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Abstract The secondary structure is a fundamental feature of both non-coding RNAs (ncRNAs) and messenger RNAs
(mRNAs). However, our understanding of the secondary structures of mRNAs, especially those of the coding regions,
remains elusive, likely due to translation and the lack of RNA-binding proteins that sustain the consensus structure like
those binding to ncRNAs. Indeed, mRNAs have recently been found to adopt diverse alternative structures, but the overall
functional significance remains untested. We hereby approach this problem by estimating the folding specificity, i.e., the
probability that a fragment of an mRNA folds back to the same partner once refolded. We show that the folding specificity
of mRNAs is lower than that of ncRNAs and exhibits moderate evolutionary conservation. Notably, we find that specific
rather than alternative folding is likely evolutionarily adaptive since specific folding is frequently associated with func-
tionally important genes or sites within a gene. Additional analysis in combination with ribosome density suggests the
ability to modulate ribosome movement as one potential functional advantage provided by specific folding. Our findings
reveal a novel facet of the RNA structurome with important functional and evolutionary implications and indicate a
potential method for distinguishing the mRNA secondary structures maintained by natural selection from molecular noise.

KEYWORDS Evolutionary genomics; RNA secondary structure; RNA folding specificity; RNA alternative folding;
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Introduction

Single-stranded RNA molecules spontaneously fold into
various secondary structures via intramolecular base pairing.
These structures, especially those evolutionarily conserved,
are considered essential for the functions of non-coding

RNAs (ncRNAs), such as transfer RNAs (tRNAs), micro-
RNAs (miRNAs) [1], small nuclear RNAs (snRNAs) [2],
small nucleolar RNAs (snoRNAs) [3], and ribosomal RNAs
(rRNAs) [4]. For coding/messenger RNAs (mRNAs),
secondary structures are implicated in the localization [5],
(de)stabilization [6,7], and editing [8] of RNAmolecules, as
well as in the regulation of translational repression [9,10],
translational elongation speed [11,12], and cotranslational
protein folding [13,14]. Furthermore, natural selection for
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functional RNA secondary structures constrains the evolu-
tion of RNA sequences [15,16]. Therefore, the study of the
RNA structurome is of fundamental importance in RNA
biology and evolutionary biology. Recently, the develop-
ment of high-throughput sequencing (HTS)-based assays
for RNA secondary structures, such as parallel analysis of
RNA structure (PARS) [17], icSHAPE [18], FragSeq [19],
structure-seq [20], RNA proximity ligation (RPL) [21],
psoralen analysis of RNA interactions and structures
(PARIS) [22], and sequencing of psoralen crosslinked,
ligated, and selected hybrids (SPLASH) [23], has started to
reveal a more complete picture of the secondary structures of
different RNA molecules.

Despite these advancements, our understanding of the
secondary structures of mRNAs, especially those of the
coding regions, is mostly anecdotal. One major obstacle has
been that mRNA molecules are frequently threaded into
translating ribosomes, which can only accommodate a single-
stranded mRNA. This repeated disruption by translation
triggers frequent refolding of mRNAs and presumably
makes the experimental detection of a consensus structure
difficult in vivo. Indeed, the active unfolding of secondary
structures has been detected in thermostable mRNAs in
yeast, suggesting an incomplete role of thermodynamics in
mRNA folding in vivo [24]. In contrast, a majority of
structured ncRNAs have a single functional secondary
structure, which is usually stabilized by protein molecules
or other molecules.

In the context of frequent refolding, the physical proxi-
mity of two linearly remote fragments within the same
molecule due to Watson-Crick base pairing or simply RNA
“folding”, could be divided into two types. The first type, in
which a fragment of an RNA always pairs up with the same
remote fragment once refolded, exhibits specific folding,
while the second type, in which an RNA fragment is capable
of pairing with different remote fragments when refolded,
exhibits non-specific/alternative folding. A classic example
of alternative folding is riboswitches, the function of which
is dependent on the exchange between two mutually
exclusive conformations [25,26].

Theoretically, mRNA folding should not be more spe-
cific than the folding of ncRNAs, because the folding of
ncRNAs is usually stabilized by proteins or other small
molecules, whereas translating ribosomes interfere with
mRNA folding. For example, either counterpart in a parti-
cular folding event could be excluded from any base pairing
due to occupation by the ribosome. The alternative folding
thus formed is likely retained until further disruption by the
ribosome, because the kinetics of spontaneous exchange
between alternative structures tend to be slow [27]. Ad-
ditionally, the frequent reorganization of local mRNA seco-
ndary structures by translating ribosomes gives mRNAs
ample opportunity to sample alternative (sub)optima in the

energy landscape, making mRNAs more likely than
ncRNAs to adopt alternative folds. Indeed, it has been re-
cently found that approximately 20%–50% of the top 50
mRNAs with the highest numbers of detected secondary
structures have at least one pair of alternative structures,
some of which are evolutionarily conserved, suggesting that
alternative structures are pervasive [22].

Despite the unambiguous evidence for alternative
folding of mRNAs, as well as the importance of mRNA
secondary structures, there has been a lack of systematic
investigations on the folding specificity of mRNAs, let
alone its functional and evolutionary significance. In par-
ticular, several questions regarding folding specificity are
critical to our understanding of RNA biology. For example,
what is the average level of folding specificity of mRNAs,
and how does folding specificity affect mRNA functions?
Theoretically, if the structures of mRNAmolecules from the
same gene are too diverse, few of these structures can have
significant functions due to the negligible number of mo-
lecules that adopt each structure. In contrast, isolating
foldings with strong specificity should help identify func-
tional structures. From an evolutionary perspective, it is
also important to determine whether and why alternative or
specific folding is generally adaptive.

To answer these questions, we studied the folding speci-
ficity of mRNAs using HTS data for RNA folding in yeast
and mouse. We confirmed the reduction of the folding spe-
cificity of mRNAs compared to that of ncRNAs and de-
monstrated the heterogeneity of folding specificity among
genes and sites within the same gene. Furthermore, folding
specificity, instead of diversity, is highly prevalent in im-
portant genes and subgenic regions, suggesting that folding
diversity is generally nonadaptive. By demonstrating the
different ribosome stalling capacities of specific and non-
specific foldings, we provided one potential mechanistic ex-
planation for the functional impact and evolutionary benefit
of specific mRNA folding. Finally, we identified unique
folding specificity signatures around the 70th nucleotide after
the start codon, which is consistent with a known function of
mRNA folding in translational control. Altogether, our results
revealed a novel facet of the RNA structurome with important
functional and evolutionary implications, providing novel
insights into mRNA secondary structure.

