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Abstract
Microbial communities play vital roles in many aspects of our lives, although our understanding of microbial bio-

geography and community profiles remains unclear. The number of microbes or the diversity of the microbes,

even in small environmental niches, is staggering. Current microbiological methods used to analyse these commu-

nities are limited, in that many microorganisms cannot be cultured. Even for the isolates that can be cultured, the

expense of identifying them definitively is much too high to be practical. Many recent molecular technologies,

combined with bioinformatic tools, are raising the bar by improving the sensitivity and reliability of microbial

community analysis. These tools and techniques range from those that attempt to understand a microbial com-

munity from their length heterogeneity profiles to those that help to identify the strains and species of a random

sampling of the microbes in a given sample. These technologies are reviewed here, using the microbial commu-

nities present in the lungs of cystic fibrosis patients as a paradigm.
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Introduction

Microbial communities play important roles in

agriculture, bioremediation, and animal and

human health, although our understanding of

microbial biogeography and community profiles

remains unclear. Current microbiological methods

used to analyse these communities are limited, in

that many microorganisms cannot be cultured or

definitively identified. The application of recent

molecular and bioinformatics tools is improving

the sensitivity and reliability of microbial commu-

nity analysis. These tools range from those using a

‘broad brush strokes’ approach to shed light on a

microbial community profile to those involving

identification of the strains and species of a

random sampling of the microbes in a sample. The

environmental genome shotgun survey of the

Sargasso Sea1 highlights the tremendous microbial

diversity present in nature and the enormity of the

effort needed to assess diversity and to understand

a meta-community. This review discusses these

technologies in the context of analysing the

microbial communities present in the lungs of

cystic fibrosis (CF) patients.
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CF

CF is a fatal inherited disease primarily affecting

Caucasians. In the USA, 3,500 children are born with

the disease each year.2 The gene responsible for CF

encodes a protein called the CF transmembrane con-

ductance regulator (CFTR).3 The CFTR is a

secretory epithelial cyclic-AMP-activated chloride

channel; mutations in the CFTR lead to decreased

fluid secretion and dehydration of epithelial surfaces.4

Oversecretion of thick mucus in the airway leads to

congestion of the respiratory tract and increased sus-

ceptibility to chronic broncho-pulmonary infection,

which is the major cause of morbidity and mortality

among patients with CF.4 To retard the rate of decreas-

ing lung function, bacterial infections are treated with

antibiotics; however, these must be tailored to the par-

ticular infection, which is often polymicrobial. For

example, anti-pseudomonal drugs are often ineffective

for patients treated for Burkholderia cenocepacia infection

owing to resistance.5 Thus, it is important to identify

the infecting pathogens correctly in order to prescribe

an appropriate antibiotic regimen.

