
RESEARCH ARTICLE

Automated pipeline framework for processing

of large-scale building energy time series data

Arash Khalilnejad1,5, Ahmad M. KarimiID
2,5, Shreyas Kamath1,5, Rojiar Haddadian2,5,

Roger H. FrenchID
2,4,5*, Alexis R. Abramson3,6¤

1 Department of Electrical, Computer, and Systems Engineering, Case School of Engineering, Case Western

Reserve University, Cleveland, Ohio, United States of America, 2 Department of Computer and Data

Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of

America, 3 Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case

Western Reserve University, Cleveland, Ohio, United States of America, 4 Department of Materials Science

and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, United

States of America, 5 SDLE Research Center, Case School of Engineering, Case Western Reserve University,

Cleveland, Ohio, United States of America, 6 Great Lakes Energy Institute, Case School of Engineering,

Case Western Reserve University, Cleveland, Ohio, United States of America

¤ Current address: Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States of

America

* roger.french@case.edu

Abstract

Commercial buildings account for one third of the total electricity consumption in the United

States and a significant amount of this energy is wasted. Therefore, there is a need for “vir-

tual” energy audits, to identify energy inefficiencies and their associated savings opportuni-

ties using methods that can be non-intrusive and automated for application to large

populations of buildings. Here we demonstrate virtual energy audits applied to large popula-

tions of buildings’ time-series smart-meter data using a systematic approach and a fully

automated Building Energy Analytics (BEA) Pipeline that unifies, cleans, stores and ana-

lyzes building energy datasets in a non-relational data warehouse for efficient insights and

results. This BEA pipeline is based on a custom compute job scheduler for a high perfor-

mance computing cluster to enable parallel processing of Slurm jobs. Within the analytics

pipeline, we introduced a data qualification tool that enhances data quality by fixing common

errors, while also detecting abnormalities in a building’s daily operation using hierarchical

clustering. We analyze the HVAC scheduling of a population of 816 buildings, using this

analytics pipeline, as part of a cross-sectional study. With our approach, this sample of 816

buildings is improved in data quality and is efficiently analyzed in 34 minutes, which is 85

times faster than the time taken by a sequential processing. The analytical results for the

HVAC operational hours of these buildings show that among 10 building use types, food

sales buildings with 17.75 hours of daily HVAC cooling operation are decent targets for

HVAC savings. Overall, this analytics pipeline enables the identification of statistically signif-

icant results from population based studies of large numbers of building energy time-series

datasets with robust results. These types of BEA studies can explore numerous factors

impacting building energy efficiency and virtual building energy audits. This approach

enables a new generation of data-driven buildings energy analysis at scale.
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Introduction

Buildings account for approximately one-third of the world’s total electricity consumption [1].

In the United States, commercial buildings account for 36% of the total energy consumption,

of which approximately 30% is wasted [2]. Hence, reducing wastage of energy and improving

the efficiency of buildings’ energy consumption has significant importance [3]. Due to the cost

and time required for conventional on-site building energy audits, “virtual” energy audits,

which has no need for setting foot in a building and use appropriate diagnostic and prognostic

tools, is an important goal of building research. We have developed a virtual energy audits

tool, EDIFES (Energy Diagnostics Investigator for Efficiency Savings) using a data-driven ana-

lytical approach based on smart-meter data provided by electrical utility companies or build-

ing owners [4–8].

Another important challenge for the large scale application of virtual energy audits is the

ability to analyze large numbers of buildings and volumes of building time-series data so that

energy savings across distinct building populations can be prioritized and buildings can be

compared and ranked [9, 10]. However, scalable time series data processing and classification

is constrained by the computational demands of some state of the art analytical methods [11–

13]. Therefore, not only is an advanced high performance computing cluster essential, but a

robust job scheduling pipeline that can automatically ingest, process and analyze the datasets

and rank-order and compare the results is also required. For this purpose, NoSQL databases

address the dataset scalability issues of peta-byte scale analyses and have seen increasing use in

energy research [14]. Distributed computing, including distributed job processing and NoSQL

databases, with their intrinsic scalability to large dataset sizes can cope with the computational

demands of large datasets and populations efficiently, thereby addressing the inadequacies of

traditional relational database management systems (RDBMS) such as SQL databases [15].