Results

Estimation of the mRNA folding specificity

By definition, the folding specificity of an RNA fragment
can be estimated by its probability of pairing up with one or
more remote fragments. Qualitatively, if two fragments pair
up with 100% probability once refolded, the folding is
specific, and vice versa. Quantitatively, the level of folding
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specificity is determined by the number and relative
frequency of alternative foldings, or, in other words, the
opposite of the diversity of folding partners. Experimental
data regarding folding specificity had not been available
until the recent advancement of HTS-based assays for RNA
duplexes in vivo [28]. In particular, RPL followed by deep
sequencing yielded chimeric reads with ligation junctions in
the vicinity of structurally proximate bases in yeast [21]. In
addition, PARIS employed psoralen crosslinking to globally
map RNA duplexes with near-base-pair resolution in mouse
cells [22]. With these datasets, a list of folding partners for
each RNA fragment can be extracted and used to estimate
the folding specificity (see Materials and methods). Notably,
both assays have yet to attain base-pair resolution; thus, we
studied the specificity of folding instead of pairing herein.

To evaluate the folding diversity based on experimental
data, we need a unified measurement that accounts for both
the number and relative frequency of alternative foldings.
To this end, we borrowed the idea of Shannon’s metric of
information entropy (i.e., Shannon index) [29], which
quantifies the uncertainty in predicting the identity of a
randomly chosen entity from a system. The Shannon index
is frequently used as an index of species diversity in ecology
(the uncertainty in predicting the species randomly captured
from a community) [30], or as an index of similarly for the
measurement of molecular diversity in various biological
systems (the uncertainty in predicting the sequences ran-
domly picked from a pool of nucleic acids or proteins)
[31–34], or as an index of RNA folding specificity, as de-
fined by the computationally predicted ensemble of
secondary structures [35]. Based on the Shannon entropy,
we measured the diversity of folding by the equation

S p p= lni j i j i jobs , , , . Here, i and j are two nucleotides of

the RNA, and pi j, is the probability that the physical
proximity between nucleotides i and j is observed among all
the chimeric reads derived from the gene in the RPL or
PARIS assay (see Materials and methods). To avoid the
confounding effects of sequencing depth and number of
relevant sites, Sobs is further compared to its theoretical

maximal value S n= ln 1
max , where n is the total number

of pairs of nucleotides for which the physical proximity is
revealed by at least one chimeric read. Here, Smax is es-
sentially the information entropy when the folding of all
relevant nucleotides is equally supported by the experi-
mental data. The folding specificity is then defined as
S S S=  max obs, wherein the higher is the S value, the
stronger is the folding specificity (Figure S1). The equation
for S is mathematically equivalent to the Theil index, which
is commonly used to measure economic inequality.

We first calculated the folding specificity of yeast
mRNAs using the RPL data [21]. The recapitulation of

folding specificity by S was confirmed by manual
inspection of certain genes (Figure 1A). For example, in
YLR441C, none of the experimentally revealed foldings
were supported by more than one chimeric read. On the
other hand, for YPR154W, some of the folds were supported
by multiple chimeric reads with minor offsets. The folding
specificities of these two open reading frames (ORFs) were
respectively quantified as S = 0 and 0.12. Similarly, we
estimated the folding specificities of all yeast mRNAs with
at least 5 chimeric reads (Figure 1B). We found that the
folding specificities of yeast mRNAs varied greatly among
genes. A substantial number of genes showed no
measurable signal for folding specificity, whereas one gene
(YDR420W) exhibited folding specificity comparable to
that of the ncRNA, snR190 (Figure 1B). The mRNA folding
specificity distribution was similar when we only used yeast
genes with at least 10 chimeric reads (Figure S2A) or used
the folding specificities derived from mouse PARIS data
(Figure S2B). Additionally, the two biological replicates of
the mouse PARIS data allowed us to compare the mRNA
folding specificities estimated by the two datasets, and the
Pearson’s correlation coefficient (PCC) of the two replicates
was 0.48 (Figure S2C; P < 1 × 10−231), suggesting that the
heterogeneity of folding specificity is an intrinsic property
of the transcriptome rather than experimental noise.

We also compared the folding specificity of yeast
mRNAs with that of several types of ncRNAs. It is well
known that ncRNAs can fold into extensive secondary and
tertiary structures, which determine the functionality of
these ncRNAs. Unlike mRNAs, the secondary structures of
ncRNAs are not disrupted by translating ribosomes but are
usually stabilized by proteins or other small molecules.
Therefore, the folding specificity of ncRNAs is expected to
be higher than that of mRNAs. Indeed, the folding speci-
ficity of ncRNAs was significantly higher than that of
mRNAs (Figure 1C, Figure S2D). Similar results were
observed for the mouse PARIS data (Figure S2E and F),
highlighting the biological relevance of the folding speci-
ficity. Notably, the S value is usually low, indicating a weak
signal for folding specificity, a phenomenon likely caused
by both limited coverage of RPL/PARIS and frequent re-
folding of mRNAs in vivo.

Folding specificity is moderately stable during evolution

To further assess the biological significance, we compared
the folding specificities of one-to-one orthologs between
yeast and mouse protein-coding genes, and a moderate yet
significant positive correlation was observed (Figure 2A;
PCC = 0.24, P = 0.016). Considering the experimental noise
and technical differences underlying the RNA folding data
for yeast (RPL) and mouse (PARIS), the actual correlation
should be stronger than observed. Indeed, when we
compared the folding specificities of paralogous gene pairs
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in yeast, an enhanced correlation was observed (Figure 2B;
PCC = 0.37, P < 1 × 10−5). We similarly compared the
folding specificities of all pairs of orthologous ncRNA
genes with the necessary data from yeast and mouse, in-
cluding 10 pairs of snoRNAs, 2 pairs of rRNAs, and 1 pair
of snRNAs. We observed a strong correlation (PCC = 0.86,
P = 0.006), even though the sequence conservation of the
snoRNAs was so poor that ortholog identification had to be
performed based on the corresponding targets [36]. These
results suggest that the folding specificity is moderately
stable between orthologous gene pairs as well as between
paralogous gene pairs, and is thus partially controlled by
purifying selection. Together, the aforementioned observations

imply that folding specificity is a gene-specific molecular trait
with probable functional and evolutionary effects.

