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abstract

PURPOSE The advancement of natural language processing (NLP) has promoted the use of detailed textual data
in electronic health records (EHRs) to support cancer research and to facilitate patient care. In this review, we
aim to assess EHR for cancer research and patient care by using the Minimal Common Oncology Data Elements
(mCODE), which is a community-driven effort to define a minimal set of data elements for cancer research and
practice. Specifically, we aim to assess the alignment of NLP-extracted data elements with mCODE and review
existing NLP methodologies for extracting said data elements.

METHODS Published literature studies were searched to retrieve cancer-related NLP articles that were written in
English and published between January 2010 and September 2020 from main literature databases. After the
retrieval, articles with EHRs as the data source were manually identified. A charting form was developed for
relevant study analysis and used to categorize data including four main topics: metadata, EHR data and targeted
cancer types, NLP methodology, and oncology data elements and standards.

RESULTS A total of 123 publications were selected finally and included in our analysis. We found that cancer
research and patient care require some data elements beyond mCODE as expected. Transparency and
reproductivity are not sufficient in NLP methods, and inconsistency in NLP evaluation exists.

CONCLUSION We conducted a comprehensive review of cancer NLP for research and patient care using EHRs
data. Issues and barriers for wide adoption of cancer NLP were identified and discussed.
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INTRODUCTION

As a real-world data source, electronic health records
(EHRs) have the potential to provide the comprehensive
and relatively timely clinical information necessary to fa-
cilitate cancer research and patient care. One of themajor
challenges associatedwith the use of EHRdata for cancer
research and patient care is data quality.1While ideally, all
data elements necessary for cancer research and patient
care purposes would be rendered accessible in a
structured and standardized manner such that no ad-
ditional efforts would be required to make use of the
information contained therein, such is unfortunately not
currently the case. For many current usages in so far as
cancer research and patient care, the structured data
provisioned as part of many popular EHR systems are
considered to be incomplete2 in that it is limited to specific
subsets of clinical data, such as billing codes, and lab-
oratory tests. Some data critical for cancer research and
patient caremay be recorded only in unstructured text, for

example, whether and when a cancer improves or
worsens after a given therapy.3 Advancement in natural
language processing (NLP) techniques has promoted the
usage of clinical information extraction (IE) from un-
structured texts to help supplement this information
gap,4,5 and consequently, the application of NLP in
cancer domain has also been increasing.

To gain an understanding of the gaps and opportunities of
NLP in EHR for cancer research and patient care, we
conducted a scoping review of literature relevant to
cancerNLP in EHR.Wehypothesize that the need of NLP
solutions to extract data elements reflects critical infor-
mation not captured by structured EHR, and the readi-
ness of NLP for extracting those data elements highly
depends on the performance of NLP methodology in-
volving many aspects including NLP tools, methods,
evaluation, and reproducibility. Data elements defined as
part of the Minimal Common Oncology Data Elements
(mCODE) standard are used as a proxy for data elements
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that would be important for cancer research and patient care.6

The mCODE data standard was initiated from 2018 by ASCO,
other founding collaborators, and a group of collaborators,
including oncologists, informaticians, researchers, and experts
in terminologies and standards, to develop and maintain
standard computable oncology data formats in EHR for cancer
research andpractice. The finalmCODEdata standard (version
1.0) included six primary groups (domains): patient, disease,
laboratory/vital, genomics, treatment, and outcome. Each do-
main is organized into several concepts, which then have
associated data elements. These concepts are referred to as
profiles. In total, 23 profiles exist across mCODE’s six primary
domains (Appendix Table A1). These data elements are linked
to standard coding systems such as American Joint Committee
on Cancer,7 ClinVar,8 International Classification of Diseases
(10th revision), and Clinical Modification.9

Some prior work exists. In 2016, Yim et al conducted a
similar literature review,10 providing an introduction to NLP
and its potential applications in oncology, describing specific
tools available, and summarizing on the state of the current
technology with respect to cancer case identification,
staging, and outcomes quantification. Similarly, in 2019,
Datta et al conducted a scoping review of clinical NLP lit-
erature extracting information from cancer-related EHR
notes according to frame semantic principles.11 They cre-
ated frames from the reviewed articles pertaining to cancer
information such as cancer diagnosis, tumor description,
cancer procedure, breast cancer diagnosis, prostate cancer
diagnosis, and pain in patients with prostate cancer. This
review paper emphasized data model construction. Another
relevant work reviewed the major NLP algorithmic advances
and cancer NLP application developments over 3 years
since 2016, summarizing the main trends of clinical cancer
phenotype extraction from EHRs.12

In our scoping review, we focus on (1) presenting all the
efforts using NLP in extracting cancer information as an
end point or intermedium step and aligning them to
mCODE, that is, the new data standard for oncology domain
and (2) categorizing them based on NLP methodology.

METHODS

This scoping review was performed based on the following
five stages of the framework from Arksey and O’Malley.13

Identifying the Research Question

In this scoping review, we aim to assess the alignment of NLP-
extracted data elements withmCODE and review existing NLP
methodologies for extracting said data elements.

Identifying Relevant Studies

We included articles to a 10-year period from January 1,
2010, to September 4, 2020. Only studies written in English
were considered. Literature databases surveyed included
Ovid MEDLINE(R) and Epub Ahead of Print, In-Process &
Other Non-Indexed Citations, and Daily; Ovid Embase; Ovid
Cochrane Central Register of Controlled Trials; Ovid
Cochrane Database of Systematic Reviews; Scopus; and
Web of Science. The search strategy for articles using NLP in
cancer domain was designed and conducted by an expe-
rienced librarian (Larry J. Prokop). A detailed description of
the search strategies used is provided in Appendix 1.

