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Ribosome speed is dictated by multiple factors including
substrate availability, cellular conditions, and product (peptide)
formation. Translation slows during the synthesis of cationic
peptide sequences, potentially influencing the expression of
thousands of proteins. Available evidence suggests that ionic
interactions between positively charged nascent peptides and
the negatively charged ribosome exit tunnel impede trans-
lation. However, this hypothesis was difficult to test directly
because of inability to decouple the contributions of amino
acid charge from mRNA sequence and tRNA identity/abun-
dance in cells. Furthermore, it is unclear if other components
of the translation system central to ribosome function (e.g.,
RNA modification) influence the speed and accuracy of posi-
tively charged peptide synthesis. In this study, we used a fully
reconstituted Escherichia coli translation system to evaluate the
effects of peptide charge, mRNA sequence, and RNA modifi-
cation status on the translation of lysine-rich peptides. Com-
parison of translation reactions on poly(lysine)-encoding
mRNAs conducted with either Lys-tRNALys or Val-tRNALys

reveals that that amino acid charge, while important, only
partially accounts for slowed translation on these transcripts.
We further find that in addition to peptide charge, mRNA
sequence and both tRNA and mRNA modification status
influence the rates of amino acid addition and the ribosome’s
ability to maintain frame (instead of entering the −2, −1,
and +1 frames) during poly(lysine) peptide synthesis. Our
observations lead us to expand the model for explaining how
the ribosome slows during poly(lysine) peptide synthesis and
suggest that posttranscriptional RNA modifications can pro-
vide cells a mechanism to precisely control ribosome move-
ments along an mRNA.

Translation of the nucleic acid code into protein is catalyzed
by the ribosome. During this process, ribosomes use mRNAs
as molecular maps to direct the programmed assembly of
amino acids into polypeptides. In Escherichia coli growing
polypeptide chains are extended by an average of 4 to 22
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amino acids per second, though the rate of individual amino
acid incorporation by the ribosome is not always uniform
(1–3). Heterogeneity in peptide elongation rates is caused by a
number of factors, including substrate (e.g., mRNA,
aminoacyl-tRNAs [aatRNAs], translation factors) availability
and modification status, and the formation of stable
interactions between the growing polypeptide chain and the
ribosome machinery (4, 5). Although translation initiation
rates are responsible for controlling the rate of protein
expression in many circumstances, situations that alter poly-
peptide elongation rates can change protein levels, protein
folding, and mRNA stability to ultimately impact cellular
health and fitness (6–8).

Contacts between the ribosome and its nascent peptide
products are receiving growing recognition for their role in
translationally controlling protein expression (9). The
interactions involving the ribosome and positively charged
peptides present a classic example of this phenomenon. There
is overwhelming evidence that translating the cationic peptide
sequences commonly present in proteins slows the ribosome
(10, 11). In humans, there are over 60,000 examples of proteins
containing four or more consecutive basic amino acids, sug-
gesting that the synthesis of positively charged peptides con-
tributes to the posttranscriptional control of a significant
fraction of the proteome (Tables S1 and S2). The observation
that ribosomes slow while linking iterated positively charged
amino acids has long been attributed to the formation of
strong ionic interactions between cationic peptides and the
anionic ribosome peptide exit channel (12). However, several
recent reports demonstrate that the ribosome produces
different amounts of protein from mRNAs possessing synon-
ymous codons that encode identical positively charged poly(-
lysine) and poly(arginine) peptides (13–15). Ionic interactions
alone cannot explain these findings, suggesting that additional
factors in the translation system also contribute to modulating
ribosome speed during the synthesis of cationic peptides.

Multiple codons instruct the ribosome to add the positively
charged amino acids lysine (AAA and AAG) and arginine
(AGA, AGG, and CGN [N=U, C, A,G]). The ability of
individual arginine codons to differentially impact protein
expression largely depends on the availability of tRNA
isoacceptors possessing appropriate anticodon sequences.
J. Biol. Chem. (2022) 298(6) 102039 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2022.102039
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://orcid.org/0000-0002-7763-9262
mailto:kkoutmou@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2022.102039&domain=pdf
http://creativecommons.org/licenses/by/4.0/