Relationship between folding specificity and thermo-
stability

Thermodynamic equilibrium dictates that for any ensemble
of RNA molecules with identical sequences, the fraction of
molecules folded into a certain structure is exponentially
proportional to the thermostability of the structure, i.e., the
RNA structure exhibits a Boltzmann distribution. In other
words, RNAs have a high probability of folding into
thermodynamically stable structures, which might enhance
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Figure 1 Folding specificity of yeast mRNAs
A. Two examples of folding specificity estimated from RPL data [21]. Two yeast genes with their names, lengths, and corresponding folding specificities
(S) are shown. Each arch connects the two fragments that are folded together, as suggested by one chimeric read in the RPL data. The red arches support
specific folding with minor offsets, whereas the blue arches support non-specific folding. The arches are transparent so that multiple chimeric reads
supporting the folding of the same pair of fragments will be visible as deep colors. Specific folding is apparent for YPR154W but absent for YLR441C, and
the folding specificity is thus higher in the former (S = 0.12) than in the latter (S = 0) (see also Figure S1). B. Distribution of the folding specificities of
mRNAs in yeast. A total of 697 mRNAs with at least 5 intramolecular chimeric reads are used. The folding specificity of the non-coding snoRNA, snR190,
is indicated by a dashed line as a comparison. C. Comparison of average folding specificities between the major types of ncRNAs and mRNAs in yeast.
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folding specificity. To determine the relationship between
folding specificity and thermostability, we obtained the
average melting temperatures (Tm values) of the in vitro
RNA secondary structures for each yeast mRNA, as derived
by two different experimental techniques, namely, dimethyl
sulfate sequencing (DMS-seq) [24] and parallel analysis of
RNA structures with temperature elevation (PARTE) [37]
(see Materials and methods). We divided the yeast genes
into two equal-sized groups with high or low average Tm
values. For both DMS-seq- and PARTE-derived Tm values,
we did not observe statistically significant differences in
folding specificity between the two groups of genes (Figure
3A and B). These results suggest that the folding specificity
of mRNAs is not dominated by the thermostability of
mRNAs, consistent with previous observations [38]. The
results are also consistent with a model in which frequent
unfolding by translating ribosomes, combined with the re-
latively slow kinetics of exchange between alternative
structures [27], causes substantial deviation from the
ribosome-free thermodynamic equilibrium. This phenome-
non is similar to the emergence of nascent RNA from RNA
polymerase, which exhibits sequential folding in vivo [39].
Notably, however, thermostability might play a prominent
role for ncRNAs and inactively translating mRNAs.

Important genes have strong folding specificities

Pervasive alternative folding, which is occasionally evolu-
tionarily conserved, has been previously observed [22]. It
has been argued that at least some alternative foldings are

likely functional [22]. However, it remains untested whe-
ther a majority of the alternative foldings or foldings with
high diversity, are evolutionarily adaptive. We reasoned that
functionally detrimental mutations are more deleterious
when they occur on important genes than on other genes;
therefore, the adaptive molecular phenotype, be it folding
specificity or diversity, should be more constrained by
(purifying) natural selection in important genes than in
other genes. In other words, folding specificity should be
more pronounced in important genes if it is generally
adaptive, and vice versa for folding diversity. To test this
hypothesis, we compared the folding specificity with
different proxies of gene importance.

First, gene importance can be measured by gene indis-
pensability, i.e., the opposite of the organismal fitness upon
deleting a gene. We estimated the indispensability of a gene
as the negative value of the fitness of a yeast strain that lacks
the gene [40] and compared this indispensability with the
folding specificity of the corresponding mRNA. As a result,
we found that the folding specificity was positively corre-
lated with the gene indispensability [Spearman’s rank corre-
lation coefficient (SCC) = 0.11, P = 0.009; Figure 4A], with
two-fold higher folding specificities for the 5% most im-
portant genes than those for the 5% least important genes.
There is no gene indispensability data for mouse. We thus
divided the mouse genes into essential and nonessential
groups and found that the folding specificities were
significantly higher for the essential genes than for the
nonessential genes (P < 1 × 10−7, Wilcoxon rank-sum test;
Figure S3A). These results suggest that folding specificity is
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generally adaptive and that folding diversity is likely
nonadaptive molecular or experimental noise.

Second, we used the mRNA expression level as a proxy
of gene importance. It is believed that due to the sheer
number of mutant molecules, mutations in highly expressed
mRNAs exert cytotoxicity that is otherwise negligible in
mRNAs with low expression levels [41]. If folding
specificity plays a role in the repression of such expression-
dependent cytotoxicity, natural selection should have
maintained high folding specificity in highly expressed

genes. Consistent with the pattern of gene indispensability,
we found that the folding specificity was positively corre-
lated with the mRNA expression level in yeast, with the 5%
most abundant mRNAs exhibiting four-fold higher folding
specificities than those of the 5% least-expressed genes
(SCC = 0.20, P < 1 × 10−6; Figure 4B). This correlation
cannot be explained by longer half-lives conferred by spe-
cific foldings because the folding specificity is uncorrelated
with the mRNA half-life [42] (SCC = 0.017, P = 0.659). To
further examine whether this pattern is an artifact of the
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abundance of chimeric reads for highly expressed mRNAs,
we randomly sampled five intramolecular chimeric reads
from each mRNA and recalculated the folding specificity.
This randomized down-sampling was repeated 1000 times,
and the resulting folding specificity remained positively
correlated with the mRNA expression level (P = 0.039,
permutation test; Figure S3B). In addition, we compared the
folding specificity with the mRNA expression level in
mouse and again identified a positive correlation (SCC =
0.28, P < 1 × 10−127; Figure S3C and D), lending further
support to the adaptiveness of folding specificity.

Third, we compared the folding specificity with the
evolutionary conservation (see Materials and methods) of
the gene. Because highly conserved genes are under strong
functional constraints [41], we predicted stronger folding
specificities for highly conserved genes than for poorly
conserved genes, given the previous observation regarding
protein indispensability and expression level. Indeed, we
observed a positive correlation between the evolutionary
conservation and the folding specificity in both yeast (SCC =
0.11, P = 0.01; Figure 4C) and mouse (SCC = 0.14, P <
1 × 10−29; Figure S3E). In summary, three different proxies
of gene importance consistently support the hypothesis that
folding specificity is adaptive but, on the other hand, suggest
that folding diversity is likely a nonadaptive phenomenon
derived from molecular stochasticity or experimental noise.

RNA circularization cannot fully explain the folding
specificity of highly expressed mRNA

Hereinafter, we will focus on RPL data from yeast unless

otherwise noted because of the availability of various types
of functional genomic data in yeast (see below) and the
relatively high coverage in yeast for accurate quantification
of folding specificity. It has been previously reported that
the circularization of mRNAs by eukaryotic translation ini-
tiation factors facilitates ribosomal recycling and efficient
mRNA translation [43]. Indeed, RNA folding with a long
intervening distance is more prevalent in genes with high
translational efficiency than those with low translational
efficiency [23]. If highly expressed mRNAs are also highly
translated [44], the observed correlation between the
mRNA expression level and the folding specificity might
then be explained by the dominance of long-distance
foldings, particularly those connecting the 5′ and 3′ ends of
the mRNA. To rule out such a possibility, we calculated the
“circularization score” [23] for each RNA folding, which is
the distance between the central nucleotides of the two
folding partners supported by each chimeric read, normali-
zed to gene length. We then used 5% of the chimeric reads
with the top (distal folding) or bottom (proximal folding)
circularization scores to recalculate the folding specificity.
The correlation between the folding specificity and the
mRNA expression level was significantly positive when we
used this subset of the data and remained so if we included
up to 50% of the distal/proximal folding-related chimeric
reads (Figure 5). The aforementioned result indicates that
RNA foldings of various distances all contribute to the high
folding specificity of highly expressed mRNAs, which thus
cannot be explained by RNA circularization. Furthermore,
our observation suggests that instead of a local feature
limited to a certain fraction of the mRNA sequence [such as
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the 3′ end, 5′ end, and untranslated region (UTR)], folding
specificity impacts the whole mRNA molecule.