Study Selection

All the titles and abstracts after deduplication were
screened, and the publications were included if

1. NLP was conducted for cancer, as defined below.
a. The NLP involved could be used either as an end

product or an inter-medium step for other down-
stream analytics.

b. The NLP was cancer related.
2. EHR-sourced textual data in English were used as data

source.

We excluded publications if they were

1. Not written in English.
2. Retrieved by irrelevant term matching.
3. Using non-EHR data sources such as literature, web

resources, knowledge bases, clinical trials, and clinical
guidelines.

4. Not using English EHR data.
5. Review papers/letters.

CONTEXT

Key Objective
To assess electronic health record (EHR) for cancer research and patient care through assessing the coverage of natural

language processing (NLP)–derived data elements by the Minimal Common Oncology Data Elements and reviewing
existing NLP methodologies for data extraction.

Knowledge Generated
A comprehensive review of cancer NLP for research and patient care using EHRs data extraction was conducted. Issues and

barriers for wide adoption of cancer NLP were identified and discussed.
Relevance
Overcoming the identified issues and barriers will improve the readiness of EHRs for cancer research and patient care, thus

propelling translational clinical research and care.
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Charting the Relevant Studies

A standardized charting form was established to synthetize
relevant publications. The information of interest can be
categorized into four main sections: metadata, EHR data
and targeted cancer types, oncology data elements and
standards, and NLP methodology.

The Metadata section consisted of publication year; publi-
cation domain; major country of authors (first/senior author);
types of author’s organizations; themain study aim, defined as
one of research and patient care, of the article; and the NLP
study aim. The NLP study aim was classified into two groups:

IE as an end point and IE as the input for machine learning.
The research aim and patient care aim were further sub-
categorized, and more details are presented in Figure 1C.

The EHRData and Targeted Cancer Types section aimed to
summarize information including the targeted cancer types
of the article, data time frame, and document types (eg,
clinical notes, pathology report, and radiology reports). We
defined the targeted cancer types using the ultimate cancer
type around which the study was focused, for example, if
the study focused on lung nodules but the aim of this study
was to screen lung cancer, then we charted the targeted
cancer type as lung cancer.
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FIG 1. Synthetic analysis for mCODE and NLPmethodology. (A) Distribution of data elements covered by mCODE. (B) Clustering visualization of the mCODE
profiles and standardized terminologies. (C) Synthetic analysis for NLPmethods, study aim, and evaluation level. AJCC, American Joint Committee on Cancer;
BI-RADS, Breast Imaging Reporting and Data System; CDS, clinical decision support; ECOG, Eastern Cooperative Oncology Group; HPO, Human Phenotype
Ontology; ICD-9, International Classification of Diseases (9th revision); IE, information extraction;mCODE,Minimal CommonOncologyData Elements;MPATH-
Dx,Melanocytic Pathology Assessment Tool andHierarchy for Diagnosis; NCI, National Cancer Institute; NLP, natural language processing; RadLex, Radiology
Lexicon; RxNorm, no full name; UMLS, Unified Medical Language System.
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In summarizing oncology data elements and standards, we
aggregated NLP-extracted data elements based on the 23
profiles presented in Appendix Table A1. Additionally, we also
examined the standardized terminology used for any nor-
malization done of the NLP output for these data elements.

In the NLP methodology section, we described the most
frequently used NLP tools, frameworks, or toolkits and
cancer-specific NLP tools. In addition, we also analyzed
NLP methods, the evaluation environment, performance
metrics used, NLP methods evaluation granularity, and the
study’s reproducibility and rigor of evaluation.

NLP methods were categorized into one of six groups: rule-
based, machine learning, deep learning, hybrid (one model
with different approaches, eg, rules and machine learning),
more than one (multiple models), and unspecified. Eval-
uation granularities included mention level, sentence level,
document level, patient level, multiple levels, previously
reported, and unknown.

To understand the study’s evaluation scope (internal v
external), we categorized the evaluation environment into
one of the following groups: single center, multiple centers,
Veterans Affairs, benchmark data set, single center and
benchmark, no evaluation, and unspecified.

In many NLP studies, trust and adoption of any study
outcomes are dependent on the validity and reproducibility
of the NLP methods used. As such, in this review, we
assessed the reporting patterns for NLP methods and
evaluation methodologies. We first examine the repro-
ducibility of NLP methods by evaluating code sharing, a
crucial component of transparent and reproducible NLP
research14 (Table 1). To assess the rigor of evaluation, we
considered four major evaluation best practices5 (Table 1).
Specifically, each publication is defaulted to have a score
of 4, from which 1 point is subtracted whenever one of the
criteria is met. Therefore, the maximum score for rigor of
evaluation is 4 while the minimum is 0.

Each reviewer is responsible for charting 2-4 aspects and
checking the charting quality of other reviewers by

randomly sampling 10% of the data in the easily charted
case or otherwise fully reviewing all data. When charting
results disagreed between individual reviewers, reviewers
met to resolve uncertainties.

Collating, Summarizing, and Reporting the Results

The results from the data charting were summarized, an-
alyzed, and visualized both within and across the sections
to present an overview of the scope of the application of
NLP in cancer domain.

RESULTS

Figure 2 shows the article selection process. Finally, a
comprehensive full-text review of the resulting 123 studies
was performed by the study team. All data extractions from
the articles (charting items) are presented in the Data
Supplement.

