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Abstract Gain-of-function germline mutations of the RET
proto-oncogene are responsible for initiation of carcinogene-
sis within the thyroid gland and development of hereditary
form of medullary thyroid carcinoma and MEN2 syndrome.
Genotype-phenotype correlations are established for most
RETmutations, but the importance of the synonymous chang-
es in this gene remains debatable. We aimed to analyze RET
gene variants in Polish population. Genetic testing for the RET
gene variants was performed with standard methods in 585
people aged 1–85, including 448 patients with medullary thy-
roid carcinoma and 131 of their first- and second-degree rela-
tives, as well as six patients suspected of MTC/MEN2.

Besides the most frequent synonymous changes,
p.Leu769Leu, p.Ser836Ser, and p.Ser904Ser, four rare chang-
es—c.1827C>T (p.Cys609Cys), c.2364C>T (p.Ile788Ile),
c.2418C>T (p.Tyr806Tyr), and c.2673G>A (p.Ser891Ser)—
were found in the RET gene, in the Polish population. Two of
the rare changes, p.Cys609Cys and p.Ile788Ile, had not been
previously described. The frequency of molecular synony-
mous variants in the general population was evaluated by
testing 400 anonymous blood samples of neonates. Our find-
ings may contribute to a better understanding of the genetic
diversity of the RET gene and the involvement of synonymous
variants in this diversity.
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Background

Proto-oncogene RET (rearranged during transfection) encodes
a single-pass transmembrane receptor of the tyrosine kinase
family. The RET gene lies on the chromosome 10q11.2 [1]
and comprises 21 exons. RET protein is composed of three
domains: an extracellular ligand-binding domain with four
cadherin-like repeats and a cysteine-rich region, a transmem-
brane domain and a cytoplasmic region with the tyrosine ki-
nase domains [2, 3]. Missense, germline gain-of-function mu-
tations in the RET proto-oncogene are associated with type 2
multiple endocrine neoplasia syndromes (MEN2A or
MEN2B) and familial medullary thyroid carcinoma (FMTC)
[4–7]. Medullary thyroid carcinoma (MTC) is a common
component of these syndromes. MTC occurs as a part of an
inherited disorder (approx. 20–25% of cases) and as a sporad-
ic tumor (the remaining 75% of cases) [8]. The disease phe-
notypes and the age of onset are associated with codon-
specific RET mutations and their transforming potential.
Considering MTC aggressiveness and the co-existing
endocrinopathies such as pheochromocytoma (PHEO),
hyperparathyroidoism (HPTH), cutaneous lichen amyloidosis
(CLA), and Hirschsprung’s disease (HD), the American
Thyroid Association (ATA) Guidelines currently divide
germline RET mutations into three risk categories: ATA–
HST (the highest risk—patients with MEN2B and the RET
codon M918T mutation), ATA-H (the high risk—patients
with RET codon C634 mutations and the RET codon A883F
mutation), and ATA-MOD (moderate risk—patients with all
other mutations in the RET gene) [9].

Beside the changes of the confirmed pathogenic signifi-
cance, there are polymorphic changes (frequency: ≥1%) [10]
in the RET gene. In the European population, the most com-
mon polymorphic variants (MAF (minor allele frequency)
>5%) [11] are the following: c.2307 T>G (p.Leu769Leu) in
exon 13 (allele G frequency: 24%); c.2071 G>A
(p.Gly691Ser) in exon 11 (allele A frequency: 19%); c.2712
C>G (p.Ser904Ser) in exon 15 (allele G frequency: 19%), and
c.2508 C>T (p.Ser836Ser) in exon 14 (allele T frequency:
6%) [12, 13]. Their role in tumorigenesis is still unclear, and
there are conflicting data as to whether these changes can
modify the risk of developing MTC [14–16]. In addition to
these common polymorphic changes in the RET gene, there
are also rare synonymous or nonsynonymous allelic variants
(MAF < 0.5%) of uncertain significance. Identification of
these rare changes in the context of specific symptoms of the
disease is extremely significant for a better understanding of
the role they potentially play in the RET receptor function.

The role of synonymous genetic variants is a matter of a
particular controversy. Such changes, according to the
Anfinsen’s principle postulating that the amino acid sequence
of the protein alone determines the structure and functions of a
protein, were for a long time referred to as Bsilent^ [17].
Recent studies have revealed that the synonymous changes
may affect the protein function and cause many diseases.