CF sputum bacterial flora

Staphylococcus aureus, Haemophilus influenzae and

Pseudomonas aeruginosa are the primary pathogens

found in the polymicrobial infection of CF

patients.6 Other opportunistic pathogens have also

emerged, such as B. cenocepacia, Alcaligenes xylosoxi-

dans, Ralstonia pickettii, Burkholderia gladioli,

Stenotrophomonas maltophilia and Mycobacterium

species.6,7 S. aureus, the predominant pathogen in

children, is succeeded by H. influenzae during early

childhood, and P. aeruginosa becomes the predomi-

nant pathogen during adolescence, reaching a

prevalence rate of 80 per cent in adults.8 The

occurrence of the more recently emerging organ-

isms increases with advancing age and severity of

lung disease.8,9

Common assays used for clinical identification
of bacteria and their limitations

Currently, the pathogens present in a CF sputum

sample, throat swab or bronchoalveolar lavage

(BAL) fluid are determined based on commercially

available culture-based biochemical and phenoty-

pic identification systems. These systems can either

be manual, such as the API 20 NE (BioMérieux,

Marcy l’Etoile, France) or fully or partly auto-

mated, such as MicroScan (Dade Behring, West

Sacramento, CA, USA), BD Phoenix (Becton

Dickinson, Sparks, MD, USA), and VITEK

(BioMérieux).10 These systems allow clinical

microbiologists to identify bacteria accurately and

rapidly, ultimately leading to better and more cost-

effective patient management.11 Misdiagnosis

results from the limitation of the system’s reference

database10 or from strain variation.12 Since only

about 1 per cent of eubacteria in the environment

can be cultured,13 – 15 a number of pathogenic

species that are potentially present in the CF lung

can be missed.16 With other bacterial species (eg

Mycobacterium), even though they can be cultured,

due to their slow growth and similar phenotypes

they can still be easily misdiagnosed.17

Misidentification problems can be reduced or

completely eliminated by using genotype-based

molecular identification methods.18

Molecular analysis of isolates

In the CF lung, some bacteria can be identified

through culture whereas others would require mol-

ecular analysis. Molecular-based assays using poly-

merase chain reaction (PCR) and molecular

markers such as 16S rRNA have been designed to

identify pure isolates of many types of bacteria,

including Mycobacterium, and will be discussed in

detail.

PCR

PCR amplifies template material from minimal

amounts of extracted DNA.19,20 This technique

heralded a new era for the detection and identifi-

cation of various microorganisms in any samples.

Thus, the most recent techniques that study micro-

organisms are molecular based, using both universal

and species-specific primers to select molecular

markers.19
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Molecular marker 16S ribosomal RNA
(rRNA)

rRNA plays a catalytic role in protein synthesis.

The basic ribosome structure is evolutionarily

conserved, although variations in overall pro-

portions and sizes of RNA and protein

exist.21,22 A component of the small ribosomal

subunit, 16S rRNA, is composed of alternating

evolutionarily conserved and variable regions,23

and is the most commonly used molecular

marker.24 The conserved regions in 16S rRNA

(Figure 1) can be used to link organisms to

their distant ancestors, while the highly variable

regions can be used to identify evolutionary

relationships between closely related organisms,

at the genus and species level.23 Studying these

evolutionary relationships, however, requires the

sequencing of the 16S rRNA gene.

Mycobacterium spp. identification

DNA-based commercial assays have been developed

to identify slow-growing Mycobacteria.

Mycobacterium tuberculosis can be identified using the

Cobas Amplicor assay, which is based on DNA

hybridisation of a fragment of the 16S rRNA

gene.25 Hain Lifescience (Baden-Württemberg,

Germany) developed a genotype Mycobacteria

direct assay for the detection of M. tuberculosis

complex and four atypical Mycobacteria.25 This

technique uses nucleic acid sequence-based amplifi-

cation of the 23S rRNA gene. The MicroSeq

system (Applied Biosystems, Foster City, CA, USA)

is able to identify many Mycobacterium species based

on the first 500 base pairs of the 16S rRNA

gene.25,26 The most used identification method is

AccuProbe (Gen-Probe, San Diego, CA, USA).

Isolates are grown either in solid or liquid cultures.

Figure 1. Schematic representation of the variable and conserved regions of the 16S rRNA genes, using Escherichia coli rrsA

(ECDH10B_4040) as a reference. The diagram illustrates the approximate positions of nine variable (V) regions that are interspersed

with conserved regions. LH-PCR primer sequences for the conserved regions are included. The 8 F, 112 F/R, 338 F/R, 518 F/R and

785 F/R primers have also been referred to as 27 F, P2, 355 F/R, 536 F/R and 802 F/R, respectively. F and R refer to forward and

reverse, respectively. The degenerate nucleotides M, R, S, W and Y stand for A/C, A/G, G/C, A/T and C/T, respectively.
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The cells are lysed using sonication and labelled

DNA probes bound to the targeted rRNA. The

resulting light emission is measured, thus identifying

the isolate based on the DNA probe used in the

experiment.25 The emergence of non-tuberculous

mycobacteria in CF and immunocompromised

patients has created a need to assure accurate identi-

fication of these organisms. The sensitivity and

accuracy of each of these assays and others vary,

based on the species of Mycobacteria being ana-

lysed. These assays all rely on the isolation of bac-

teria and are not used to identify complex samples.