EDITORS’ PICK: mRNA and tRNA modification impact poly(lys) translation
Some isoacceptors are less abundant, and translation along
mRNA sequences containing multiple codons corresponding
to these rare tRNAs can slow sufficiently to trigger cellular
mechanisms that rescue stalled ribosomes (16, 17). The cause
of differential protein expression from the two lysine codons
appears to differ from that of arginine codons. In the case of
lysine, less protein is produced from mRNAs containing
consecutive AAA codons than those with consecutive AAG
codons in both eukaryotic and bacterial cells (13, 14, 18, 19).
However, differences in substrate tRNA levels are unlikely to
account for these codon-specific observations because AAA
and AAG are decoded by a single tRNALys in at least one of the
species (E. coli) where codon-dependent differences in poly(-
lysine) protein output have been observed. Furthermore, in
addition to reducing the rate of protein synthesis, under some
conditions the presence of two or more AAA codons in a row
can promote an unusual ribosome movement termed “ribo-
some sliding” (13). During sliding, the ribosome loses reading
frame and shifts along an mRNA. The ribosome has been
captured moving backward by 1 to 3 nucleotides while
translating iterated AAA codons (13, 14), changing the identity
of the peptide being made. These movements activate
cotranslational surveillance mechanisms that target the
translated mRNA and resulting peptide products for degra-
dation (18). Ribosome sliding differs from other noncanonical
ribosome movements, which place the ribosome at a single,
discrete location on an mRNA and can produce stable prod-
ucts (20, 21).These data suggest that the influence of mRNA
and tRNA sequences on the translation of poly(lysine) peptide
regions warrant further examination.

Here, we use a reconstituted E. coli translation system to
deconvolute the contributions of peptide, mRNA sequence,
and RNA (mRNA and tRNA) modification to both the speed
of amino acid addition and ribosome frame maintenance
during the translation of iterated lysine codons. We chose to
investigate the role of RNA modifications in addition to pep-
tide and mRNA sequence because these common chemical
changes to nucleosides can alter the hydrogen-bonding in-
teractions between tRNAs and mRNAs used by the ribosome
to ensure the faithful and rapid translation of the genetic code
into protein (22). Our findings expand the biochemical
framework for understanding the contributions of individual
components of the translation system to ribosome stalling
during cationic peptide synthesis. We demonstrate that in
addition to peptide charge, mRNA sequence, along with
mRNA and tRNA modification status, are important de-
terminants of ribosome speed during poly(lysine) translation.
Additionally, we developed a minimal kinetic mechanism for
ribosome sliding on iterated AAA codons, in which the ribo-
some moves along an mRNA in the 30 direction one nucleotide
at a time, until it can bind an available cognate aatRNA and
resume “normal” translation in a different frame. Much like
ribosome speed, this series of one nucleotide ribosome
movements is controlled not only by peptide charge but also
by posttranscriptional modifications to tRNALys and mRNA
(N6-methyladenosine [m6A]). While it has been known for
decades that tRNA anticodon stem-loop modifications can
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influence ribosome movements, these data provide the first
evidence that mRNA modifications also have the power to
impact ribosome reading frame maintenance (23). Our work
presents a molecular level rationalization for how seemingly
small changes in the translational machinery (e.g., synonymous
codon substitution and single posttranscriptional modifica-
tions) can result in different protein production outcomes.
Results

Ribosomes move backward one nucleotide at a time on
poly(A) sequences

There are multiple ways to envision how ribosome sliding
on consecutive AAA codons could be achieved. For example,
the ribosome might hop directly into the −1 and −3 frames,
“scan” along an mRNA until it reaches a specific, desired
frame, or make series of discrete one nucleotide frameshifts
(13, 14, 24, 25). We developed a kinetic framework to distin-
guish between these possibilities and describe how the ribo-
some moves during sliding using a fully reconstituted in vitro
translation system (26). To accomplish this, we first identified
the reading frames the ribosome enters during translation
along an mRNA with a AUG-AAA-AAA-UUC-UAA
(MK2(AAA)FX; X=stop codon) coding sequence (Fig. 1A). In
these assays, 70 nM of E. coli 70S ribosome initiation
complexes (ICs) containing 35S-labeled formylmethionine-
tRNAfMet bound to an AUG in the P site and an AAA codon in
the A site were reacted with saturating concentrations of two
ternary complexes (TCs, 10–30 μM; aatRNAaa⋅EF-Tu⋅GTP)
formed with elongation factor-Tu (EF-Tu) as well as cognate
Lys-tRNALys and individual aatRNAaa species capable of
reacting in each of the reading frames that the ribosome could
inhabit on our MK2(AAA)FX mRNA (−2 frame, Asn-
tRNAAsn; −1 frame, Ile-tRNAIle; 0 frame, Phe-tRNAPhe; +1
frame, Ser-tRNASer; and +2 frame, Leu-tRNALeu) (Fig. 1A).
These reactions were conducted in the presence of 0 to 12 μM
of elongation factor G GTPase bound to GTP (EF-G⋅GTP) at
37 �C. The reactants (fMet), programmed peptides (MK, MK2,
MK2F), and peptide products resulting from the ribosome
sliding (MK2I, MK2N, MK2S, MK2L, MK3, and MK4+) were
visualized by electrophoretic TLC (eTLC; Fig. 1B). In our as-
says, the ribosome generated products in five different reading
frames (0, −1, −2, −3, and +1; Fig. 1, A–C). We find that
movement of the ribosome into non-0 frames is EF-G
dependent, much like canonical-1 frameshifting ribosome
movements (Fig. S1) (24, 27–29).