Several mechanisms have been proposed to explain the
pathogenic role of synonymous changes in cancer.
Synonymous changes can influence post-transcriptional
RNA processing [18–24] and post-transcriptional miRNA-de-
pendent regulation, by altering miRNA binding sites [25–31].
At present, a few miRNAs regulating protein RET expression
are known [32, 33], all of which bind the 3’UTR region of
RET. Synonymous changes may affect the global mRNA sta-
bility [34–37], or the local stability in the start codon region
[38–40], or the maintenance of cell homeostasis [41].
Synonymous changes can also influence the speed and accu-
racy of translation. One way of kinetic control of translation is
codon usage. The synonymous mutation can slow down or
accelerate the rate of protein synthesis and lead to protein
misfolding. SNPs can generate translation pause sites (ribo-
some stalling) resulting in alternative conformers during co-
translational folding [38, 42].

Some synonymous changes are directly related to the path-
ogenesis of a disease, e.g., in Treacher-Collins’ syndrome, the
synonymous variant c.3612A>C in the TCOF1 gene causes
exon 22 skipping and mis-splicing and results in defective
mRNA [43], and in cystic fibrosis, a structural instability of
mRNA, caused by the synonymous polymorphism p.Ile507Ile
in the context of ΔF508 CFTR, could be responsible for the
reduced translational rate and lower cellular expression level
of CFTR protein [44]. Several synonymous mutations have
been shown to be associated with carcinogenesis and influ-
ence cancer risk by various mechanisms. For example, the
specific silent mutations (p.Pro36Pro) in TP53 gene lower
the affinity of the TP53 mRNA for the regulatory protein
MDM2, and thereby reduce the ability of TP53 to activate
apoptosis [45]. The synonymous variant p.Pro72Pro has been
associated with an elevated risk of lung cancer [46], and the
synonymous changes, rs1061302 and rs709816 in the NBS1
gene, are linked with smoking-related cancers (lung, larynx,
liver, and bladder) [47].

The aim of this study was to examine a few rare synony-
mous allelic variants of the RET gene in MTC patients in
Polish population. Some of the variants have not been previ-
ously studied in MTC patients.

Patients

Genetic testing for RET mutations was performed in 585 peo-
ple, aged 1–85 years, including 448 patients with MTC and
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131 of their first- and second-degree relatives, and six patients
suspected of MTC/MEN2 with other diseases (PTC, PHEO,
renal carcinoma, adrenal gland tumor, nodular thyroid disease,
and carcinoid of the stomach) (Table 1).

Most patients and their kindred were taken care of at the
Outpatient Clinic of Thyroid Diseases and Genetic Counseling
UnitCancerPreventionCenter and theMariaSkłodowska-Curie
Memorial Cancer Center and Institute of Oncology in Warsaw
between 1998 and 2016. Twenty-nine adolescent patients aged
1–18 had been admitted to other hospitals: the Department of
Pediatric Surgery at the Collegium Medicum of Nicolaus
Copernicus University in Bydgoszcz, the Department of
Oncology at The Children’s Memorial Health Institute in
Warsaw, and the Department of Pediatrics and Endocrinology
of theWarsawMedical University. The peripheral blood of ado-
lescent patients was collected for genetic testing in the Maria
Sklodowska-Curie Memorial Cancer Center and Institute of
Oncology inWarsaw.All patientswere subjected to the standard
diagnosticprocedures,aspublishedbyPaszkoetal. [48].Patients
with cytologically or histopathologically confirmed MTC were
enrolled for thedetailedgenetic testing.Sixexons (10,11,13,14,
15, and 16) of the RET gene were analyzed in all patients. In 26
patients, including those at riskof inheritedMTC(genetic load in
the family), thosewith aggressiveMTCdisease, orwith the spe-
cific MEN syndrome symptoms, as well as those with the early
age of onset, additional exons (5, 8, 9, 12, 18, and 19) were
sequenced, to check for other mutations in the RET gene. The
analyzed exonswere selected basedon theATAGuidelinesTask
Force on Medullary Thyroid Carcinoma [49] and ARUP
Scientific Resource for Research and Education Mutation
Databases [50].