A sample containing two types of bacteria can

be analysed using matrix-assisted laser desorption

ionisation–time of flight mass spectrometry

(MALDI-TOF-MS).27,28 This method identifies cul-

tivated organisms based upon the profile of proteins

and peptides detected from the bacteria. In one study,

CF-associated bacteria were analysed using

MALDI-TOF-MS.27 Each organism gave a specific

spectrum, irrespective of how the organism had been

grown (ie incubation time or media) or the presence

of a mucoidy phenotype. The authors concluded that

this identification technique is cost-effective, rapid

and easy to use. This technique, as mentioned earlier,

cannot be used to analyse complex communities.

Molecular tools for community
studies

Microbial diversity in complex microbial commu-

nities can be assessed based on the lengths of one

or more of the nine variable regions of 16S rRNA

(Figure 1). The PCR amplicons can be analysed

using other techniques, including: terminal restric-

tion fragment length polymorphism (T-RFLP)

analysis and amplicon length heterogeneity

(LH).24,29 The fragments are separated and analysed

using a capillary electrophoresis-based genetic ana-

lyser. The data generated can be subjected to bioin-

formatics and statistical analysis to increase their

reliability. The resulting output can provide a com-

munity profile and can putatively identify individ-

ual organisms at the strain, species or genus level.

The recent developments in high-throughput

sequencing enable rapid sequencing of the

amplicons (bacterial and fungal, with the use of

appropriate primers), which is likely to lead to a

rapid understanding of the community structure of

any complex niche.

T-RFLP analysis

This technique relies on the inherent variation of

the sequence of a molecular marker30 and is the

most widely used method in identifying phyloge-

netic specificity in bacterial communities.31

T-RFLP analysis includes PCR amplification, using

one primer that is fluorescently end-labelled, restric-

tion enzyme digestion of the amplicon and detec-

tion of the terminal restriction fragment by an

automated DNA sequencer or capillary electrophor-

esis.31 The resulting output consists of a microbial

profile where each detected length is that of specific

fragments from the digested PCR product. Each

length represents one or more bacteria that have the

same terminal restriction fragment length. T-RFLP

profiles can be used for community differentiation,

identification of specific organisms in populations

and comparison of the relative phylotype richness

and community structure.30

This method has been successful in the differen-

tiation of bacterial communities present in many

environments, including marine samples, soil samples

and sputum samples from CF patients.30–33 Rogers

et al.32 analysed T-RFLP amplicons of CF patient

sputa and bronchoscopy samples using a computer

program called MapSort (Wisconsin Package version

10.3; Accelrys, Inc., San Diego, CA, USA), which

contains a database containing restriction patterns

and lengths of fragments generated for known 16S

rRNA bacterial sequences. The analysis suggested

the presence of P. aeruginosa, B. cenocepacia, S. aureus,

and H. influenzae in the CF samples.32

The T-RFLP method is fast and data can be easily

replicated for statistical analysis. The major disadvan-

tage of T-RFLP is that many bacteria produce similar

fragment sizes, and thus not all peaks in the profiles

are species specific. Some peaks may even represent

more than one genus.30,32 There are also inherent

problems in using restriction enzymes, such as

incomplete digestion, which can produce DNA
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fragments that do not correlate with the correct bac-

terium.33 Therefore, to achieve better identification

of the organism, further analysis — such as sequen-

cing of the 16S rRNA gene — must be performed.

LH

LH techniques analyse microbial populations based

on the lengths of generated PCR products produced

from the hypervariable regions of the 16S rRNA.33–38

Profiles from one region are produced for the

microbial community. These profiles represent

the minimum diversity of bacteria present within the

eubacterial community. The profiles contain peaks at

specific amplicon lengths (Figure 2) representative of

the number of nucleotides in the hypervariable

region between the conserved regions. The peak

heights are representative of the relative abundance of

amplicons of that length present in the community.