Highly conserved nucleotides fold more specifically
than poorly conserved nucleotides within the same gene

With the aforementioned results showing a positive corre-
lation between the folding specificity and the gene im-
portance, it can be similarly predicted that within the same
gene, specific foldings should be associated with important
regions of the gene. Furthermore, within-gene comparisons
of the functional importance and the folding specificity
should be completely free of intergenic confounding factors,
such as expression level. To verify this hypothesis, we cal-
culated the folding specificity for each nucleotide of an
mRNA using the chimeric reads supporting the folding of
the focal nucleotide (Figure 6A; seeMaterials and methods).

We then reasoned that the functional importance of each
nucleotide could be approximated by the evolutionary
conservation of the nucleotide, which was estimated using
one-to-one orthologs in 6 post-whole-genome duplication
(WGD) yeast species (see Materials and methods). The
level of evolutionary conservation and folding specificity
for each nucleotide were subsequently compared for each of
166 distinct genes with the necessary information. Con-
sistent with our prediction, a positive Spearman’s rank
correlation was observed for 101 genes, which was sig-
nificantly higher than the random expectation of 166/2 = 83
(P = 0.006, binomial test). For each gene, we also randomly
shuffled the folding specificity of each site and re-evaluated
the correlation between the evolutionary conservation and
the folding specificity, which served as an ad hoc random
expectation. Compared with this expected distribution, the
real within-gene correlation between the folding specificity
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and the evolutionary conservation was significantly skewed
towards positive values (Figure 6B), suggesting an asso-
ciation between important nucleotides and specific folding
and that specific folding is likely more adaptive than non-
specific folding.

To further assess the relationship between evolutionary
conservation and folding specificity for each gene, we
constructed a 2 × 2 matrix for each gene by dividing each
site of the gene into one of four groups on the basis of the
folding specificity and evolutionary conservation and cal-
culated an odds ratio (OR1) from the matrix (see Materials
and methods). If the specifically folded sites are pre-
ferentially located in conserved regions, the OR1 is > 1. We
similarly generated a randomly expected OR1 distribution
by shuffling the folding specificities among all the sites
within each gene, which was found to be dwarfed by the real
OR1 values (Figure 6C). This result again supports the
adaptiveness of specific folding.

To determine whether the conservation level at specifi-
cally folded sites was affected by expression level, we di-
vided genes with the necessary information into three
groups with low, median, or high expression levels and
calculated an overall OR1 for each group using the Mantel-
Haenszel procedure (Figure S4; see Materials and
methods). In all groups except the group with low expres-
sion levels, the combinedOR1 values significantly exceeded
1 (Figure 6D), suggesting that conserved sites in highly
expressed genes exhibit a strong propensity to fold speci-
fically, which is consistent with the strong selection ob-
served for highly expressed genes. Finally, we combined all
the genes for an overall OR1 = 1.09 (P < 1 × 10−4, Mantel-
Haenszel test), which again supports the adaptiveness of
folding specificity.

To further exclude the possibility that the observed as-
sociation between conservation and folding specificity
within genes can be explained by the local thermodynamic
stability, we calculated another odds ratio (OR2), indicating
the overrepresentation of nucleotides with low Tm values
and high folding specificities (see Materials and methods).
Regardless of the use of DMS-seq- or PARTE-derived Tm
values, OR2 never exceeded 1 (Figure S5), suggesting a
negligible effect of Tm on the per-nucleotide folding speci-
ficity. In combination with the results of between-gene
analyses, our results offer unequivocal support for an
overall adaptive role of folding specificity and suggest a
nonadaptive role and, thus, likely molecular or experimental
noise for folding diversity.

Ribosome stalling demonstrates the functional impact
of folding specificity

Given the results presented above, we then asked the
following question: what is the molecular mechanism that

grants a selective advantage to folding specificity? We have
shown that the adaptiveness of folding specificity is not
dependent on the folding distance (Figure 5), so the func-
tional benefit conferred by specific folding is likely gene-
rally applicable to the whole mRNA molecule, instead of
being confined to small specific regions such as the 5′ and 3′
ends (e.g., regulation of the initiation rate) or intron/exon
borders (e.g., regulation of alternative splicing). Therefore,
we chose to test the functional impact of folding specificity
on ribosome stalling, a molecular phenomenon that is po-
tentially applicable to the whole coding sequence (CDS)
[11]. Nevertheless, this test by no means indicates that ri-
bosome stalling is the only functional benefit provided by
specific folding.

We have previously shown that ribosome stalling by the
mRNA secondary structures modulates translational elon-
gation speed, which is likely utilized by natural selection to
balance the trade-offs between translational accuracy and
efficiency [11]. Other reports have also suggested the regu-
latory role of mRNA secondary structures in cotranslational
protein folding [14,45,46]. We thus asked whether folding
specificity affects the capacity of the mRNA secondary
structures in the stalling of upstream ribosomes. To this end,
we analyzed the local ribosome density upstream of the
focal nucleotide that was closest to the 5′ end of the mRNA
and showed the highest folding specificity within each gene,
using the expression-normalized local Ribo-Seq coverage
data (see Materials and methods). We averaged the nor-
malized ribosome densities near the specifically folding
nucleotides across genes and found a significant increase in
the ribosomal density upstream of the site with specific
folding. In particular, we found a maximum of 32% increase
in the ribosome density at the 42nd nucleotide upstream of
the most specifically folded nucleotide (Figure 7A, red
line). This magnitude of ribosome stalling by mRNA
folding is comparable to that observed in previous reports
[11,47]. The position of the peak ribosome density likely
reflects the limited resolutions of RPL [21] and Ribo-Seq
[48], but cannot be explained by the 5′ ramp of translational
elongation speed [49], because all specifically folded nu-
cleotides are at least 200 nucleotides downstream of the
translational start site.