After establishing which frames the ribosome inhabits
during sliding, we measured the extent of amino acid incor-
poration in each of these frames at discrete time points
(0–1200 s, Figs. 1C and S2). These data were used to develop a
minimal kinetic mechanism for ribosome sliding by globally
fitting our experimental observations with KinTek Explorer
(KinTek Corporation; https://kintekexplorer.com/) (Fig. S2).
We examined a series of possible mechanisms (Fig. S3) and
selected the model that best fit our data to ascertain the rate
constants for each step in the mechanism. Our fits indicate
that the ribosome undergoes a series of progressive −1

https://kintekexplorer.com/


Figure 1. The ribosome moves into multiple frames on poly(A) in absence of next cognate aatRNAaa. A, possible ribosome-sliding events on
MK2(AAA)FX mRNA result in new discrete codons positioned in the A-site, allowing for decoding and accommodation of noncoded aatRNAaa. B, phos-
phorimage of a eTLC displaying the products of 20 min end-point reactions investigating frameshifting during ribosome sliding on MK2(AAA)FX or
MK2(AAG)FX mRNA incubated with Lys-tRNALys and various aatRNAaa TCs. Lanes indicate the aatRNAaa TCs used in each reaction, with the numbers
correlating to the amino acid identity indicated in panel (A) (e.g., −2 indicates reaction performed with Lys-tRNALys and Asn-tRNAAsn). Θ indicates the amino
acid that would be added upon successful frameshift and incorporation of aatRNAaa as indicated per lane and in panel (A) (e.g., bands for MK2Θ and MK3Θ
in −2 lane correspond to the peptides MK2N and MK3N, respectively). C, percent of peptide product formed due to sliding/frameshifting compared to total
peptide synthesized during translation assays, with frame and third amino acid added as signified. Error bars represent SD. D, rate constants for frameshift
events during ribosome sliding on MK2(AAA)FX mRNA using Lys-tRNALys and aatRNAaa TCs as specified with frame (panel A), as defined by the proposed
mechanism in Figure 2. Error bars represent SD. There is no difference in the rate constants for amino acid addition in the −1 (Ile; k7I), −2 (Asn; k7N), and −3
(Lys; k3) frames. For +1 (Ser; k7S) and +2 (Leu; k7L) rate constants, a ‘ * ’ represented a significant alteration with a p-value <0.05 using a unpaired student t
test when compared to the −3 rate constant (Lys; k3). aatRNAs, aminoacyl-tRNA; eTLC, electrophoretic TLC.
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nucleotide movements from the 0-frame into the −1, −2,
and −3 frames during ribosome sliding (Figs. 2 and S4). The
rate constants for amino acid addition in the −1, −2, and −3
frames are relatively uniform (k7 values range between
0.01–0.02 s−1) (Fig. 1D and Table 1). Furthermore, a subset of
ribosomes (�10%) appear unable to extend the growing
polypeptide following each progressive −1 nucleotide ribo-
some movement (Figs. 1B and 2 (k5, k4:6,obs), Figs. S3 and S5B).
While we do observe a small amount of product formation in
the +1 frame, both the endpoint and rate constant for this
Figure 2. Proposed general scheme for frameshift events during ribo-
some sliding on poly(A). In the case where available aatRNAs are incor-
porated via frameshift, denoted by Θ, this scheme describes subsequent
amino acid additions by a ribosome translating on a poly(A) containing
mRNA—as displayed in Fig. 1. The scheme contains parameters obtainable
from the experiments presented here: dipeptide formation (k1), tripeptide
formation (k2), ribosome sliding, and frameshift events (k3, first −3 sliding/
frameshift event generating tetrapeptide [MK3]; k5, first sliding/frameshift
event resulting in unproductive ribosome(s); k7Θ, first sliding/frameshift of
ribosome moving into new coding frame [MK2Θ]), and secondary/tertiary
sliding events capable of occurring following first sliding/frameshift event
(k4:6,obs). aatRNAs, aminoacyl-tRNA.
reaction are diminished relative to the same values for the
ribosome reacting in the −1, −2, and −3 frames (Fig. 1, C and
D). These observations lead us to propose a model for ribo-
some sliding in which a small (<5% of ribosomes) can undergo
a +1 frameshift, while most ribosomes move in the 30 direction
by one nucleotide a time until they enter a reading frame that
can react with an available aatRNA species (Fig. 2).
tRNALys modifications moderate ribosome sliding during poly-
lysine synthesis