To identify individual bacterial organisms in the

community, a database is needed. This can be genera-

ted by in silico analysis of known 16S rRNA

sequences and the expected amplicon fragment

length with a particular primer set that would be

produced during an LH-PCR. The fragment lengths

in the sample profile are compared against the data-

base to identify the putative organisms. A profile

resulting from this analysis suggests the presence of

certain organisms and the definitive absence of

others. In cases where the amplicon length is not

species specific, it is often genus specific.29 LH pro-

files can also be used to compare community profiles

from multiple samples. Previous research has shown

that the compositions of bacterial communities are

highly specific to the environment in which they are

found, and these differences are represented in LH

profiles.33,35 Changes in the community’s niche can

drastically influence bacteria and thus add specificity

to the profile of a bacterial community, showing that

the overall bacterial community has many unique

features from sample to sample.33,35

The main advantages of LH-PCR are that it

rapidly surveys relative gene frequencies within

complex mixtures of DNA, is reproducible, requires

small sample sizes and can be performed simul-

taneously with many samples.29 The LH profiles

provide information about the members of the

entire bacterial community (not just specific isolates)

and their relative abundance. These data allow one

to make taxonomic inferences and sample compari-

sons.29 A major disadvantage of this technique is

that one amplicon in the profile can represent more

than one bacterium, therefore, identification at the

species level cannot be guaranteed. This is also true

with many length-based molecular techniques, such

as T-RFLP; however, the fragments are discrete

‘units’ of information that can be used for compara-

tive analyses.30 Analysis of different combinations of

the 16S rRNA variable regions will increase the

power of microbial detection and sample discrimi-

nation and lead to more definitive identification.

LH was the first technique used in several ecologi-

cal research projects to compare microbial commu-

nities between samples and to identify members

within one community.33,35,38 Fourteen CF sputum

samples were analysed using LH-PCR for the pre-

sence of eubacteria.32 The raw data generated from

the genetic analyser were first processed with corre-

sponding software, such as GeneimageIR v.3.56

(Scanalytics, Fairfax, VA, USA.)32 or GeneMapper

(Applied Biosystems),35 to produce amplicon frag-

ment lengths in base pairs. To identify presumptively

the bacteria present in the CF samples, the fragment

lengths were compared with a database of theoretical

fragment lengths constructed using GAP (Wisconsin

Package version 10.3).32 For example, P. aeruginosa

was identified presumptively in all 14 CF samples,

five of which were confirmed by cloning and

sequencing.32 In another study, LH analysis

Figure 2. A sample amplicon length heterogeneity

electropherogram using primers 8F and 338R. The x-axis

represents amplicon length in base pairs, and relative abundance

(proportional to intensity) is represented on the y-axis.
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presumptively identified P. aeruginosa in 19 south

Florida CF patients, all of which were clinically diag-

nosed with this pathogen.39 The LH fragment repre-

senting B. cenocepacia was not found in any of the

patients, and clinical diagnosis and sequencing results

confirmed the absence of this organism.39

To assist in the identification of individual

microbial organisms in a community, we developed a

software package called AmpliQué, to be used in

conjunction with LH-PCR.39 For all the bacterial

and archaeal 16S rRNA sequences available from the

Ribosomal Database Project (RDP) (http://rdp.cme.