Metadata

Figure 3A presents the distribution of articles, stratified by
study aim and year, showing an increase in research in-
terest for NLP in cancer. As shown in the author-country
distribution depicted in Figure 3C, 111 articles (90%) had
major authors from the United States while six (5%) had
major authors from Australia. Figure 3B shows the distri-
bution of articles according to the organization categories of
the respective authors. In terms of publication venue,
medical informatics or medical journals were the main
venues for related studies, as shown in Figure 3D. In ad-
dition, NLP was used for IE as an end point in 101 articles
and as machine learning input in 22 articles.

EHR Data and Targeted Cancer Types

Document types. Of the reviewed studies (Fig 3G),
58 (47%) studies extracted information from pathol-
ogy reports,15-72 43 (35%) studies from clinical
notes,3,20,28,30,35,36,46,61,64,65,70,72-103 and 41 (33%) studies
from radiology reports.20,36-38,43,46,48,52,61,62,70,76,89,104-131 As
various document types could be used for one study,
document type numbers in each article were further an-
alyzed (Fig 3H).

Targeted cancer types. The cancer types of interest for our
reviewed studies were scattered across a wide spectrum,
and significant variability was present in the number of
articles for each cancer type of interest (Fig 3E). Of note, a
single study may involve multiple cancer types. Among the
22 cancer types specified across all reviewed articles,
breast cancer was the most intensively studied, being the
primary cancer type of interest for 29 articles (24%), fol-
lowed by prostate, colorectal, and lung cancers at 19
(15%), 15 (12%), and 15 (12%), respectively.

A clustering can be visualized for the document types and
targeted cancer types (Appendix Fig A1). Pathology re-
ports, clinical notes, and radiology reports were the major
data sources for extracting information related to breast,

TABLE 1. Definitions for Assessing Reporting and Evaluation Methods
Reproducibility of NLP
Methods

Rigor
of Evaluation Methods

Level 1: Source code not available, not
replicable

Level 2: Source code not available,
experimental procedure replicable
but individual components may
differ (eg, tokenization and sentence
parsing were done but method used
not specified)

Level 3: Code available

1. Evaluation description unclear/not
present, for example, no description
of study cohort, data collection, and
annotation process, definition of
eligibility criteria and data sources

2. Evaluation narrow/not
comprehensive, small n

3. Evaluation design unclear (training,
test)

4. Lack of evaluation rigor, for example,
no mention of quality control
(training, measuring inter-rater
reliability, adjudication, etc)

Abbreviation: NLP, natural language processing.

4 © 2022 by American Society of Clinical Oncology

Wang et al



lung, liver, prostate, colorectal, brain, pancreatic, mela-
noma, head, and neck cancers.

Data time frame. In terms of the time frame of the data used
for NLP, we calculated the age in years of the data used
after excluding 33 studies that did not specify a data time
frame. Before the 10-year mark, the number of studies
increased as data age increased. Conversely, past the
10-year mark, the number of studies decreased as data age
increased. We hypothesize that this trend may reflect the
availability of EHR data (Fig 3J).

Oncology Data Elements and Standards

We first analyzed the 106 articles extracting data elements
that can be mapped to a mCODE (Fig 1A). The distribution
of data elements extracted was imbalanced across all six
mCODE groups, with coverage extending to 12 of the 23
mCODE profiles (Appendix Table A1). Note that there are
31 articles extracting data elements corresponding to more
than one mCODE group.

The most studied mCODE group was disease with 84
unique studies, associated with mCODE profiles of primary
cancer condition, secondary cancer condition, TNM clin-
ical stage group, and TNM pathologic stage group (Fig 1A).
Our review revealed that most studies recorded no obvious
differentiation between clinical and pathologic staging, and
it was therefore difficult to categorize studies under these
profiles as mCODE requires. As such, TNM staging was
labeled as not clear under the disease group. In addition,
those data elements without clear indications as to the
primary cancer or secondary cancer conditions involved
were similarly labeled as not clear. The second most
studied mCODE group was treatment with 16 unique
studies, followed by the patient, outcome, genomics, and
laboratory/vital groups with 8, 6, 4, and 3 corresponding
studies, respectively.

There are 20 articles extracting data elements not covered
by mCODE. Table 2 presents the statistics of these data
elements. Certain cancer screening criteria and social
determinants of health were the two areas with data ele-
ments outside of mCODE’s scope. For those 20 articles,
only five used standard terminologies to code NLP output,
including the Thyroid Imaging Reporting & Data System 131

and the Unified Medical Language System.54,90,100,102

About one third of the studies (43 of 123) adopted standard
terminologies to normalize NLP output. Appendix Figure A2
shows a comparison between the reviewed articles and
mCODE regarding adopted standard terminologies.

Figure 1B shows the clustering visualization of the mCODE
profiles and standardized terminologies. A significant
portion of reviewed studies failed to adopt standards for
NLP output, while those profiles under the disease group
were the major mCODE profiles normalized. The Unified
Medical Language System covered the most profiles, fol-
lowed by SNOMED.

NLP Methodology

NLP tools. Table 3 presents cancer-specific NLP tools, and
the most frequently used general NLP tools, frameworks, or
toolkits, which are consistent with our previous review.4,5

NLP methods and synthetic analysis. Appendix Figure A3
shows the changing trend of various NLPmethods over time
and the total number for eachmethod. Rule-basedmethods
are currently predominant. There is, however, an increasing
trend in adoption of machine learning and hybrid methods.
Despite the recently increasing adoption of deep learning
methods132 for NLP in the general domain, a delay of such
application in the cancer domain can be observed.