Native tRNAs possess posttranscriptional chemical modifi-
cations essential to their stability, structure, and function (30,
31). Modifications located in tRNA anticodon stem loops have
the capacity to modulate −1 and +1 ribosomal frameshifts and
enhance ribosome reading frame maintenance (32, 33). Since
the tRNALys N6-threonylcarbamoyladenosine (t6A37) and 5-
methoxycarbonylmethyl2-thiouridine [mcm5S2U34] modifica-
tions in yeast tRNALys,UUU influence tRNA decoding, we
speculated that analogous E. coli tRNALys modifications, such
as 5-methylaminocarbonylmethyluridine (mnm5s2U34), might
suppress ribosome sliding and enhance poly(lysine) translation
(34, 35). To test this idea, we compared the rate constants for
lysine addition during the translation of AUG-AAA-AAA-
UUC-UAA [MK2(AAA)FX] and AUG-AAG-AAG-UUC-UAA
[MK2(AAG)FX] messages using saturating levels (20–30 μM)
of unmodified T7 transcribed Lys-tRNALys and natively
J. Biol. Chem. (2022) 298(6) 102039 3



Table 1
Rate constants for frameshift and amino acid addition during ribosome sliding

Frameshift position 0 frame −2 frame −1 frame +1 frame +2 frame

tRNA TCs Lys + Phe Lys + Asn Lys + Ile Lys + Ser Lys + Leu

Rate constants (s−1)
k1 11.7 ± 0.01 13.1 ± 0.01 15.3 ± 0.8 12.7 ± 0.7 13.3 ± 0.7
k2 1.5 ± 0.002 1.6 ± 0.002 1.4 ± 0.2 1.5 ± 0.15 1.2 ± 0.3
k3 - 0.005 ± 0.0002 0.008 ± 0.0015 0.008 ± 0.001 0.02 ± 0.004
k4:6,obs - 0.006 ± 0.002 0.003 ± 0.001 0.007 ± 0.003 0.002 ± 0.009
k5 - 0.0008 ± 0.00004 0.0007 ± 0.0003 0.002 ± 0.0005 0.017 ± 0.009
k7 0.9 ± 0.0007 0.01 ± 0.0009 0.02 ± 0.006 0.002 ± 0.0007 0.0002 ± 0.0001
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modified Lys-tRNAN
Lys purified from E. coli cells (Figs. 3A and

S6). We find that the rate constants for programmed MK and
MK2 peptide formation are twofold to fourfold faster when
ribosome complexes are reacted with TCs containing modified
Lys-tRNAN

Lys than with unmodified Lys-tRNALys. These
moderate enhancements in lysine addition rate constants are
observed when either AAG or AAA containing mRNAs are
translated (Table 2). The modifications have a larger role on
frame maintenance than on programmed lysine addition; the
rate constants for forming ribosome sliding products (MK3

and MK4+) on AAA codons are decreased by up to 25-fold
when natively modified Lys-tRNAN

Lys is used (Fig. 3B).
Despite the slowed formation of these sliding products, the
percentage of peptides that are eventually extended and
generated sliding products is only slightly reduced by the in-
clusion of modifications on tRNALys (Lys-tRNALys = 60% ± 3%
versus Lys-tRNAN

Lys = 40% ± 6%) (Figs. 3, B and C and S6).
Our data suggest that tRNAN

Lys modifications likely limit the
extent of ribosome sliding in cells.
Figure 3. Modifications on tRNALys regulate extent of frame loss on poly(A
either Lys-tRNALys or Lys-tRNAN

Lys TCs, as defined by the proposed mechanism
result of ribosome sliding (peptides longer than MK2 tripeptide) on MK2(AAA)FX
tRNAN

Lys TCs. Error bars represent SD. C, phosphorimage eTLCs of of ribosom
with either Lys-tRNALys TCs (left) or Lys-tRNAN

Lys TCs (right). eTLC, electrophor
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Ribosomes slow and slide when synthesizing poly(valine)
peptides from lysine-encoding mRNAs

Regardless of tRNALys modification status, we observed
that after the first lysine is added into a peptide, the rate
constants for adding subsequent lysines on AAA codons are
reduced (Table 2 and Fig. 3A). This is consistent with a large
body of evidence from cellular reporter and ribosome
profiling studies indicating that the translation of iterated
positive charges slows the ribosome (36). However, the
observation that different poly(lysine) encoding mRNA se-
quences differentially impact translation leads us to wonder if
mRNA sequence, and therefore also structure, contribute to
ribosome slowing and during poly(lysine) translation (13, 14).
To deconvolute the effects of peptide charge from mRNA
sequence, we mischarged unmodified tRNALys and natively
modified tRNAN

Lys sequences with the small nonpolar amino
acid valine (Val-tRNALys, Val-tRNAN

Lys) (Fig. 4A). Mis-
acylation was accomplished using a small RNA microhelix
(flexizyme) capable of attaching an esterified aminoacid acyl
) mRNA. A, rate constants for ribosome sliding on MK2(AAA)FX mRNA using
in Fig. S3A. Error bars represent SD. B, percent of total peptide formed as a
mRNA after 20 min in translation assays conducted with Lys-tRNALys or Lys-
e sliding over time on MK2(AAA)FX mRNA in translation reactions perfomred
etic TLC; TC, ternary complex.