msu.edu/), AmpliQué computes the length of the

amplicon for any specified (degenerate) primer

sequence pair. For a given sample on which PCR

has been performed with a fixed pair of primers, and

given the lengths of the PCR products, AmpliQué

infers the bacterial and archaeal organisms present in

the sample. AmpliQué has recently been generalised

also to handle lengths of PCR products from more

than one pair of primers, enhancing the power of this

in silico identification method. AmpliQué was used to

determine the presumptive identity of organisms

present in 19 south Florida CF patients based on

the fragment lengths produced by LH-PCR. Oral-

associated bacteria, such as Lactobacillus mali,

Capnocytophaga gingivalis, Porphyromonas spp. and

Prevotella spp. and the known CF-associated lung

pathogens P. aeruginosa, H. influenzae, B. cenocepacia,

Achromobacter xylosoxidans, Serratia marcesens, S. malto-

philia and Sarcina ventriculi, were presumptively

identified.39

To expand the use of LH-PCR in clinical set-

tings, Bjerketorp et al.40 combined it with a

lab-on-a-chip (LOC) system, which is used for

sizing and quantifying DNA, to analyse samples

containing mixtures of known human gut

microbes. An Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA), a bench-

top instrument that uses microfluidics-based separ-

ation, was used to detect the LH fragments. This

modified method allows LH-PCR to be more

affordable and faster, and thus more convenient and

suitable for clinical and diagnostic situations.40 To

test this system, samples containing mixtures of

human gut microbes and known human gut

bacteria isolates were analysed using both LOC and

a capillary electrophoresis-based genetic analyser.

The latter method had a higher resolution and was

thus able to resolve more peaks or fragments from

one another. It is important to separate PCR

fragments clearly, as LH identification is based on

the lengths of PCR products. Single base pair

length differences are known to occur between

species and even at the genus level. The level of

resolution for the LOC LH-PCR technique is a

weakness but the technique is rapid, economical

and easier to analyse than the traditional system.

Future modifications may improve the resolution,

making it more useful for clinical diagnosis.40

LH-related bioinformatics

Regardless of whether LH is being used to

compare communities or to identify members of a

community, statistics and bioinformatics must be

used to derive any information produced by the

technique. The first aspect of the LH-PCR system

is that it profiles a community based on the patterns

of lengths of amplified products (amplicons) and

allows one community to be distinguished among

other communities, without necessarily identifying

individual species or genera.

Microbial diversity and community dynamics were

first studied using computing measures, such as

species richness and dominance or evenness

indices.41 Theoretical models of microbial diversity

based on the log-normal distributions have also

been used.42 LH and T-RFLP data derived from

soil communities have been clustered using the

unweighted pair-group method using arithmetic

averages (UPGMA) algorithm based on the use of

distance metrics (such as the Jaccards, Hellinger or

Pearson distances).43–45 Such unsupervised methods

have been used to support claims that certain

relationships between communities can be discerned,

that the groupings are natural and that outliers can be

identified.

The statistical analysis of LH profiles is used to

differentiate between two or more microbial com-

munities. Without rigorous statistical analysis, it is

impossible to differentiate between significant
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differences and random events. The identification

of individual organisms in the community will be

discussed later.

Statistical analysis based on ecological indices

Many statistical techniques have been applied to eco-

logical indices that measure the diversity of microbial

communities. A number of diversity indices have

been used with microbial communities.41 Traditional

indices include the richness (S), the Shannon infor-

mation index (H) and the evenness (E) derived from

it, and are defined as follows in Equations (1), (2) and

(3), respectively:

S ¼ number of peaks of in each sample ð1Þ

H ¼ �
X

i

piðln piÞ ð2Þ

where pi is the ratio of individual peak height to the

sum total of the heights of all the peaks in the LH

profile.

E ¼ H

Hmax

; ð3Þ

where Hmax ¼ ln(S). Note that the traditional diver-

sity indices are based on the clear definition of an

ecological description of an individual species. Here,

the definitions have been modified for presumptive

identification of LH profiles by replacing the defi-

nition of an individual species with that of individual

peaks in LH profiles.

Once appropriate diversity indices are chosen,

multivariate statistical techniques, such as analysis of

variance (ANOVA), can be applied to compare

microbial communities.

Statistical analysis based on abundance models

Even with the availability of the numerous diversity

indices, analysing microbial diversity and commu-

nities merely using ecological indices has its short-

comings.46 Although each index represents an

attempt to distil diversity information into a single

quantity, each one ends up measuring specific aspects

of diversity. Diversity indices vary in their sensitivity

to different abundance classes. Species abundance

models are considered to be more sophisticated tools

to investigate diversity because they examine the dis-

tribution of abundances in a population.

Statistical models used for species abundance of

microbial communities include log series distri-

bution, log-normal distribution,47 the broken stick

model and the overlapping niche model.41 The most

frequently used statistical model for species abun-

dance distributions is the log-normal distribution.