To delineate the association among the charted items, we
conducted a synthetic analysis for NLP methods, study aim
of the article, and evaluation level (Fig 1C).
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Evaluation setting. Among the total 123 articles, 86 (70%)
articles conducted the NLP evaluation in a single-site
environment, 14 (11%) articles conducted a multisite
evaluation, two (2%) studies used an external benchmark
data set (eg, i2b2 shared task, Medical Information Mart for
Intensive Care database), and four (3%) studies were
based on VA data. In addition, 10 (8%) studies did not
specify an evaluation environment, and seven (6%) studies
did not report evaluation details.

Performance metrics. A variety of metrics were used to
evaluate NLP methods (Fig 3F). The lack of consistency in
performance evaluation makes cross-comparison of NLP
systems difficult. Among the 35 articles reporting no
evaluation metrics of NLP methods, 20 articles had the
study aim for research, accounting for 21% of articles for
research, and 15 were for patient care, accounting for 56%
of this category (Fig 3I). In general, articles for research
purpose reported more NLP evaluation metrics compared
with those for patient care (Fig 3I).

Reproducibility and evaluation rigor. For the ability to rep-
licate NLP methods, there were 78 articles (63%) in level 1.
Level 2 contained 35 articles (28%), and level 3 had only 10
articles (8%). For the evaluation rigor of NLP methods in
each study (defined in Table 1), 21 (17%) articles were rated
as 0, 24 (20%) articles rated as 1, 32 (26%) rated as 2, 41
(34%) rated as 3, and five (4%) rated as 4.

DISCUSSION

The rapid growth of dense longitudinal EHR data sets
provides substantial opportunities for the application of
NLP in the cancer domain in recent years, as evidenced by
the increased article count. It is extremely encouraging to
see a jump of the NLP applications with a patient care (as
opposed to research) focus in 2020 (12 articles). This
growth reflects the value of NLP for clinical practice as NLP
becomes more accessible. In the meanwhile, issues and
barriers for wide adoption of cancer NLP were identified
and discussed as follows.

NLP-targeted cancer types have covered most of the
common cancer types collected by Cancer Stat Facts of the
National Cancer Institute.133 Cancer is highly complex and
diverse; consequently, cancer research and patient care
require diverse types of data, which can be reflected in our
document type summary (Fig 3G).

The high utilization of NLP to extract information from
pathology reports, clinical notes, and radiology reports
demonstrates that important data elements for cancer
research and patient care were embedded in text. Even
with the ongoing efforts of standardizing pathology and
radiology reporting,134,135 the actual implementations seem
to be insufficient.

mCODE is a current standard for EHR data to represent
essential clinical elements for cancer patients, benefiting
both oncology researchers and providers. We observed an

imbalanced distribution across the six mCODE groups.
Some groups, that is, the genomics group (four studies) and
the laboratory/vital group (three studies), primarily come
from structured data, thus less involved. Nevertheless, from
the perspective of precision oncology and given that ge-
nomic data created through molecular diagnostics and
treatment have been increasingly accumulated in EHR,
tackling genomic data extraction from text could greatly
advance the efficient secondary use of EHRs. In the
meanwhile, aligning the standardized terminologies for
data elements to mCODEs, for example, International
Classification of Diseases for Oncology, American Joint
Committee on Cancer, and ClinVar, is also important.

NLP for the outcome group (six studies) was under explored
probably because of the intrinsic challenge of cancer disease
status assessment as it mostly relies on clinicians’ qualitative
judgment on the current trend of the cancer. The judgment
can be based on a single type or multiple kinds of evidence,
such as imaging data, assessment of symptoms, tumor
markers, and laboratory data, at a given time. Among those
six studies, a study by Lee et al104 proposed a scalable NLP
pipeline that was capable of inferring Brain Tumor Reporting
and Data System report scores. In the study by Sevenster
et al, measurements used to synthesize treatment response
status were extracted and paired across consecutive free-
text computed tomography reports.125 Clinically relevant
outcomes can be extracted by NLP methods based on rules
andmachine learning130 as well as deepNLPmodels113 from
radiologic reports. The codependent effects of NLP and
machine learning in categorizing cancer disease status were
investigated in computed tomography and magnetic reso-
nance imaging reports.117 Those studies focused on radi-
ology reports which are ubiquitous and central to
ascertainment of cancer disease status. However, additional
information relevant to cancer status cannot be captured in
radiology reports, such as laboratory results. The only study
that did not use radiology reports applied deep NLPmodels to
extract meaningful outcomes from clinical progress notes.3

Owing to the complexity of cancer disease status assess-
ment, current EHR recording practice does not favor a
seamless outcome assessment. For example, there is
generally not a mechanism to input the staging information
into the radiation oncology EHR or link metastatic sites to
the original diagnosis, which are usually of interest for
outcome analyses.136 Moreover, oncologists sometimes
have irreducible uncertainty about whether the cancer is
responding or progressing when a clinical note is filed.3 In
addition, recorded cancer disease statuses may be time
varying resulting in multiple instances of outcomes, which
poses additional challenges for outcome extraction. For
such mCODE data element as cancer disease status
without a discrete data field in EHR, we believe NLP could
play the most important role in extracting and structuring it.

