

typical Parkinson's disease, showed relatively preserved DAT binding in

the anterior portion of the putamen and relatively decreased DAT bind-

ing in the posterior putamen, related to reduced PC2 (Figure 1c).

The heterogeneous neurodegeneration patterns of FP-CIT PET

proved its clinical implication by showing distinctive clinical presenta-

tions among the labeled cohort of parkinsonism patients. Cluster

0, which mainly represents atypical parkinsonism, showed clinical

characteristics of significantly poor treatment response, high FOG,

high frequency of ANS, and more cognitive deficit. Parkinson's disease

patients who were allocated in the cluster 0 also showed significantly

high FOG presentation, but relatively low dyskinesia. Previous sub-

type studies reported that, in addition to the cognitive deficit, FOG

and lack of dyskinesia, which implies poor dopamine response, were

relevant to Parkinson's disease subtypes defined as diffuse/malignant

(Fereshtehnejad et al., 2015) and Postural Instability/gait disturbance

(Aleksovski et al., 2018), and also, it is known to be a commonly

observed feature of atypical parkinsonism, including PSP, MSA-P, and

dementia with Lewy bodies (Giladi, Kao, & Fahn, 1997). ANS is a key

configuration for Parkinson's disease subtyping and is a characteristic

feature of MSA-P. These clinical features, all in common, are related

to severe disease manifestation and poor prognosis, which might be

the clinical characteristic of cluster 0. Poor levodopa response

observed in our study further refine the characteristics of this cluster.

On the other hand, although not significant, patients allocated in

the cluster 2 show a high prevalence of dyskinesia, which is associated

with levodopa responsiveness, and thus, favors a diagnosis of

Parkinson's disease over atypical parkinsonism (Postuma et al., 2015).

As future work, further in-depth investigation regarding the clinical

outcome of these different two clusters in parkinsonism patients

could clarify the association of heterogeneous neurodegeneration pat-

terns and prognosis.

Recently, many attempts using cluster analysis, based on diverse

clinical features, have been made to identify distinct subtypes of

TABLE 3 Clinical symptoms of
patients with Parkinson's disease, a
subgroup of the labeled cohort,
according to FP-CIT PET-based clusters

Symptoms Cluster 2 (n = 32) Cluster 0 (n = 14) p-Value

DOPA response 32 (100%) 14 (100%) N.S.

Freezing of gait 3 (9.4%) 5 (35.7%) .03

Autonomic nerve symptoms 12 (37.5%) 6 (42.9%) N.S.

Cognitive deficit 2 (6.3%) 1 (7.1%) N.S.

Dyskinesia 11 (34.4%) 2 (14.3%) .16
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Parkinson's disease (De Pablo-Fernandez, Lees, Holton, & Warner,

2019; Erro et al., 2016; Faghri et al., 2018; Fereshtehnejad et al.,

2015; Lawton et al., 2018). Longitudinal follow-up studies revealed

the relevance of subtype classification at an early stage with treat-

ment response (Lawton et al., 2018), disease course, and survival

(De Pablo-Fernandez et al., 2019). However, the lack of a valid and

robust method for subtyping Parkinson's disease only based on clinical

features has made it fail to reproduce in a clinical trial cohort (Mestre

et al., 2018). More specifically, previous subtyping systems used a

combination of diverse phenotypes of the disease, which was hard

to be supported by a plausible explanation of the pathophysiologic

process such as neurodegeneration of Parkinson's disease. Such a

lack of reproducibility and consideration for pathophysiology have

limited widely acceptable subtyping system in the clinic. On the other

hand, our data-driven approach based on unsupervised clustering of

imaging employing a relatively large dataset is robust, since there is lit-

tle room for ambiguous and subjective elements to intervene. Thus,

FP-CIT PET-based clustering methods could be objective and repro-

ducible. Furthermore, as FP-CIT PET directly reflects the DAT expres-

sion and dopaminergic function (Ba & Martin, 2015; Saari et al., 2017),

our approach could lead to suitable biomarker development for sub-

typing of Parkinson's disease by explaining the heterogeneous neu-

rodegeneration patterns.

Some limitations should be noted. Firstly, validated motor scales,

such as UPDRS (Unified Parkinson's Disease Rating Scale) for PD,

UMSARS (Unified Multiple System Atrophy Rating Scale) for MSA,

were not performed in the labeled cohort. Despite the absence of

disease-specific symptom scales, patients were regularly examined for

a sufficiently long-term period, and at every visit reevaluated to con-

solidate the clinical diagnosis. Secondly, as a single institute retrospec-

tive study, the number of patients with MSA-P and PSP was relatively

limited. However, we speculate that, since comprehensive diagnosis

was made through long term clinical assessment, each group would

well reflect the disease entity. Nonetheless, prospective cohort studies

with a larger number of patients and comprehensive neurological

symptom evaluation will be necessary to solidify the clinical signifi-

cance of our data-driven approach. Furthermore, a longitudinal follow-

up study will corroborate whether the FP-CIT PET-based clusters have

a clinical value to predict disease progression and outcome.

The unsupervised clustering of FP-CIT PET showed a heteroge-

neous pattern of dopaminergic neurodegeneration in patients with

parkinsonism. These clusters were associated with different diagnosis

of parkinsonism. Furthermore, the results of distinctive clinical features

observed between different clusters in Parkinson's disease as well as

all patients with parkinsonism, support the clinical heterogeneity of

parkinsonism in terms of dopaminergic neurodegeneration. Further-

more, we expect that our approach of a quantitative assessment of

degeneration patterns using PCs and FP-CIT PET PET-based clusters

can be used at each patient level. Although further clinical validation

studies are needed, this approach may be applied to predicting the

course of clinical symptoms particularly in patients with early parkin-

sonism as well as Supporting Information on differential diagnosis of

parkinsonism. Our data-driven approach to identify the heterogeneity

will lead to a better understanding of the disease and personalized

management of the patient.
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