The frequency of molecular synonymous variants in exons
10, 11, 13, 14, and 15 in the general population was evaluated
by testing 400 anonymous blood samples of neonates.

Methods

DNA was extracted from the peripheral blood lymphocytes
using a commercial kit Genomic Midi AX (Biotechnology).
Germline RET gene mutations were screened in exons 10, 11,

13, 14, 15, and16andadditionally in exons5, 8, 9, 12, 18, and19
(see SupplementaryMaterial for primer sequences). All the test-
ed fragments of the RET gene were amplified using PCR tech-
nique. Following purification on Centri-Sep Spin Columns,
(Applied Biosystems), PCR products were subjected to electro-
phoresis in a Perkin Elmer ABI Prism Sequencer using fluores-
cently labeled terminatorsBIGDYEv.3.1 (AppliedBiosystems).
Germlinemutationswere identifiedbycomparing the sequences
of the tested samples with the relevant correct RET sequences:
NM020630.4. Genotype-phenotype correlations and the identi-
fied changes-related risk of aggressive MTC were verified by
analyzing public databases [32, 49–51].

Results

Direct sequencing analysis of the RET proto-oncogene in 585
people revealed germline pathogenic mutations in eight exons
(10, 11, 13, 14, 15, 16, 18, and 19) in 79 patients (aged 1–
75 years) (17.4% of patient group) and their 30 unaffected
kindred (aged 1–80 years) (22.9% of asymptomatic group).
Three hundred seventy patients (aged 7–85 years) (81.5% of
patient group) were diagnosed with sporadic MTC (sMTC)
and five patients suspected of MTC/MEN2 with other dis-
eases (1.1% of patient group) (Table 1). No carrier of the
pathogenic mutation was found in this group. As revealed
by genetic studies of patients and their relatives, individuals
of all series presented several synonymous genetic changes in
the RET gene. Apart from the most frequent polymorphic
variants (p.Leu769Leu, p.Ser836Ser, and p.Ser904Ser) [15],
four rare synonymous changes were found, and two new
changes were identified, c.1827 C>T (p.Cys609Cys) and
c.2364 C>T (p.Ile788Ile) (Table 2).

Patients Report

Genetic Variant in Exon 10: c.1827 C>T (p.Cys609Cys)

A 10-year-old male patient with no family history of MEN
syndrome, familial MTC, or sporadic MTC was diagnosed
with tumor (16 × 22 × 30 mm) located in the right lobe of
the thyroid. The level of serum calcitonin was markedly ele-
vated to 991 pg/mL. The results of abdominal cavity ultra-
sound and chest x-ray imaging were negative. The patient
underwent total thyroidectomy, cervical lymph node dissec-
tion, and partial removal of the thymus. The tumor was clas-
sified as a monofocal medullary thyroid carcinoma
(pT2N1aM0). The postoperative calcitonin level was
5.57 pg/mL. There were no other symptoms of MEN2 syn-
drome. Two years after the surgery, control studies showed an
increase in the level of calcitonin (36.7 pg/mL) and an enlarge-
ment of the cervical lymph node. The lymph node was

Table 1 Patients

Phenotype No pathogenic
changes (n)

Pathogenic
changes (n)

MTC/MEN2A/MEN2B 358 76

MTC + other cancer 8 –

MTC + other thyroid cancer 4 –

MTC/HSCR – 2

Other 5 1

Asymptomatic 101 30
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removed, and further examinations (USG and PET-CT results,
serum calcitonin level of 24 pg/mL, and CEA level of 2 ng/
mL) showed no recurrence.

Genetic testing revealed a synonymous variant: c.1827 C>T
(p.Cys609Cys) in exon 10 (Fig. 1) (Table 2). No germlinemuta-
tions in the remaining exons (5, 8, 11, 12, 13, 14, 15, 16, 18, and
19) were found. In exon 13 of the RET gene, only one heterozy-
gous polymorphic change, p.Leu769Leu, was found.

Genetic analysis of the RET gene in patient’s relatives (par-
ents and younger brother) revealed the same synonymous
change in exon 10, in the father and the brother (Fig. 2).
Due to the family history of cancer, four additional genes,
BRCA1, BRCA2, CHEK2, and NBS1, were tested in the
father of the patient, and no mutations were found. Neither
the father nor the younger brother experienced any symptoms
of cancer, as assessed by laboratory tests for serum CEA,
calcitonin level, neck, and abdominal ultrasound scanning.