Our review does indicate that some critical information
elements covered by mCODE and needed for cancer
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research and patient care are not currently captured as
part of structured EHR data. Since mCODE is used only for
minimal critical oncology specialty information, it is as
expected that those data elements extracted by NLP but
not covered by mCODE are also important for cancer re-
search and patient care, ie, cancer screening such as lung
nodule screening and social determinants of health such
as family history and smoking. This implies a great op-
portunity for improving structured data capture in EHRs to
improve the readiness of EHRs for cancer research and
patient care.

Recently, US Food and Drug Administration published a
guidance for assessing EHRs and medical claims data to

support regulatory decision making for drug and biological
products, which also provides insightful and sharable
recommendations for real-world data applications in other
domains. For AI methods extracting data elements from
unstructured data, it recommended to specify methods,
tools, data sources, and the metrics associated with vali-
dation of the methods. Although the ability to replicate NLP
methods was not mentioned in the US Food and Drug
Administration guidance, we consider it a crucial factor that
affects the adoption of NLP methods in the cancer domain.
Unfortunately, our review revealed that more than half of
the surveyed articles failed to provide either the source
code or sufficient detail in the methodology to fully replicate
the developed NLP systems, indicating a poor reporting
practice in the domain.

Transparency and sharing contribute to assessment of
research reproducibility, robustness, and replicability.
Guidance on code sharing aligned with a specific study aim
would be helpful to support transparency and reproduc-
ibility that would then strengthen the credibility of NLP
results and promote downstream patient care leveraging
NLP results.

For studies reporting no evaluation metrics for NLP
methods, reasons that justify no assessment include that
NLP evaluation has been reported in a previous publication
or that NLP was simply used as an intermediate feature
extraction step that feeds into a downstream machine
learning algorithm that was itself evaluated. Although most
studies reportedmetrics for NLPmethods, reportedmetrics
were not consistent across all studies, but rather study
dependent, even for those with the same study aim.

Most studies inherited traditional and typical NLP study
paradigms, focusing on mention-level, sentence-level, or
document-level evaluations using a benchmark data set.
Patient-level evaluation was relatively sparsely used (20
articles), and such an alignment to real-world clinical
settings was very seldom seen. A considerable number of
studies assigned with not clear evaluation level were
extracting data elements from pathology reports. Without
pondering that potential conflicting information could be
reported for a single patient through multiple text reports,
the evaluation level was failed to be clarified in these
studies. There is certainly a need to evaluate NLP methods
to an extent where the true level of complexity of clinical
EHR data could be reflected following a scientific and
rigorous evaluation process,137 thus propelling the trans-
lation to clinical application.

Although NLP solutions can be potentially leveraged for
large-scale IE, single-site studies are still predominant
among current cancer NLP research. We acknowledge the
potential barriers of multisite cancer NLP research such as
complex concept definitions requiring extensive effort for
participating sites to reach consensus and variations in
clinical documentation patterns and data infrastructures

TABLE 2. Distribution of Data Elements Not Covered by mCODE

Application
Areas Data Elements

No. of
Articles

No. of
Articles
(in total)

Cancer
screening

Colonoscopy/
polyps16,40,53,54,60,66,100,102

8 15

Pancreatic cysts46,99 2

Digital rectal examination for
prostate cancer83,91

2

Follow-up recommendations105 1

Lung nodule129 1

Thyroid nodule131 1

Social
determinants
of health

Smoking94 1 3

Social isolation90 1

Family history96 1

Others Test101 1 2

Age of onset and death in
family history88

1

Abbreviation: mCODE, Minimal Common Oncology Data Elements.

TABLE 3. General and Specific NLP Tools, Frameworks, and Toolkits
Category Name No. of Papers

General NLP tools, frameworks,
and toolkits

cTAKES40,43,44,53-55,86,97-99,131 11

NLTK74,77,104,106,110-112,124 8

UIMA22,42,46,96,121 5

MedTagger28,72,91,94 4

MetaMap34,48,93,126 4

Cancer-specific NLP tools TIES NLP system18,41,63 3

DeepPhe38,82 2

PEP49 1

BROK128 1

The MOTTE37 1

Clamp cancer module26 1

Abbreviations: BI-RADS,Breast ImagingReporting andDataSystem;BROK,BI-RADS
observation kit; MOTTE, methodist hospital text teaser; NLP, natural language processing;
NLTK, natural language toolkit; PEP, pathology extraction pipeline; TIES, text information
extraction system; UIMA, Unstructured Information Management Architecture.

8 © 2022 by American Society of Clinical Oncology

Wang et al



(eg, different extract, transform, and load processes)
hampering cross-institutional experimentation. Regardless,
we observed that 11% of studies surveyed involved more
than one EHR in the study, demonstrating the feasibility of
multi-institutional NLP efforts in cancer research and care.

There exist some limitations in our study. First, this review
may be biased due to the potential of missing relevant
articles caused by search strings and databases selected.

Second, we only included articles written in English with the
focus on using NLP in cancer EHR. Articles written in other
languages would also provide valuable information. Third,
our review did not include methods based on non-English
EHRs. Finally, our study may also suffer the inherent
ambiguity associated with data element collection, nor-
malization, and analysis due to subjectivity introduced in
the review process.
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APPENDIX 1. SEARCH STRATEGIES

Ovid

Database(s): EBM Reviews—Cochrane Central Register of Controlled
Trials August 2020, EBM Reviews—Cochrane Database of Systematic
Reviews 2005 to September 3, 2020, Embase 1974 to 2020 Sep-
tember 4, Ovid MEDLINE(R) and Epub Ahead of Print, In-Process &
Other Non-Indexed Citations and Daily 1946 to September 4, 2020.