Table 2
Rate constants for lysine addition during ribosome sliding

mRNA construct MK2(AAA)FX MK2(AAG)FX

tRNA TCs Lys-tRNALys Lys-tRNAN
Lys Lys-tRNALys Lys-tRNAN

Lys

Rate constants (s−1)
k1 10.2 ± 0.3 28.9 ± 1.9 2.7 ± 0.5 12.7 ± 0.4
k2 1.2 ± 0.4 4.8 ± 0.4 2.1 ± 0.7 4.4 ± 0.3
k3 0.02 ± 0.004 0.0008 ± 0.000008 0.006 ± 0.002 0.002 ± 0.001
k4 (or k4,obs) 0.007 ± 0.001 0.07 ± 0.02 0.0004 ± 0.0001 0.00009 ± 0.00002
k5 0.01 ± 0.008 0.0001 ± 0.00005 0.001 ± 0.0001 0.001 ± 0.0002
k6 0.006 ± 0.002 0.02 ± 0.007 - -
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donor to virtually any tRNA of interest (37). ICs containing
mRNAs encoding consecutive lysines (AUG-AAA-AAA-
UUC-UAA and AUG-AAG-AAG-UUC-UAA) were reacted
with TCs possessing mischarged tRNAs (Val-tRNALys⋅EF-
Tu⋅GTP, Val-tRNAN

Lys⋅EF-Tu⋅GTP). Because the translation
factor EF-Tu selects for correct tRNA and aminoacyl donor
pairings, we titrated EF-Tu with each aatRNA to ensure
saturating conditions for incorporating these species (Fig. S7)
(38, 39). Concurrent control assays with TCs containing Val-
tRNAVal and ICs formed on an mRNA encoding consecutive
valines (AUG-GUG-GUG-UUC-UAA) were also performed.
The rate constants for Met-Val dipeptide and tripeptide, MV
Figure 4. Neutral amino acid and tRNA pairing effect ribosome sliding o
charged lysine or misacylated with neutral charge valine by the dFx flexizyme
acid charge on lysine addition during translation are displayed. B, phosphor
mRNAs. Translation reactions were performed with either Val-tRNALys (left) or
right) on MV2FX mRNA. C, rate constants for amino acid addition on MK2(AAA)FX
by the proposed mechanism in Fig. S3A. The k3,obs rate constant is presented o
on MV2FX mRNA (‡) as no sliding is observed in these assays. Error bars represe
MV2FX mRNAs after 20 min in translation assays conducted with Val-tRNALys, V
eTLC, electrophoretic TLC; TC, ternary complex.
and MV2, formation are three-fold and five-fold slower
(respectively) on AUG-AAA-AAA-UUC-UAA [MK2(AAA)FX]
mRNA than AUG-GUG-GUG-UUC-UAA GUG [MV2FX]
mRNA regardless of the modification status of tRNALys

(Fig. 4C and Table S3). In contrast, the rate constants for
synthesizing MV and MV2 on AUG-AAG-AAG-UUC-UAA
[MK2(AAG)FX] mRNA are reduced by less than two-fold
relative to (MV2FX) mRNA when modified Val-tRNAN

Lys is
included in the translation reaction. However, when un-
modified Val-tRNALys is used instead, the ability of the
ribosome to add Val to a growing polypeptide on an AAG
codon is dramatically slowed, and the rate constants for MV
n poly(A) mRNA. A, lysyl E. coli tRNAUUU can be acylated with positively
. Flexizyme charged tRNAs used in our studies assesing influence of amino
images of eTLCs displaying amino acid addition and ribosome sliding on
Val-tRNAN

Lys TCs (middle) on MK2(AAA)FX mRNA or Val-tRNAVal (transcribed,
mRNA using Val-tRNALys and MV2FX mRNA using Val-tRNAVal TCs as defined
n the right y-axis, and no rate constant was obtainable for peptide synthesis
nt SD. D, percent of peptide products formed during assays on MK2(AAA)FX or
al-tRNAN