To assess the expected ribosome density around a ran-
dom nucleotide captured by RPL, we repeated the local
ribosome density analysis using sites with non-specific
folding (i.e., S = 0) and found no significant increase in the
ribosome density upstream of the focal non-specific site
(Figure 7A, blue line and blue shade). To further elaborate
the effects of specific folding vs. non-specific folding, we
repeated the local ribosome density analysis with sites that
had the same number of chimeric reads as the specifically
folded sites and S = 0 (Figure 7A, green line and green
shade). This additional control again showed no significant
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increase in the ribosome density upstream of non-specific
sites, suggesting an exclusive association of the folding
specificity with upstream ribosome stalling.

In addition to ribosome stalling by specific mRNA
folding, an alternative explanation for the aforementioned
observation is that ribosomes limit the folding choices of
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flanking nucleotides by steric hindrance, effectively
increasing the folding specificity. However, this alternative
explanation would predict peaks for Ribo-Seq reads both
upstream and downstream of the specifically folded sites, as
well as no skewing of the folding specificity due to gene
importance. Since both predictions contradict the empirical
observations (Figure 4, Figure S6), this result supports the
role of folding specificity in the ribosome stalling capacity
of mRNA secondary structure. Notably, this result suggests
that highly expressed genes, which exhibit increased
folding specificity (Figure 4B), have strong control over
ribosome velocity. This feature of highly expressed genes is
consistent with the increased requirement of these genes for
translational fidelity [11] and/or cotranslational protein
folding accuracy [50].

To further validate the functional role of folding speci-
ficity, we calculated the average per-nucleotide folding
specificity of the CDS and that of the UTR for each gene.
The mouse PARIS data were used here because UTR an-
notation is rare in yeast. If folding specificity is involved in
the regulation of translation by the ribosome stalling capa-
city, we shall predict that the average folding specificity of
the CDS should be higher than that of the UTR because
translation occurs only on the CDS. Consistent with our
prediction, we found that for a majority of mouse mRNAs,
the folding specificity of the CDS is stronger than that of the
UTR (P < 1 × 10−3, binomial test; Figure 7B), which sup-
ports our hypothesized association between folding speci-
ficity and translation.

Finally, we asked if the ability of specific folding to slow
down elongation is strong enough to make this folding a
target of natural selection. To this end, we used a previously
published model [11] that incorporates experimentally de-
termined parameters in yeast to predict the effect of changes
in the translational elongation speed on fitness. This model
considers two competing selective pressures, one for in-
creased elongation speed, which reduces ribosome seques-
tration, and the other for reduced elongation speed, which
increase translational accuracy [11] and reduces protein
misfolding [51] (see Materials and methods). We found that
a mutation that induced specific folding and increased the
ribosome density on one codon by 20% improved the fitness
of the cell by 0.03%, when the mutation occurred on highly
expressed genes (5000 molecules/cell; Figure 7C, top).
Because 3 × 10−4 greatly exceeds the inverse of the effective
population size (1 × 107) of yeast [52], such a mutation can
be targeted by natural selection. Moreover, we found that
for genes expressed at low levels (1 molecule/cell), the
same mutation only corresponded to a fitness effect of
s = 7.0 × 10−8 (Figure 7C, bottom), effectively making it a
neutral mutation (s < 1 × 107). In other words, the selection
for folding specificity on important or evolutionarily con-
served nucleotides should be significant in highly expressed

genes but not in genes expressed at low levels, which was
exactly what we observed (Figure 6D). Interestingly, this
result also suggests that there should be no selection for
specific folding in human because even in highly expressed
genes, the selective coefficient for enhanced folding
specificity (3 × 10−4) is much lower than the inverse of the
human effective population size (~ 1 × 103) [53], which was
exactly what we observed using folding specificities de-
rived from human PARIS data [22] (data not shown).

Overall, this result suggests that the folding specificity of
an mRNA can be a potential target of natural selection de-
pending on the mRNA expression level, which corroborates
the aforementioned observation of weaker folding specifi-
cities for genes with low expression levels than those for
genes with high expression levels.

Folding specificity highlights known functional secon-
dary structures

To further demonstrate the functional relevance of folding
specificity, we examined other known functions of
secondary structures in CDSs. A previous study has iden-
tified a region with a strong secondary structure around the
70th nucleotide after the start codon for a subset of yeast
mRNAs [54]. This hairpin structure near the 5′ end of the
CDS regulates translation by repressing translational
initiation unless the DEAD-box RNA helicase (Dhh1)
directly binds and resolves the hairpin [54]. As predicted
based on the functional relevance of folding specificity, the
per-nucleotide folding specificity of this region should be
elevated in an mRNA activated by Dhh1 compared to the
folding specificities of other genes. Indeed, we observed a
signature increase in the folding specificity of the region
around the 70th nucleotide after the start codon (Figure
8A). Taking the transcript YBR118W as an example, base
pairing within the region of 68th–94th nucleotides is highly
specific because of the multiple supportive chimeric reads
(Figure 8B). We further predicted the secondary structure
within the region of 50th–110th nucleotides after the start
codon of the YBR118W ORF using RNAfold [55], with
structural constraints inferred from the RPL reads. The
specific folding appeared as a hairpin near the 70th nu-
cleotide (Figure 8C), which is compatible with the known
translational control mechanism [54].

To obtain additional support for the functional relevance
of folding specificity, we used a recently published PARIS
dataset for the Zika virus [56] to calculate the folding spe-
cificity of the viral RNA genome. We observed highly
specific folding between the 5′ UTR and the E protein-
coding region in the ZIKV PRVABC59 strain (Figure S8).
This folding partnership is consistent with a secondary
structure that contributes to the infectivity of the Zika virus
[56]. Taken together, these results again suggest an
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association between folding specificity and functional
secondary structures.

Discussion

In this study, we utilize recently published HTS data for
RNA duplexes to estimate the specificity of mRNA folding.
Consistent with disruption by the translating ribosome, we
find that the folding specificity of mRNAs is significantly
lower than that of ncRNAs. Unexpectedly, the folding
specificity is not stronger for secondary structures with high

thermostability in vitro. We further observe a positive
correlation between the folding specificity and the func-
tional importance among genes and sites within the same
gene, suggesting an evolutionarily adaptive role of specific
folding. To determine the molecular function underlying the
benefit of specific folding, we compare nucleotides asso-
ciated with specific and promiscuous foldings, and reveal
the capacity of ribosome stalling for specific but not pro-
miscuous folding. Finally, we demonstrate the functional
relevance of folding specificity via the association of spe-
cificity with a translational regulatory hairpin structure
among genes activated by Dhh1 in yeast [54] and a
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previously identified secondary structure contributing to the
infectivity of the Zika virus [56]. Our results collectively
demonstrate the evolutionary and functional significance of
folding specificity and offer new insights for the study of
mRNA secondary structures.