In log-normal communities, the null model for bac-

terial species abundance is a log-normal distribution

defined as follows:

SðRÞ ¼ ðST=½sð2pÞ0:5�Þe½�R2=2s2�;

where S(R) is the number of species that contain R

individuals, ST is the total number of species in the

community, and s2 is the variance of the distri-

bution. The parameters ST and s2 can be estimated

from a sample of measured species abundance data by

using statistical techniques such as the method of

moments or least squares analysis.47

Supervised analysis of LH profiles

In addition to the unsupervised methods introduced

above, computational tools based on supervised classi-

fication methods from machine learning have also

been used for analyses based on microbial diversity.38

These methods are used to ‘learn’ the differences

between the diversities in the microbial communities

of two sets of samples. Two well-known supervised

classification tools include support vector machines

(SVM) and the k-nearest neighbour method (KNN).

These tools have the ability to ‘learn’ to classify

samples after being ‘trained’ with ‘features’ from a

collection of known, labelled samples. Both are com-

putational machine-learning tools that treat the data

as points or vectors in Euclidean space. These vectors

are usually referred to as ‘feature vectors’ because

their coordinates correspond to quantified ‘features’

of the data. These features are usually obtained after a

feature extraction process. Given a new sample, it too

is represented by a feature vector. In both methods,

classification of the new sample is based on the
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location of its feature vector in relation to the

location of the labelled feature vectors in the feature

space.48–51 SVMs have been shown to perform well

in a variety of research areas, including pattern recog-

nition,52 face recognition,53 classifications based on

microarray gene expression data,54–58 detecting

remote protein homologies59 and classifying

G-protein-coupled receptors.60 In particular, SVMs

are well suited for dealing with high-dimensional

data.48,51 KNN classifiers have been successfully used

in applications such as classification of handwritten

digits and satellite image scenes.50

Computational machine learning classifiers based

on SVMs and KNNs have been used to identify

and compare microbial communities from different

types of soil samples.38 After a learning phase, the

resulting classifiers were able to classify with high

accuracy. Detailed studies using these tools revealed

the limitations of the data and the minimum

amount of information from LH assays that was

necessary to perform reliable classification for

microbial communities.38

Sequencing

Even with the combined use of bioinformatics tools

and LH, certain members of a community may not

be identified. Sequencing of the 16S rRNA gene is

imperative to identify an organism with near cer-

tainty. The most common method of sequencing is

the Sanger method, developed in 1977.61 Once the

sequences are generated they are compared with

known 16S rRNA sequences (stored in the

Ribosomal Database Project II,62 Greengenes63 and

GenBank64) to identify organisms in any samples,

including the CF lung.10,65 Sequencing of the

RFLP-PCR products from the total metagenomic

DNA from BAL samples of CF children identified

known CF pathogens, such as P. aeruginosa, S.

aureus, S. maltophilia and H. influenzae.65 Potentially

novel pathogens from the genera Lysobacter,

Coxiellaceae and Rickettsiales were also found.65

Another study which involved the sequencing of

the 16S rRNA gene has shown that CF sputum con-

tains Streptococcus mitis, S. pneumoniae, Prevotella melani-

nogenica, Veionella spp., Granulicatella para-adiacens and

Exiguobacterium spp., besides the normal CF patho-

gens, such as P. aeruginosa. In this study, clones were

screened using LH-PCR to ensure that plasmids con-

taining a wide array of 16S rRNA genes were

sequenced.

Although sequencing technologies are able to

identify bacteria in a sample more accurately, the

high cost of reagents and labour may be too expen-

sive for widespread clinical use.66 For some bacteria,

partial sequencing of the gene would lead to identifi-

cation; for others, the entire gene would need to be

analysed. Sequencing isolates can be performed in a

timely manner and the data produced are fairly easy

to analyse, especially with the use of commercial

sequencing kits;67 however, sequencing cannot

differentiate between some species (eg Mycobacterium

chelonae and M. abscessus are 99 per cent similar).66

Bacterial identification would still have to be

achieved using a polyphasic approach.