Search Strategy

No. Searches Results

1 exp Natural Language Processing/ 9,794

2 (“coreference resolution” or “co-reference
resolution” or “information extraction” or
“named entity extraction” or “named entity
recognition” or “natural language
processing” or NLP or “relation extraction”
or “text mining”).ti,ab,hw,kw.

14,976

3 1 or 2 14,976

4 exp neoplasms/ 7,921,733

5 exp Medical Oncology/ 191,672

6 ((hodgkin* adj1 disease) or adenocarcinoma*
or adenoma* or anticarcinogen* or
Astrocytoma* or blastoma* or burkitt* or
cancer* or carcinogen* or carcinoid* or
carcinom* or carcinosarcoma* or
chordoma* or “Chronic Myeloproliferative
Disorder*” or craniopharyngioma* or
ependymoma* or Esthesioneuroblastoma*
or germinoma* or “gestational trophoblastic
disease*” or Glioblastoma* or glioma* or
gonadoblastoma* or hepatoblastoma* or
histeocytoma* or histiocytoma* or
histiocytos* or leukaemi* or leukemi* or
lymphangioma* or lymphangiomyoma* or
lymphangiosarcoma* or lymphom* or
Macroglobulinemia* or malignan* or
melanom* or meningioma* or
mesenchymoma* or mesonephroma* or
Mesothelioma* or metasta* or “multiple
myeloma*” or “Mycosis Fungoide*” or
neoplas* or neuroblastoma* or neuroma* or
nonmelanoma* or nsclc or oncogen* or
oncolog* or ostesarcoma* or Papillomatos*
or paraganglioma* or paraneoplas* or
pheochromocytoma* or plasmacytoma* or
precancerous or retinoblastoma* or
Rhabdomyosarcoma* or sarcoma* or
“section 16” or “Szary Syndrome*” or
teratocarcinoma* or teratoma* or tumor* or
tumour*).ti,ab,hw,kw.

10,960,738

7 4 or 5 or 6 11,269,350

8 3 and 7 1801

9 (exp animals/or exp nonhuman/) not exp
humans/

11,156,069

(Continued in next column)

(Continued)
No. Searches Results

10 ((alpaca or alpacas or amphibian or
amphibians or animal or animals or antelope
or armadillo or armadillos or avian or baboon
or baboons or beagle or beagles or bee or
bees or bird or birds or bison or bovine or
buffalo or buffaloes or buffalos or “c
elegans” or “Caenorhabditis elegans” or
camel or camels or canine or canines or
carp or cats or cattle or chick or chicken or
chickens or chicks or chimp or chimpanze
or chimpanzees or chimps or cow or cows or
“D melanogaster” or “dairy calf” or “dairy
calves” or deer or dog or dogs or donkey or
donkeys or drosophila or “Drosophila
melanogaster” or duck or duckling or
ducklings or ducks or equid or equids or
equine or equines or feline or felines or ferret
or ferrets or finch or finches or fish or
flatworm or flatworms or fox or foxes or frog
or frogs or “fruit flies” or “fruit fly” or “G
mellonella” or “Galleria mellonella” or geese
or gerbil or gerbils or goat or goats or goose
or gorilla or gorillas or hamster or hamsters
or hare or hares or heifer or heifers or horse
or horses or insect or insects or jellyfish or
kangaroo or kangaroos or kitten or kittens or
lagomorph or lagomorphs or lamb or lambs
or llama or llamas or macaque or macaques
or macaw or macaws or marmoset or
marmosets or mice or minipig or minipigs or
mink or minks or monkey or monkeys or
mouse or mule or mules or nematode or
nematodes or octopus or octopuses or
orangutan or “orang-utan” or orangutans or
“orang-utans” or oxen or parrot or parrots or
pig or pigeon or pigeons or piglet or piglets or
pigs or porcine or primate or primates or
quail or rabbit or rabbits or rat or rats or
reptile or reptiles or rodent or rodents or
ruminant or ruminants or salmon or sheep
or shrimp or slug or slugs or swine or tamarin
or tamarins or toad or toads or trout or urchin
or urchins or vole or voles or waxworm or
waxworms or worm or worms or xenopus or
“zebra fish” or zebrafish) not (human or
humans or patient or patients)).ti,ab,hw,kw.

9,608,843

11 8 not (9 or 10) 1,748

12 limit 11 to (editorial or erratum or note or
addresses or autobiography or bibliography
or biography or blogs or comment or
dictionary or directory or interactive tutorial
or interview or lectures or legal cases or
legislation or news or newspaper article or
overall or patient education handout or
periodical index or portraits or published
erratum or video-audio media or webcasts)
[Limit not valid in CCTR, CDSR, Embase,
Ovid MEDLINE(R), Ovid MEDLINE(R) Daily
Update, Ovid MEDLINE(R) In-Process,Ovid
MEDLINE(R) Publisher; records were
retained]

32

13 11 not 12 1,716

14 remove duplicates from 13 1,180
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Scopus

1. TITLE-ABS-KEY(“coreference resolution” OR “co-reference res-
olution”OR “information extraction”OR “named entity extraction”
OR “named entity recognition” OR “natural language processing”
OR NLP OR “relation extraction” OR “text mining”)