One potential caveat in our analyses is that the estimation
of the folding specificity might be confounded by the
number of short reads that support any folding partnerships
within each gene. We incorporate multiple measures to
avoid biases created by these potential confounding factors.
First, the observed level of folding diversity (Sobs) is com-
pared with the theoretical maximal value (Smax) to yield the
value of the folding specificity S S S=  max obs, where Smax
serves as a control for the coverage of RPL/PARIS reads.
Second, we conduct a down-sampling analysis for yeast
RPL data (Figure S3B) and mouse PARIS data (Figure
S3D). Such a down-sampling analysis eliminates the effect
of sequencing depth while still revealing a significant po-
sitive correlation between the folding specificity and the
expression level. Third, our within-gene analysis is free of
the aforementioned confounding factors because each nu-
cleotide in the same gene has exactly the same “expres-
sion”. These forms of evidence collectively suggest that the
correlation between functional importance and folding
specificity is robust, regardless of confounding factors such
as RNA abundance and sequencing depth. In contrast, the
limited resolution of the yeast RPL data and mouse PARIS
data, as well as the technical/organismal difference between
them, potentially adds random noise to the actual biological
signal, which is thus likely stronger than that shown in our
study.

The level of RNA folding specificity is expected to be
influenced by RNA-binding proteins. For ncRNAs, proteins
likely stabilize the native functional RNA folding and thus
increase folding stability. In contrast, mRNA folding is
expected to be constantly disrupted by translating ribo-
somes. Indeed, RNA folding occurs on a microsecond scale
[57], which is much faster than the in vivo translational
elongation rate of < 30 codons/s [58,59]. Therefore, mRNA
regions that are not occupied by ribosomes have enough
time to form local secondary structures, which should
change as ribosomes move. The maintenance of specific
folding in the face of such frequent disruption suggests tight
regulation of the structure, which is therefore likely func-
tional.

Assuming thermodynamic equilibrium, RNA folds into
various secondary structures with probabilities dictated by
the folding energies. It is, therefore, possible that the folding
specificity simply reflects the thermostability of the RNA
molecule. In contrast to this possibility, we find no corre-
lation between the folding specificity and the average
melting temperature [37] of the RNA secondary structure of
a gene. As an additional support for our finding, a previous

study on RNA design has already shown that stability and
specificity are not closely related [38]. The discrepancy
between folding specificity and thermostability may be
explained by the effect of translation on mRNAs, wherein
ribosomal occupation allows sequential local folding but
excludes thermodynamically favored global folding. This
phenomenon is similar to the emergence of nascent RNA
from RNA polymerase, which has been shown to involve
sequential folding in vivo [39].

The diversity of RNA folding, as inversely approximated
from the folding specificity, is evolutionarily nonadaptive
according to comparison with the functional importance of
genes or sites within the same gene. This finding is con-
sistent with a model in which molecular stochasticity, a
largely nonadaptive intrinsic property underlying all bio-
logical processes, has been selectively reduced for im-
portant genes. This model is supported by multiple
biological phenomena at the molecular level, such as pro-
tein expression noise, misinteraction, and misfolding
[50,60–65]. According to this model, the alternative RNA
secondary structure, especially for mRNAs, is likely
nonadaptive and selectively constrained by purifying
selection against molecular stochasticity. Notably, however,
a small fraction of alternative foldings, especially those with
relatively high folding specificities, might still be conserved
and functional [22].

We find intergenic and intragenic evidence for the evo-
lutionary adaptiveness of folding specificity. There are
several hypotheses regarding the exact functional benefit
provided by specific mRNA folding that warrant discussion
here. First, Mao and colleagues [66], based on computa-
tional simulations, have proposed that strong mRNA fold-
ing without ribosomes slows down the first translating
ribosome, thereby shortening the distance between sub-
sequent ribosomes, eliminating secondary structures in the
translating mRNAwith increased ribosomal occupancy, and
effectively increasing the translational efficiency. In this
model, specific folding might play an important role in
slowing down the first translating ribosome. However, we
find this model to be paradoxical, because slowing down the
first translating ribosome is expected to decrease, not in-
crease, translational efficiency. Moreover, it has been esti-
mated that there is, on average, one ribosome per 156
nucleotides of coding regions [67], leaving more than
enough nucleotides available for the folding of the trans-
lating mRNA, given that the rate of RNA folding (in mi-
croseconds [57,68]) is much faster than that of ribosomal
translocation (< 30 codons/s [58,59]). Indeed, the RNA
duplexes identified by RPL [21] and PARIS [22] are con-
sistently rich in secondary structures of the translating
mRNAs. Therefore, this model is unlikely an explanation
for the functional benefit of specific folding.

In another hypothesis, Qi and Frishman [69] have
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proposed that RNA secondary structures with high and low
thermostabilities are under evolutionary pressure to pre-
serve RNA secondary structures and primary sequences,
respectively. This model might partially explain the func-
tional benefit provided by specific folding if folding spe-
cificity is correlated with thermostability. However, we find
that genes with stronger folding specificities are not ther-
modynamically more stable. Therefore, this model cannot
provide a mechanistic link between folding specificity and
evolutionary adaptiveness.

A third hypothesis is that specific RNA folding serves as
a molecular brake on translating ribosomes, thus enhancing
the fidelity of translation and/or cotranslational protein
folding [11,46,51,70,71]. Indeed, it has been suggested that
mRNA structure acts as a gauge of cotranslational protein
folding by reducing ribosome speed when extra time is
needed by the nascent peptide to form and optimize the core
structure [14]. This model is compatible with a considerable
body of experimental evidence indicating that synonymous
variants capable of (de)stabilizing mRNA secondary
structures can dramatically alter translation speed and in-
fluence cotranslational protein folding [72]. According to
our results, specific folding is more efficient than pro-
miscuous folding at regulating ribosome speed. In contrast,
it has been recently argued that the ribosome is a major
remodeler of RNA structure but RNA structure does not
constrain ribosome movement in vivo [73]. We propose that
the debate over the causal role of ribosome movement vs.
mRNA structure might be resolved by our observation that
only specific folding constrains ribosome movement,
whereas non-specific folding is easily unwound by
ribosomes.

The mechanism underlying this effect of folding speci-
ficity remains to be elucidated, because specific and non-
specific foldings should be similar obstacles for ribosome
movement, especially when specific folding is not ther-
modynamically more stable than non-specific folding. One
potential explanation is that specific folding is more re-
sistant to the helicase activity of ribosomes [74] than is non-
specific folding in vivo, such that the resolution of specific
folding requires extra time. Nevertheless, regardless of the
molecular mechanism, the increased folding specificity of
highly expressed genes is consistent with the strong ten-
dency of these genes to avoid mistranslation [11,75] and
misfolding [50], which imposes an expression-dependent
fitness cost [75].