Genetic Variant in Exon 13: c.2364 C>T (p.Ile788Ile)

A female carrier of synonymous heterozygous change in exon
13: c.2364 C>T (p.Ile788Ile) (Fig. 3) was diagnosed with
sporadic MTC at the age of 46; a tumor of 27 × 36 × 39 mm
was located in the left lobe of the thyroid. Serum calcitonin
level was elevated to 885 pg/mL. The patient, diagnosed with
metastases to the regional cervical lymph nodes, underwent
total thyroidectomy, with removal of the central and left lateral
lymph node. Apart from the three heterozygous polymor-
phisms—p.Gly691Ser, p.Leu769Leu, and p.Ser904Ser—no
other mutations in the 12 studied exons of the RET gene were
found (Table 2).

Genetic Variant in Exon 14: c.2418 C>T (p.Tyr806Tyr)

Because of the nodular thyroid and a 13-mm tumor of the left
adrenal gland, and a suspicion of MEN2 syndrome, genetic
analysis of the RET gene was also performed in 50-year-old
female patient with carcinoid of the stomach. There were no
pathogenic mutations in the 12 examined exons of the RET
gene. Only two heterozygous polymorphic changes in exons
13 and 15, p.Leu769Leu and p.Ser904Ser, and one rare syn-
onymous heterozygous change in exon 14, c.2418 C>T
(p.Tyr806Tyr), rs553418132, were found (Table 2).

Genetic Variant in Exon 15: c.2673G>A (p.Ser891Ser)

In two MTC patients, a rare synonymous change, c.2673G>A
(p.Ser891Ser), rs201612214, was identified (Table 2). One
patient, a 37-year-old woman with bilateral tumors of the thy-
roid gland (10 × 6 × 23 mm in the right lobe and
24.5 × 19.5 × 33.5 in the left lobe), carried an additional
pathogenic mutation, p.Cys618Ser in exon 10, and two poly-
morphic changes, p.Gly691Ser and p.Ser904Ser. It was notT
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possible to find out whether these genetic variants were cis- or
trans-changes. The other, a 53-year-old man with a tumor
located in the left lobe of the thyroid gland (7 mm in diameter,
pT1a), carried polymorphic variants p.Gly691Ser/
p.Ser904Ser of the RET gene.

None of the four rare synonymous changes in exons 10, 13,
14, and 15 were found in the general population group.

Discussion

To assess the significance of rare genetic changes, apart from
clinical data, it is necessary to collect information on the carriers
of the identifiedgenechanges, theirpenetration in the family, and

their frequencyin thegeneralpopulation.Wepresenthereseveral
rare genetic variants of the RET gene. We also identified two
synonymous variants, p.Cys609Cys and p.Ile788Ile, that have
not been identified and described before.

In 10–15% of MEN2A and FMTC cases, codons 609, 611,
618, and 620 are affected [52]. Our previous studies have shown
that inpatientswithMTCinPolishpopulation,pathogenicchang-
es occurmost frequently in exon10of theRETgene (38.8%of all
mutation),while forexample, thefrequencyofmutations incodon
634wasonly26.8%[48].More than60%ofmutations incysteine
codonsofexon10occur inFMTCand10–15%inMEN2A[7,53,
54]. All these mutations are associated with a moderate risk of
aggressive MTC (ATA-MOD). The most frequent mutations in
codon 609 are changes of cysteine into R, G, Y, S, F, andW [50].
However, asdifferentaminoacidsubstitutionsofcysteine result in
a comparable transforming activity, and it is suggested that the
activity depends on the position of the cysteine mutations rather
than on the substituting amino acid [14, 55]. So far, no synony-
mous change in codon609 has been described.Generally, synon-
ymous changes in exon 10 are rare. The germline synonymous
geneticvariantshavebeen reported inninecodons (588,591,594,
601, 608, 619, 620, 621, and622) of exon 10, so far. The frequen-
cies of these changes are very low [12, 13].