Lys, or Val-tRNAVal TCs as shown in panel (B). Error bars represent SD.
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Figure 5. m6A modification to single nucleotides in poly(A) modulate
ribosome frame loss. A, MK2(AAA)FX mRNA was chemically modified with a
single m6A on one of the six consecutive A’s. Specifically at positions A3, A4,
A5, and A6 with position 3, m6A-3, shown. B, phosphorimage eTLC dis-
playing the products of 20 min translation on MK2(AAA)FX transcripts
harboring a single m6A modification at nucleotide specified. C, percent of
total peptide formed as a result of ribosome sliding (longer than MK2 tri-
peptide) on MK2(AAA)FX mRNAs that were either unmodified or harboring
a single m6A modification after 20 min of translation using Lys-tRNAN

Lys TCs.
Error bars represent SD. There is no significant difference observed for
peptide product formed on messages containing m6A at either position A3
or A4 using Lys-tRNAN

Lys TCs when compared to peptide product formed on
MK2(AAG)FX using Lys-tRNAN

Lys TCs when using an unpaired student t test.
eTLC, electrophoretic TLC; TC, ternary complex.
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and MV2 synthesis are diminished by >1000-fold (Fig. S8 and
Table S3).

In addition to impacting ribosome speed, our investigations
with Val-tRNALys and Val-tRNAN

Lys revealed that peptide
charge also contributes to ribosome frame maintenance on
lysine-encoding messages. We find that extended MV3+ pep-
tides, analogous to the MK3+ peptides made during ribosome
sliding (Fig. 4B), are generated from the AAA but not AAG or
GUG containing messages. While unprogrammed MV3+

peptides can still be generated on consecutive AAA codons,
the incorporation of additional valines is �10-fold slower than
unprogrammed lysine addition on the same message. Our
findings suggest that peptide charge and mRNA sequence
make independent contributions to ribosome speed and frame
maintenance during poly(lysine) peptide synthesis.

m6A mRNA modifications suppress sliding on consecutive AAA
codons in a position dependent manner

Our data indicate that iterated AAA, but not AAG, lysine-
encoding codons promote a series of consecutive −1 move-
ments by the ribosome (ribosome sliding). We hypothesized
that poly(A) regions might form a unique structure within the
ribosome mRNA channel that promotes these loss of frame
events. Recent cryo-EM structures of the yeast ribosome
translating an mRNA sequence with six consecutive A nucleo-
sides support this idea, revealing that stacked A’s adopt a single-
stranded helix in the ribosome decoding center (40, 41). In these
structures, three A’s are positioned in the mRNA A site, where
they form a helical stack with residues in the 18S rRNA (41). To
test the possibility that such a helical structure might enhance
frame loss on poly(A) sequences, we performed translation as-
says on AUG-AAA-AAA-UUC-UAA [MK2(AAA)FX] messages
with various A-nucleosides substituted with m6A (Fig. 5A) to
perturb the structure of this poly(A) helix.We selectedm6A as a
probe because it has been shown to change RNA structure and
dynamics (42–44). We find that when m6A is positioned in the
middle of a six consecutive A nucleosides (at the third and
fourth adenosine in the message), where they presumably could
disrupt helix formation, very little extended peptide product is
formed (Fig. 5,B andC andTable S4). In contrast, when them6A
is positioned at the fifth or sixth adenosine in the poly(A)
sequence, sliding levels are comparable to those on an un-
modifiedmessage (Fig. 5C).We examined the location ofm6A in
two available datasets that mapped m6A transcriptome wide to
begin evaluating if our observation that m6A can promote frame
maintenance could have relevance in endogenous A-rich
mRNA coding sequences (45, 46). Our bioinformatic analyses
reveal that m6A exists both in AAA codons and in iterated A
(five ormore A’s) stretches found in the coding region of over 80
mRNAs (Table S5). These findings together raise the possibility
that one consequence of m6Amight be to prevent the ribosome
from losing frame on consecutive AAA codons.

Discussion

The elongation of cationic peptides slows the ribosome and
can impact the expression of thousands of proteins (Tables S1
6 J. Biol. Chem. (2022) 298(6) 102039
and S2) (36, 47). Available evidence suggests that ionic in-
teractions between positively charged peptides and the ribo-
some account for the reduced translation speeds observed on
these sequences (10, 40, 48). We directly tested this model by
comparing the rate constants for amino acid incorporation on
MK2 encoding mRNAs using tRNALys aminoacylated with
either a positively charged (Lys-tRNALys) or neutral (Val-
tRNALys) amino acid (Fig. 4). Our investigations reveal that
ribosomes translating consecutive AAA codons add a second
amino acid (V or K) more slowly. The extent of slowing amino
is not dependent on amino acid identity (Val-tRNALys k1/k2 =
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6, Lys-tRNALys k1/k2 = 8). In contrast, on consecutive AAG
lysine codons, the rate constants for adding the first and sec-
ond lysine are equivalent (Lys-tRNALys k1/k2 = 1), while a
second valine is added substantially more slowly (Val-tRNALys

k1/k2 = 20) (Table S3). The inclusion of modifications in
tRNAN

Lys diminished the differences we observed in the rate
constants for adding consecutive lysines and valines on AAG
and AAA codons (on AAG: Val-tRNAN