2. TITLE-ABS-KEY((hodgkin* W/1 disease) or adenocarcinoma* or
adenoma* or anticarcinogen* or Astrocytoma* or blastoma* or
burkitt* or cancer* or carcinogen* or carcinoid* or carcinom* or
carcinosarcoma* or chordoma* or “Chronic Myeloproliferative Dis-
order*” or craniopharyngioma* or ependymoma* or Esthesioneur-
oblastoma* or germinoma* or “gestational trophoblastic disease*” or
Glioblastoma* or glioma* or gonadoblastoma* or hepatoblastoma* or
histeocytoma* or histiocytoma* or histiocytos* or leukaemi* or leu-
kemi* or lymphangioma* or lymphangiomyoma* or lymphangio-
sarcoma* or lymphom* or Macroglobulinemia* or malignan* or
melanom* ormeningioma* ormesenchymoma* ormesonephroma*
or Mesothelioma* or metasta* or “multiple myeloma*” or “Mycosis
Fungoide*” or neoplas* or neuroblastoma* or neuroma* or non-
melanoma* or nsclc or oncogen* or oncolog* or ostesarcoma* or
Papillomatos* or paraganglioma* or paraneoplas* or pheochromo-
cytoma* or plasmacytoma* or precancerous or retinoblastoma* or
Rhabdomyosarcoma* or Sarcoma* or “section 16” or “Szary Syn-
drome*” or teratocarcinoma* or teratoma* or tumor* or tumor*)

3. LANGUAGE(english)

4. 1 and 2 and 3

5. TITLE-ABS-KEY((alpaca OR alpacas OR amphibian OR am-
phibians OR animal OR animals OR antelope OR armadillo OR
armadillos OR avian OR baboon OR baboons OR beagle OR
beagles OR bee OR bees OR bird OR birds OR bison OR bovine
OR buffalo OR buffaloes OR buffalos OR “c elegans” OR “Cae-
norhabditis elegans”OR camel OR camels OR canine OR canines
OR carp OR cats OR cattle OR chick OR chicken OR chickens OR
chicks OR chimp OR chimpanze OR chimpanzees OR chimps OR
cow OR cows OR “D melanogaster” OR “dairy calf” OR “dairy
calves” OR deer OR dog OR dogs OR donkey OR donkeys OR
drosophila OR “Drosophila melanogaster” OR duck OR duckling
OR ducklings OR ducks OR equid OR equids OR equine OR
equines OR feline OR felines OR ferret OR ferrets OR finch OR
finches OR fish OR flatworm OR flatworms OR fox OR foxes OR
frog OR frogs OR “fruit flies” OR “fruit fly” OR “G mellonella” OR
“Galleria mellonella” OR geese OR gerbil OR gerbils OR goat OR
goats OR goose OR gorilla OR gorillas OR hamster OR hamsters
OR hare OR hares OR heifer OR heifers OR horse OR horses OR
insect OR insects OR jellyfish OR kangaroo OR kangaroos OR
kitten OR kittens OR lagomorph OR lagomorphs OR lamb OR
lambs OR llama OR llamas OR macaque OR macaques OR
macaw OR macaws OR marmoset OR marmosets OR mice OR
minipig ORminipigs ORmink ORminks ORmonkey ORmonkeys
OR mouse OR mule OR mules OR nematode OR nematodes OR
octopus OR octopuses OR orangutan OR “orang-utan” OR
orangutans OR “orang-utans” OR oxen OR parrot OR parrots OR
pig OR pigeon OR pigeons OR piglet OR piglets OR pigs OR
porcine OR primate OR primates OR quail OR rabbit OR rabbits
OR rat OR rats OR reptile OR reptiles OR rodent OR rodents OR
ruminant OR ruminants OR salmon OR sheep OR shrimp OR slug
OR slugs OR swine OR tamarin OR tamarins OR toad OR toads OR
trout OR urchin OR urchins OR vole OR voles OR waxworm OR
waxworms OR worm OR worms OR xenopus OR “zebra fish” OR
zebrafish) AND NOT (human OR humans or patient or patients))

6. 4 and not 5

7. DOCTYPE(ed) OR DOCTYPE(bk) OR DOCTYPE(er) OR DOCTY-
PE(no) OR DOCTYPE(sh)

8. 6 and not 7

9. INDEX(embase) OR INDEX(medline) OR PMID(0* OR 1* OR 2*
OR 3* OR 4* OR 5* OR 6* OR 7* OR 8* OR 9*)

10. 8 and not 9

Web of Science

1. TOPIC: ((“coreference resolution” OR “co-reference resolution” OR
“information extraction”OR “named entity extraction” OR “named entity
recognition” OR “natural language processing” OR NLP OR “relation
extraction”OR “text mining”)) AND TOPIC: (((hodgkin* NEAR/1 disease)
or adenocarcinoma* or adenoma* or anticarcinogen* or Astrocytoma*
or blastoma* or burkitt* or cancer* or carcinogen* or carcinoid* or
carcinom* or carcinosarcoma* or chordoma* or “Chronic Myeloprolif-
erative Disorder*” or craniopharyngioma* or ependymoma* or Esthe-
sioneuroblastoma* or germinoma* or “gestational trophoblastic
disease*” or Glioblastoma* or glioma* or gonadoblastoma* or hepato-
blastoma*or histeocytoma*or histiocytoma*or histiocytos* or leukaemi*
or leukemi* or lymphangioma* or lymphangiomyoma* or lym-
phangiosarcoma* or lymphom* or Macroglobulinemia* or malignan* or
melanom* or meningioma* or mesenchymoma* or mesonephroma* or
Mesothelioma* or metasta* or “multiple myeloma*” or “Mycosis Fun-
goide*” or neoplas* or neuroblastoma* or neuroma* or nonmelanoma*
or nsclc or oncogen* or oncolog* or ostesarcoma* or Papillomatos* or
paraganglioma* or paraneoplas* or pheochromocytoma* or plasma-
cytoma* or precancerous or retinoblastoma* orRhabdomyosarcoma* or
Sarcoma* or “section 16” or “Szary Syndrome*” or teratocarcinoma* or
teratoma* or tumor* or tumour*)) AND LANGUAGE: (English) AND
DOCUMENTTYPES: (ArticleORAbstract of Published ItemORDataPaper
OR Letter OR Meeting Abstract OR Proceedings Paper OR Review OR
Software Review)Indexes = SCI-EXPANDED Timespan = All years