The question whether the discovered substitution of cyste-
ine to cysteine in codon 609 may be involved in the pathogen-
esis of MTC remains open. The 34-year-old father of the pa-
tient with MTC was an unaffected carrier of the same variant
(Fig. 3). However, due to a very young age of onset and the
lack of other known pathogenic mutations in all the examined
exons of the RET gene, the role of this change in the patho-
genesis of MTC cannot be ignored.

The other new genetic variant that we found was a synon-
ymous substitution of isoleucine to isoleucine in codon 788 of
the RET gene. No genetic variants of this codon have been
known so far. The patient had no other known pathogenic
mutations in the examined exons of the RET gene.
Mutations in exon 13 are thought to lead to a rather mild
course of disease. These changes have been assigned to
MOD group [9]. According to available databases [12, 13],

Fig. 2 Pedigree of the patient’s family. The probant is indicated by the
black asterisk

Fig. 3 A synonymous variant c. 2364C>T (p.Ile788Ile) in exon 13 of the
RET gene

Fig. 1 A synonymous variant c.1827 C>T (p.Cys609Cys) in exon 10 of
the RET gene

202 Endocr Pathol (2017) 28:198–206



the synonymous changes have been identified in nine codons
of exon 13 (763, 766, 768, 769, 774, 777, 786, 790, and 792).
Previously, we have suggested a possible association between
synonymous variant p.Leu769Leu polymorphism and a risk
of sMTC [15].

Another rare mutation identified in this study refers to exon
14. In this exon, synonymous changes occur in 22 codons [12,
13]. A synonymous genetic variant c.2418 C>T (p.Tyr806Tyr)
was found in a 50-year-old woman with a stomach carcinoid
tumor. This variant has been identified in populations of South
Asia, Africa, and Europe, with the total T allele frequency of
0.0001384. Inananalysisof the1000GenomesProjectdatabase,
the same variant has been revealed as a somatic change
c.2418C>T (p.Tyr806Tyr), COSM1347814 in large intestine tu-
mor, inasmallpopulationintheUKfromIndiandescent,with the
allele frequency of 0.999 for C and 0.001 for T [12, 13].
Gastrointestinal carcinoid tumors develop from neuroendocrine
amine precursor uptake and decarboxylation (APUD) cells.
APUDcells constitute agroupof apparentlyunrelatedendocrine
cells. APUD cells comprise pinealocyte of the pineal gland, C
cells of the thyroid, and pheochrome cell of the adrenalmedulla.
The cells share a common function of secreting a lowmolecular
weightpolypeptidehormone [56,57].Thegerminal, c.2418C>T
(p.Tyr806Tyr), change should be further examined in patients
with gastrointestinal carcinoid tumors and their relatives.

In codon 806 of the RET gene, so far, only one germline
change has been described, c.2417A>G (p.Tyr806Cys),
rs377767419, co-occurring with the p.Val804Met mutation,
in a patient with MEN2B [58].

In exon 15, synonymous changes occur only in seven co-
dons. The clinical significance of the synonymous genetic
variant c.2673 G>A (p.Ser891Ser), rs201620214 that we dis-
covered in our population is uncertain. This change has been
identified in patients with MEN2. The allele frequency for A
in the world population is 0.002 [12, 13, 50]. In our study, in
one case, the change appeared as a change accompanying the
pathogenic mutation in exon 10, but in the other case, except
for polymorphic variants, no other pathogenic changes within
the examined exons were found. Apart from synonymous
changes in this codon, also a pathogenic change, c.2671T>G
(p.Ser891Ala), rs75234356, has been described in patients
with FMTC, MEN2A, and MTC [14, 59].

Studies on MTC are ongoing to examine carcinogenic
mechanisms other than the pathogenic mutations in the RET
gene. So far, a few mechanisms contributing to MTC devel-
opment have been described. These are the following:

– mutations in the other genes, e.g., in genes encoding the
human RET co-receptors GFRA1, GFRA2, GFRA3,
GFRA4 [60, 61]; RET ligands ARTN, GDNF, NRTN
PSPN [62]; or genes encoding the RET downstream ef-
fectors, STAT1, AURKA, BCL2, CDKN2B, CDK6,
COMT, and HRAS [63].

– epigeneticmodifications, such asCpGDNAmethylationor
modifications of histones, which may even be inheritable
[64, 65].

– changes in the expression level of the various miRNAs
that may be the cause and/or a result of the carcinogenesis
[66–70].