Although our study mostly focuses on the folding spe-
cificity of coding regions in mRNAs, folding specificity
could also be associated with the functional interactions of
UTRs. We use a recently published PARIS dataset of the
Zika virus [56] and calculate the folding specificity of the
genomic RNA of the virus. It has been previously found that
a long-range interaction between the 5′ UTR and the E

protein-coding region in the Zika RNA genome contributes
to infectivity. In support of the association between folding
specificity and functional secondary structures, we observe
significantly elevated folding specificities for both partners
of this long-range interaction (Figure S7).

While significant advances in high-throughput experi-
mental techniques have enabled the dissection of RNA
secondary structures on the transcriptomic scale, the ex-
traction of functionally relevant RNA foldings has remained
challenging, especially for mRNAs, the folding of which is
constantly disrupted by translating ribosomes. The positive
correlation between the folding specificity and the func-
tional importance among genes and sites within the same
gene, as shown in the current study, indicates a novel
strategy involving the prioritization of mRNA structures
based on the folding specificity. Indeed, we show ribosome
stalling upstream of nucleotides with specific folding but
not those with promiscuous folding. We also reveal the
elevated folding specificity of the secondary structures
implicated in the regulation of translational initiation by
Dhh1. These examples demonstrate the usefulness of
folding specificity in distinguishing functional and non-
functional RNA structures.

In summary, the folding specificity of RNA secondary
structures and the application of this concept reveal pre-
viously unappreciated complexities underlying RNA
secondary structures in vivo. Specific folding of mRNAs,
despite frequent disruption by translating ribosomes, is se-
lectively maintained and is associated with evolutionarily
adaptive molecular functions such as the regulation of co-
translational protein folding. An understanding of folding
specificity shall provide valuable information for the
functional study of RNA secondary structures, particularly
for mRNAs.

Materials and methods

Genome, annotation, and comparative genomic data

The genomes and annotations were obtained from Ensembl
release 89 [76], and the specific genome versions are R64-
1-1 for Saccharomyces cerevisiae and GRCm38 for Mus
musculus. The lists of one-to-one orthologs between the two
species were also downloaded from Ensembel. Each gene
was represented by its longest annotated transcript. To es-
timate the evolutionary rates of S. cerevisiae mRNAs, we
also collected mRNA sequences from five other post-WGD
yeast species (S. paradoxus, S. mikatae, S. bayanus,
Candida glabrata, and S. castellii), along with gene
orthology/paralogy information for these six species from
the Fungal Orthogroups Repository [77]. The orthologs
between yeast and mouse snoRNAs were extracted from the
snOPY database [36], wherein the target genes of the
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snoRNAs were used to identify orthologs.

HTS data for RNA folding and estimation of the folding
specificity

We used datasets derived from two distinct experimental
techniques to assess RNA folding. On the one hand, the
single-nucleotide folding anchors for each folding partner
derived from the RPL assay [21] in the yeast S. cerevisiae
were downloaded from the NCBI Gene Expression Omni-
bus (GEO: GSE69472) [78]. Only the intramolecular
folding pairs were retained for further analysis. On the other
hand, the raw reads from PARIS [22] for mouse were
downloaded from GEO (GEO: GSE74353). The raw reads
from PARIS for the Zika virus were downloaded from the
European Nucleotide Archive (ENA: PRJEB28648) [56].
The raw reads were then processed using analytical pipe-
lines provided by Lu et al. (https://github.com/qczhang/
paris) [22] to yield a list of folding partners. Briefly, short
reads were adaptor-trimmed and merged and then aligned to
the genome (mm10) by STAR aligner [79]. The reads
mapped with gaps or chiastically mapped were combined
and assembled into duplex groups by a two-step greedy al-
gorithm, as implemented by the scripts provided by Lu and
colleagues [22]. Finally, short reads were extracted from
intramolecular duplex groups, and the nucleotides which
were located in the center of the 5′ or 3′ fragment and
mapped to either folding partner were used as anchors for
folding partnership.

Due to the limited resolution, it is difficult to locate the
exact pairing partner from RPL or PARIS data. Following
the bioinformatics analyses in the RPL assay [21], we in-
stead generated contact probability maps using anchors of
the folding partnership derived from either RPL or PARIS.
Briefly, using the Python scripts of RPL provided by Ra-
mani and colleagues [21], we computed the coverage at
each base of i and j (c c;i j), and generated a normalized
matrix M M c c= /ij ij i j

norm , where Mij is the number of
reads supporting a folding partnership between i and j. We
then used this matrix to generate M* by binning normalized

scores as M M=ij a i
i

b j
j

ab*
= 10
+10

= 10
+10 norm. Effectively, this is a

score of folding partnership for the 21 nucleotides (anchor ± 10
nucleotides) linearly surrounding any pair of folding anchors.

On the basis of Mij*, we can calculate the folding speci-
ficity for a whole gene. Based on the Shannon entropy [35],

we first calculated S p p= lni j i j i jobs , , , for gene g. Here,

pi j, is the relative folding probability between nucleotides i

and j, or, in other words, p M M= /i j ij g, * *, with Mg
*

being the sum of all Mij* within g. To avoid the confounding
effect of sequencing depth, we also calculated the

theoretical maxima of Sobs as S n= ln 1
max , where n is the

total number of pairs of nucleotides of which the physical
proximity is revealed by at least one chimeric read. Here,
Smax equals the information entropy when the folding of
every relevant base is equally supported. We then calculated
folding specificity as S S S=  max obs, where in the higher
is the S value, the stronger is the folding specificity. The
equation for S is mathematically equivalent to the Theil
index, a commonly used metric for economic inequality.

Similarly, we can calculate S for an unnecessarily con-
tinuous region of a gene by defining p M M= /i j ij r, * *,

with Mr
* being the sum of all Mij* within r. We also

calculated the folding specificities for individual nucleotides
by defining p M M= /i j ij i, * *, where i is the focal nucleo-

tide under study and Mi
* is the sum of all Mij* involving i.

Thermostability of mRNA secondary structures

We estimated the thermostability of yeast mRNA secondary
structures using data from two experimental techniques,
namely, PARTE [37] and DMS-seq [24]. In the PARTE
experiment, the footprinting of double-stranded RNA re-
sidues by RNase V1 across five temperatures (from 23 °C to
75 °C) was coupled with HTS to reveal the energetic
landscape of the transcriptome [37]. In the DMS-seq ex-
periment, the modification of unpaired adenine and cytosine
by DMS was monitored by deep sequencing. DMS-seq was
used to evaluate the in vitro thermostability of RNA folding
using genome-wide assays at five temperatures (from 30 °C
to 95 °C) [24]. In both PARTE and DMS-seq experiments,
the RNA secondary structure unfolds as the temperature
increases, allowing estimation of Tm.