2. TS=((alpaca OR alpacas OR amphibian OR amphibians OR animal
OR animals OR antelope OR armadillo OR armadillos OR avian OR
baboon OR baboons OR beagle OR beagles OR bee ORbees OR bird
OR birds OR bison OR bovine OR buffalo OR buffaloes OR buffalos
OR “c elegans” OR “Caenorhabditis elegans” OR camel OR camels
OR canine OR canines OR carp OR cats OR cattle OR chick OR
chicken OR chickens OR chicks OR chimp OR chimpanze OR
chimpanzees OR chimps OR cow OR cows OR “Dmelanogaster”OR
“dairy calf” OR “dairy calves” OR deer OR dog OR dogs OR donkey
OR donkeys OR drosophila OR “Drosophila melanogaster” OR duck
OR duckling OR ducklings OR ducks OR equidOR equids OR equine
OR equines OR feline OR felines OR ferret OR ferrets OR finch OR
finches OR fish OR flatworm OR flatworms OR fox OR foxes OR frog
OR frogs OR “fruit flies” OR “fruit fly” OR “Gmellonella” OR “Galleria
mellonella” OR geese OR gerbil OR gerbils OR goat OR goats OR
goose OR gorilla OR gorillas OR hamster OR hamsters OR hare OR
hares OR heifer OR heifers OR horse OR horses OR insect OR insects
OR jellyfish OR kangaroo OR kangaroos OR kitten OR kittens OR
lagomorph OR lagomorphs OR lamb OR lambs OR llama OR llamas
OR macaque OR macaques OR macaw OR macaws OR marmoset
ORmarmosets ORmice ORminipig OR minipigs ORmink ORminks
OR monkey OR monkeys OR mouse OR mule OR mules OR
nematode OR nematodes OR octopus OR octopuses OR orangutan
OR “orang-utan” OR orangutans OR “orang-utans” OR oxen OR
parrot OR parrots OR pig OR pigeon OR pigeons OR piglet OR piglets
OR pigs OR porcine OR primate OR primates OR quail OR rabbit OR
rabbits OR rat OR rats OR reptile OR reptiles OR rodent OR rodents
OR ruminant OR ruminants OR salmonOR sheep OR shrimp OR slug
OR slugs OR swine OR tamarin OR tamarins OR toad OR toads OR
trout OR urchin OR urchins OR vole OR voles OR waxworm OR
waxworms OR worm OR worms OR xenopus OR “zebra fish” OR
zebrafish) NOT (human OR humans or patient or patients))

3. 1 NOT 2

4. PMID=(0* or 1* or 2* or 3* or 4* or 5* or 6* or 7* or 8* or 9*)

5. 3 NOT 4
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TABLE A1. mCODE Groups and Profiles
mCODE Group mCODE Profile

Disease Primary cancer condition

Disease Secondary cancer condition

Disease TNM clinical distant metastases category

Disease TNM clinical primary tumor category

Disease TNM clinical regional nodes category

Disease TNM clinical stage group

Disease TNM pathologic distant metastases category

Disease TNM pathologic primary tumor category

Disease TNM pathologic regional nodes category

Disease TNM pathologic stage group

Genomics Genetic specimen

Genomics Genomic region studied

Genomics Cancer genetic variant

Genomics Cancer genomics report

Laboratory/vital Tumor marker

Outcome Cancer disease status

Patient Comorbid condition

Patient ECOG performance status

Patient Karnofsky performance status

Patient Cancer patient

Treatment Cancer-related radiation procedure

Treatment Cancer-related surgical procedure

Treatment Cancer-related medication statement

Abbreviations: ECOG, Eastern Cooperative Oncology Group; mCODE, Minimal
Common Oncology Data Elements.
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FIG A1. A heatmap of document types and targeted cancer types. Those with , 2 publications not shown.
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RadLex
BI-RADS
DeepPhe ontology
HPO
MPATH-Dx
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In-house lexicon
ICD-9
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Reviewed articles mCODE
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FIG A2. Comparison of standardized terminologies for data elements between the reviewed articles
and mCODE. AJCC, American Joint Committee on Cancer; BI-RADS, Breast Imaging Reporting and
Data System; HGOGNC, Human Genome Organization Gene Nomenclature Committee; HGVS,
Human Genome Variation Society; HPO, Human Phenotype Ontology; ICD-9, International Clas-
sification of Diseases (9th revision); ICD-10, International Classification of Diseases (10th revision);
ICD-O, International Classification of Diseases for Oncology; LOINC, Logical Observation Identifiers
Names and Codes; MPATH-Dx, Melanocytic Pathology Assessment Tool and Hierarchy for Di-
agnosis; NCIT, National Cancer Institute Thesaurus; RadLex, Radiology Lexicon; RxNorm, no full
name; SNOMED-CT, SNOMED Clinical Terms; UMLS, Unified Medical Language System.
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