As with most molecular methods, non-culturable

bacteria can be sequenced but this requires

additional protocols, reagents and time. With tra-

ditional sequencing methods, cloning must be per-

formed to isolate individual 16S rRNA genes

amplified by PCR. Even then, further screening

must be performed to ensure that multiple copies

of the same 16S rRNA gene are not repetitively

sequenced, thereby wasting time, reagents and

money. LH can be used as a screening method to

ensure that only clones of interest are sequenced.

Thus, efficient identification of non-isolates poses

many challenges.

Pyrosequencing

New developments in sequencing technologies are

revolutionising the way that microbial communities

are being studied.68,69 Recently developed pyrose-

quencing techniques that allow faster sequencing at

a lower cost are opening doors for many labora-

tories to use sequence data for microbial identifi-

cation. Pyrosequencing relies on a process referred

to as sequencing-by-synthesis,70 a technique that

allows for real-time monitoring of DNA syn-

thesis.71 Pyrosequencing is based on the principle

that pyrophosphate (PPi) is released when the
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DNA polymerase adds a nucleotide to the growing

complementary strand. The PPi is converted to

adenosine triphosphate (ATP), which is used as a

substrate in a chemical reaction that results in

visible light emission. The detectable amount of

light produced is relative to the amount of syn-

thesis.71 As with the Sanger method, pyrosequen-

cing can only sequence individual PCR products,

and thus must be used in conjunction with cloning

to study microbial communities.

Pyrosequencing has been used to identify bacterial

isolates by using the first and the third variable

regions of the 16S rRNA.72,73 Importantly, pyrose-

quencing surpassed traditional methods of detection

in a clinical setting by identifying 90 per cent of the

isolates at least at the genus level.74 The remaining 10

per cent of the isolates could not be identified owing

to the short sequencing reads, a clear drawback of

pyrosequencing.74 Pyrosequencing may help bacterial

identification in samples that do not lend themselves

to polyphasic approaches.75,76 This technique has also

been shown to distinguish clearly between multiple

species of Mycobacterium. Three species, Mycobacterium

kansasii, M. scrofulaceum and M. gordonae, require

further sequencing analyses to obtain accurate identi-

fications.75 To implement pyrosequencing success-

fully as a diagnostic tool, the technique needs to be

improved to address its limitations. Bioinformatics

tools need to be refined or newly designed to handle

the large amounts of data. Also, further research

needs to be performed to validate the technique. In

addition, issues regarding management and use of

pyrosequencing in a clinical laboratory need to be

addressed.74

454 sequencing

This is a new technique which allows whole-

genome sequencing in a matter of days. To circum-

vent the need for cloning, 454 sequencing, which

performs many PPi-sequencing reactions in paral-

lel, was developed.77 The 454 sequencing combines

an emulsion-based method that isolates and ampli-

fies DNA fragments in vitro with an instrument that

performs pyrosequencing in picolitre-sized wells.77

The reactions are resolved on a Genome Sequencer

FLX (454 Life Sciences, Inc., Bradford, CT, USA),

which reads 200–300 bases and in one run can

read up to 400,000 bases.78 This method has been

used to study the microbial diversity of the deep

sea79 and the metagenome found in honey bees,

which led to the discovery of a possible causative

agent of colony collapse disorder.80 A large number

of microbial communities can be studied quickly

and efficiently with 454 sequencing.

Conclusion

The members of a microbial community and the

associated dynamics of the niche can be studied using

various methods. LH, T-RFLP and sequencing have

all been used to study microbial community profiles,

as well as to identify bacteria found in the CF lung.

Each of these techniques has its drawbacks but can

produce data that can be used (with the help of

bioinformatics) to understand the composition of the

community and the factors that drive it. Recent

advances in technology are now the driving force

behind community profiling. With the advances in

high-throughput sequencing-based technologies,

entire niches of organisms can be studied in a rela-

tively short period of time. As a result, a vast amount

of complex data is produced from these experiments.

With the use of newly designed bioinformatics tools,

data can be interpreted correctly and provide

researchers with information that can ultimately be

used to address community interactions that dictate

the outcomes of human health studies.
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