We downloaded PARTE and DMS-seq data from GEO
(GEO: GSE39680 for PARTE data and GSE45803 for
DMS-seq data). The raw reads for both datasets were
adaptor-trimmed and mapped to the yeast genome, followed
by Tm estimation using a previously published computa-
tional procedure [37]. Briefly, the data were normalized to
the library sizes estimated by PossionSeq [80] and then
fitted to an adaptive regression model to search for sharp
transitions in read numbers at each probed base as a func-
tion of temperature [37]. We then averaged Tm for all nu-
cleotides with the necessary information to represent the
average thermostability of a yeast mRNA, leading to esti-
mates for 1329 and 2215 distinct yeast mRNAs in PARTE
and DMS-seq data, respectively.

The functional importance of genes

We used three different metrics as proxies for the functional
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importance of genes, namely, gene indispensability, mRNA
expression level, and evolutionary conservation. For gene
indispensability, fitness measurements of 4218 yeast strains
with single-gene deletions were downloaded from a pre-
vious study by Steinmetz and colleagues [40], and the es-
sentiality of mouse protein-coding genes was extracted
from a previous study by Pal and colleagues [81]. Expres-
sion levels of mRNAs measured by RNA-seq in yeast and
mouse were downloaded from GEO (GEO: GSE11209 for
yeast [82] and GSE93619 [83] for mouse), to match the cell
line/tissue used in RPL/PARIS. Half-lives of yeast mRNAs
were extracted from a previous publication [42]. Evolu-
tionary conservation was estimated inversely by the ratio
between the number of nonsynonymous substitutions per
nonsynonymous site (dN) and the number of synonymous
substitutions per synonymous site (dS) detected from one-
to-one orthologs between S. cerevisiae and S. bayanus
following previously described pipelines [41]. Briefly, or-
thologous proteins were identified by reciprocal best hits of
BLASTP searches between the proteomes of the two spe-
cies, with the criteria of an E value < 1 × 10−20, and align-
ment covering at least 80% of both orthologous sequences
and a length of at least 30 amino acids. To avoid the in-
fluence of gene duplication, we used only one-to-one or-
thologous proteins, i.e., we excluded any protein from a
species that was the best hit for more than one protein in the
other species. The orthologous gene pairs were realigned by
ClustalW [84], filtered for gaps in alignment, and processed
by PAML [85] to calculate dN/dS.

Evolutionary conservation of each nucleotide in the
yeast transcriptome

To estimate the evolutionary rates of individual sites in S.
cerevisiae mRNA, we collected the mRNA sequences from
five other post-WGD fungal species (S. paradoxus, S.
mikatae, S. bayanus, C. glabrata, and S. castellii), along
with gene orthology/paralogy information among the six
species from the Fungal Orthogroups Repository [77]. Only
one-to-one orthologs in all six species were used in our
analysis. We aligned orthologous mRNA sequences using
ClustalW [84], excluding any alignment columns with gaps
in any sequence. We then used GAMMA [86] to estimate
the site-specific substitution rates of each nucleotide in each
mRNA. The evolutionary conservation of a nucleotide is the
inverse of the substitution rate of the nucleotide.

Odds ratios and Mantel-Haenszel test

We defined and computed an OR1 to detect within-gene
correlation between evolutionary conservation and folding
specificity. To estimate the OR1, a 2 × 2 contingency table
was constructed for each gene by respectively categorizing

each nucleotide into one of four groups on the basis of 1)
whether the folding specificity of the nucleotide is higher
than the mean folding specificity of all nucleotides of the
gene and 2) whether the nucleotide is more conserved than
the mean level of evolutionary conservation among all nu-
cleotides of the gene. Let the numbers of sites that fall into
the four groups be: a (yes to both questions), b (yes to only
question 1), c (yes to only question 2), and d (no to both
questions). The number of sites in each group was increased
by 1 as a pseudocount to avoid division by zero. We then
calculated OR1 = ad/bc. Thus, OR1 is > 1 when the con-
served sites of a gene tend to have high folding specificity.
The function “mantelhaen.test” in R was used to combine
the OR1 values from different genes and perform the
Mantel-Haenszel test (Cochran-Mantel-Haenszel chi-
squared test) (Figure S4). The detection of within-gene
correlation between Tm and folding specificity was carried
out by similarly calculating another OR2, with the exception
that the 2 × 2 matrix was constructed for each gene by
categorizing each nucleotide into one of four types on the
basis of 1) whether the folding specificity of the nucleotide
is higher than the mean folding specificity of all nucleotides
of the gene and 2) whether the Tm of the nucleotide is higher
than the mean Tm of all nucleotides of the gene.

Ribosome profiling

The ribosome profiling data for yeast were obtained from
GEO (GEO: GSE50049) [87]. The raw reads were quality-
filtered and adaptor-trimmed before being mapped onto the
respective genomes. We obtained the normalized ribosome
density of a nucleotide from the nucleotide coverage in
Ribo-Seq divided by the average coverage of the transcript
to which the nucleotide belongs. Assuming negligible ri-
bosome drop-off, this normalized ribosome density ex-
cludes the variation in mRNA abundance and translational
initiation rate and is inversely correlated with the ribosome
velocity. Notably, to exclude the influence of the 5′ ribo-
somal “ramp” [49] on peak detection for the ribosomal
density, the first 200 nucleotides of each gene were removed
from our analysis.

Selective strength of point mutations affecting mRNA
folding specificity

Suppose that a mutation increases the folding specificity
and consequently increases the ribosome density on p co-
dons by q-fold. The average elongation speed of the mutant
is v Lv L p pq= / ( + ), where v is the original speed and L
is the gene length in terms of the number of codons. When
p << L and pq << L, we have

v v v p pq
L p pq v p pq

L v= = ( )
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Assuming that p = 1 codon, q = 1.2 (Figure 7A), L = 400
codons (average length of the yeast protein), and v =
20 codons/s [59,88], we obtained v = −0.01 codons/s. We
then estimated the fitness effect of this v using a pre-
viously published model [11]. Briefly, the model consists of
three main components. First, by assuming a fixed number
of translating ribosomes, the fitness cost of slow transla-
tional elongation is estimated by the increased time re-
quirement for synthesis of the whole proteome for the
daughter cell before cell division. Second, the quantitative
relationship between elongation speed and accuracy is es-
timated using data from an experimental study investigating
the linear trade-off between the efficiency and accuracy of
tRNA selection during translation [89]. Third, the benefit of
reduced translational error and/or protein misfolding is
modeled by assuming that a certain fraction of mistranslated
proteins are misfolded and the misfolded proteins impose a
dosage-dependent fitness cost, the effect size of which is
experimentally determined [75]. A detailed description of
the model can be found in a previous study by Yang and
colleagues [11].
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