Lys k1/k2 = 4,
Lys-tRNAN

Lys k1/k2 = 3; on AAA: Val-tRNAN
Lys k1/k2 = 2,

Lys-tRNAN
Lys k1/k2 = 6) (Tables 2 and S3). Our findings

indicate that both peptide charge and codon:tRNALys in-
teractions have significant roles in controlling poly(lysine)
peptide synthesis rates. These factors play similarly important
roles in ribosome frame maintenance during poly(lysine)
peptide translation. While we observe ribosome sliding when
Val-tRNALys/Val-tRNAN

Lys are used (Fig. 4), the rate and
extent of sliding on AAA codons are both modestly enhanced
by Lys-tRNALys/Lys-tRNAN

Lys. mRNA sequence (AAA versus
AAG) and the posttranscriptional modification status of
tRNALys have larger impacts on frame maintenance than
peptide charge. As previously reported, we find that ribosome
sliding is only prevalent on lysine encoding mRNAs with
consecutive AAA codons (Figs. 3 and S1) (13). We also noticed
that the presence of tRNALys modifications significantly
reduces the rate constant (25-fold) for sliding associated frame
loss events (Fig. 3 and Table 2). The strong influence of
tRNAN

Lys modifications on frame maintenance is consistent
with previous observations that both bacterial and yeast tRNA
with these modifications also promote mRNA–tRNA
interactions (34, 49–51). In addition to enhancing frame
maintenance, tRNAN

Lys modifications appear to be especially
important for the addition of valine on AAG, but not AAA,
codons by mischarged Val-tRNALys. The rate constant for Val
insertion increases by 70-fold to >1000-fold when fully
modified Val-tRNAN

Lys is reacted on AAG codons (Fig. S8 and
Table S3). These findings collectively help to rationalize why
loss of tRNAN

Lys modifications is lethal in yeast and the
observation that mutations in the tRNAN

Lys modification
machinery are linked to disease (23, 52–56).

mRNA–tRNA interactions can be controlled not only by
tRNA modifications but also by the posttranscriptional
modification of mRNAs. Emerging evidence suggests that
mRNA modifications can slow the ribosome and influence the
extent of amino acid misincorporation into peptides
(22, 57–59). However, the impact of mRNA modifications on
ribosome frame maintenance has not been explored. This
question is especially relevant in the context of ribosome
sliding because the most common mRNA modification, m6A,
is present in AAA codons in cells (45, 46). Our analysis of
available datasets that map the location of m6A transcriptome-
wide reveals that m6A is included into > 80 mRNAs con-
taining five or more consecutive A’s (Table S5). While m6A
disrupts both RNA base pairing and tRNA selection by the
ribosome, the influence of m6A, or any other mRNA modifi-
cation, on ribosome frame maintenance is not known (42, 60,
61). Our results demonstrate that m6A can suppress frame loss
events. We find that ribosome sliding is limited when m6A is
positioned to break up stretches of iterative adenosines (Fig. 5).
Together, our biochemical and bioinformatic findings suggest
that one consequence of having m6A present in these mRNA
sequences could be to prevent ribosome sliding in homopol-
ymeric A-rich stretches (62).

While previous studies revealed that the ribosome moves
robustly into multiple frames on poly(A) sequences in vitro,
the mechanism by which this occurs was not known
(13, 24, 25). Here, we measured the rate constants for the
ribosome moving into five different reading frames while
translating an AUG-AAA-AAA-UUC-UAA [MK2(AAA)FX]
mRNA sequence. These data lead us to propose a model for
ribosome sliding in which the ribosome moves backward, one
nucleotide at a time, along a homopolymeric(A) sequence until
it either encounters an aatRNAaa that it can react with, or
enters an unproductive state (Figs. 2 and S3). We find that the
rate constants for backward movements by the ribosome are
reduced by 50-fold relative to 0-frame amino acid addition and
that the greatest levels of nonproductive complex formation
are observed following the first −1 movement (Fig. 1D and
Table 1). The rate constants for these movements, collectively
referred to as ribosome sliding, are reduced relative to normal
amino acid addition, amino acid misincorporation, and −1
programmed frame shifting (22, 63, 64). While we do observe
some amino acid addition in the +1 frame, these events are less
robust than their −1 counterparts, and we believe that the +1
frameshifts are not a product of sliding, but rather the result of
an empty A site (65).