– changes in degradative pathway of the RET protein
[71–73].

The relationship between synonymous changes in the RET
gene and the increased risk ofMTC is still a subject of controver-
sy.Currently, it iswidely accepted that despite the lackof a direct
influence of the synonymous variants of the amino acid structure
of protein, such changesmay influence phenotype andmay lead
to many diseases. Links between synonymous mutations in dif-
ferent genes and different diseases have recently been proven,
and the list is still expanding [25, 74]. Five to 10% of human
genesareestimated tocontainat leastoneharmful regionbecause
of the synonymous mutations [75]. The current release of the
database of deleterious synonymousmutation (dbDSM) collects
1936 synonymous mutation disease (SM disease) association
entries, including 1289 SMs and 443 human diseases [76]. By
employing cancer-related mutation database, Li et al. indicated
that, similarly to nonsense and missense pathogenic mutations,
synonymousmutationsmay also change the dynamical parame-
ters of the corresponding proteins in the TNF-α signaling net-
work and cause a significant increase of the critical dose of
TNF-α necessary for cell death [77].

It is impossible to assess the mechanism of action and the
potential impact of synonymousvariants on theprotein function,
without the precise testing. Based on in silico studies, it can only
be concluded that the four described changesmay influence pro-
tein synthesis rate, by accelerating it (p.Ser891Ser variant) or
slightly slowing it down (the other variants) (Table 3).

Conclusions

Rare synonymous changes in the RET gene, c.1827C>T
(p.Cys609Cys), c.2364C>T (p.Ile788Ile), and c.2673G>A
(p.Ser891Ser), were identified in MTC patients and
c.2418C>T (p.Tyr806Tyr) in a patient suspected of MEN2.

Table 3 Codon usage comparison

SNP Codon change Triplet frequency (H. sapiens)a

Cys609Cys UGC→ UGU 12.6 → 10.6

Ile788Ile AUC→ AUU 20.8 → 16.0

Tyr806Tyr UAC → UAU 15.3 → 12.2

Ser891Ser UCG→ UCA 4.4→ 12.2

a Values of codon usage (frequency per thousand) in Homo sapiens were
taken from the Codon Usage Database [78, 79]
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Two of the variants, p.Cys609Cys and p.Ile788Ile, had never
been previously described. These findings contribute to a bet-
ter recognition of the whole range of genetic changes of the
RET gene and of the involvement of synonymous variants in
genetic diversity of this gene.

APUD, amine precursor uptake and decarboxylation; ARTN,
artemin; AURKA, aurora kinase A; ATA, American Thyroid
Association; ATA-H, RET gene mutations of the high risk;
ATA–HST, RET genemutations of the highest risk; ATA-MOD,
RET genemutations of themoderate risk; BCL2, B cell lympho-
ma 2; BRCA1/2, breast cancer 1, 2; CAE, carcinoembryonic an-
tigen; CDK6, cyclin-dependent kinase 6; CDKN2B, cyclin-
dependent kinase inhibitor 2B; CFTR, cystic fibrosis transmem-
braneconductance regulator;CHEK2,checkpointkinase2;CLA,
cutaneous lichen amyloidosis; COMT, catechol-O-
methyltransferase; FMTC, familialmedullary thyroid carcinoma;
GDNF, glial cell line-derived neurotrophic factor; GFRA1–4,
GDNF family receptor alpha 1–4; HD, Hirschsprung’s disease;
HPTH, hyperparathyroidoism; HRAS, Harvey rat sarcoma viral
oncogene homolog; MEN2A,MEN2B, multiple endocrine neo-
plasia syndromes type 2A, 2B;MTC,medullary thyroid carcino-
ma; NBS1, Nijmegen breakage syndrome 1; NHLBI, National
Heart Lung and Blood Institute; NRTN, neurturin; PHEO, pheo-
chromocytoma; PSPN, persephin; PTC, papillary thyroid carci-
noma;RET, rearranged during transfection; SM-disease, synony-
mousmutation disease; sMTC, sporadicmedullary thyroid carci-
noma; SNP, single nukleotyde polymorphism; STAT1, signal
transducer and activator of transcription 1; TCOF1, treacle ribo-
some biogenesis factor 1; TNF-α, tumor necrosis factor; TP53,
tumor protein P53; UTR, untranslated region
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