The slow nature of the progressive −1 movements and
formation of nonproductive complexes can help explain why it
is possible to capture the ribosome in multiple frames in vitro
but only visualize ribosome stalling and the first −1 movement
in cells. Following the first −1 movement on poly(A) sequence,
our results suggest that the ribosome is capable of adding the
amino acid in the −1 frame, likely leading to the creation of a
prematurely truncated protein product and triggering
nonsense-mediated decay. Indeed, there is evidence that
nonsense-mediated decay occurs on following −1 frameshifts
on poly(A) containing reporters in human cells (14, 66).
Additionally, the −1 movement is quite slow (longer than
1 min), giving time for ribosome collisions to occur and a
cotranslational quality control mechanism targeting the stalled
ribosome complex to be activated (67–69). Together, this work
quantitatively describes how the ribosome translates mRNAs
containing poly(A) regions and reveals the important contri-
butions of tRNA–mRNA interactions to ribosome slowing
during cationic peptide. Our results suggest that post-
transcriptional mRNA modifications may provide cells with a
previously unrecognized avenue to ensure that the ribosome
remains in the correct mRNA reading frame during the
translation of slippery sequences.
Experimental procedures

In vitro translation assays

70S ICs were prepared using E. coli ribosomes programmed
with various mRNAs and f-[35S]-Met-tRNAMet in the P site
J. Biol. Chem. (2022) 298(6) 102039 7
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(70). Translation was initiated by mixing equal volumes of TC
(20–60 μM aatRNA(s), 24 μM EF-G, 60 μM EF-Tu) with ICs
(140 nM) in 219-Tris buffer (50 mM Tris pH 7.5, 70 mM
NH4Cl, 30 mM KCl, 7 mM MgCl2, and 5 mM βME). All
initiation factors (IF-1, IF-2, and IF-3) and translation factors
(EF-Tu and EF-G) used were His-tag purified from E. coli
using plasmids available from AddGene (26). The reactions
were quenched with equal volume of 1 M KOH at discrete
time points (0 s–20 min) by hand (5 s–20 min) or using a
KinTek RQF-3 quench flow apparatus (0.001–5 s) (71). Each
sample was diluted 1:10 in nuclease-free water, and the
reactants, intermediates, and products were separated by
eTLC, visualized by phosphorimaging, and quantified with
ImageQuant (Cytiva Life Sciences) as previously described
(26). Depending on the expected peptide products, eTLCs
were run in different running buffer conditions to improve
separation (26). eTLCs analyzing peptides containing one or
more lysines were run in pyridine acetate buffer, pH 2.8, while
eTLCs separating peptides with valine (but no lysine) were run
in pyridine acetate buffer, pH 5.2. For m6A studies in this
work, all m6A mRNA constructs were purchased from Dhar-
macon, Horizon Discovery.

tRNA aminoacylation by synthetases and flexizyme

tRNAs used in experiments were either transcribed with T7
polymerase or were overexpressed and purified from using a
pCWAug vector. tRNAs were then aminoacylated using either
purified bacterial lysine aatRNA synthetase (LysRS) or mis-
acylated using the dFx flexizyme as described previously (37,
72). In the case of native tRNAN

Lys, a pUC57 plasmid con-
taining the E. coli tRNAN

Lys
UUU sequence for study was

transformed in HB101 cells. These were then grown, purified,
and tRNA deacylated for use in synthetase and flexizyme
aminoacylation assays, as described previously (26). All other
T7 transcribed tRNAs used in this study were aminoacylated
using their cognate aatRNA synthetase (AsnRS, IleRS, PheRS,
SerRS, and ValRS) and were His-tag purified from E. coli using
plasmids available from AddGene (26). E. coli tRNAN

fMet was
natively purified from a pCWAug vector and methionine was
formylated and installed on tRNAN

fMet using MTF and MetRS
enzymes, which were His-tag purified from E. coli using
plasmids available from AddGene (26, 73).

Global analysis simulations of amino acid addition

The reactions used to fit and model our data are displayed in
Fig. S3. The fits used to obtain k1 and k2 were modeled using
differential equations in Kaleidagraph. Subsequent rate con-
stants (k3+) were modeled against simulations using KinTek
Explorer. Simulations in KinTek Explorer were run against
different potential mechanisms of ribosome sliding (Fig. S3)
using data from quantified peptide formation.

Homopolymeric A sequences in human coding sequences

Homo sapiens genome assembly GRCh37 (hg19 release
75, cds.fa) data were used to identify the consecutive A’s
in human coding sequences. Consecutive A’s were counted
8 J. Biol. Chem. (2022) 298(6) 102039
using in-house R scripts. Then, we analyzed single
nucleotide resolution m6A mapping studies in different
tissues (45, 46) to find out whether any of these consec-
utive A’s have at least one installed m6A modification.
This analysis yielded m6A frequencies that were reported
in Table S5.
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