NoSQL database management systems such as Cassandra, MongoDB, Redis and HBase can

handle query and processing issues of large-scale energy time series datasets [16]. Additionally,

for analyzing large datasets with spatial and temporal dimensions, cluster distributed comput-

ing tools such as the Hadoop framework and its Hadoop Distributed File System (HDFS) are

commonly used to distribute and parallelize computations on a cluster [17]. Studies show that

the HBase model, an open-source, non-relational data warehouse that runs on top of HDFS, if

implemented properly, could be very efficient for machine learning applications in large-scale

energy time series datasets [18].

Scalable data warehousing has shifted the direction of building science and building data

analytics, from the evaluation of individual buildings in observational studies, to cross sec-

tional studies using statistically significant populations of buildings. Examples of these new

approaches include a recent study on office buildings, where a ranking system was proposed

based on occupant behavior using two level K-means clustering [19]. In another case, energy

use intensity (EUI) was used as the basis for clusters with an outlier detection method prior to

analysis [20]. In a third recent study by Wilcox et al., a big data platform for ingesting and ana-

lyzing smart-meter data was presented [21]. They introduced various requirements and infra-

structure necessary for efficient big data evaluation of smart-meter datasets named as smart-

meter analytics scaled by hadoop (SMASH) which can process datasets at a 20 TB scale. These

distributed computing “big data” analytical approaches to building research have been applied

to processing and analyzing building energy datasets, to building population studies, and to

the use of machine learning methods [22]. Generally, the development of data-driven analysis

methods has lead to the introduction of new savings opportunities on the energy consumption

side, whereas the innovations on savings in energy generation such as renewable energy imple-

mentation and storage has already been discussed in several research studies [23–27].
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A robust framework for large scale dataset processing requires not only an advanced com-

pute infrastructure but also a robust analytics pipeline, to enable efficient and precise data pro-

cessing [28]. For example in building time series data, issues such as meter malfunctions and

data manipulation errors, lead to anomalous data values; and this requires accurate time series

anomaly detection and remediation methods [29]. Even the data structure, data query, and

output results are important for a generalized and efficient framework that can analyze diverse

building datasets and assemble them with essential other datatypes such as weather data and

system meta-data [30]. Studies of statistically significant samples or populations of buildings

can transform building science from an observational science to one based on a statistically

sound foundation [31–35]. In a data-driven building energy study of urban buildings in Stock-

holm, it was estimated that 5532 buildings could have savings through retrofitting, with poten-

tial improvement in peak electric power of 147 MW [36]. Obviously, studies like this are

enabled through compute automation, data analysis pipelines, and high performance and par-

allel computing infrastructure.

Heating, Ventilation and Air Conditioning (HVAC) systems are one of the largest contrib-

utors to building energy consumption in commercial buildings and data-driven energy analy-

sis can assess their energy consumption and efficiency [37–41]. The development of the

Building Energy Analytics (BEA) Pipeline can help identify buildings and building use types

with the highest energy savings opportunities. Other than savings opportunities in a building,

identifying the schedule, rescheduling, setpoint setback, and controlling the auxiliary units

and HVAC operation can also help electricity grid operations through, for example, peak load

reduction [42]. However, due to lack of equipment level data, a data-driven study of the

HVAC operational scheduling and energy efficiency of a large-scale population of buildings,

has not been possible up to this point.

In this paper, we demonstrate the development of an energy analytics pipeline wherein

data, after being queried, automatically passes through multiple preprocessing, cleaning,

assembly, and ingestion steps in a high performance and parallel computing environment with

fast-track, smart, and interactive capabilities. The objective of this analytics automation is to

process files by performing all the necessary actions with minimal manual intervention, well

informed by the potential issues associated with energy datasets and building operations. With

a case study over 816 commercial buildings, we will demonstrate how the introduced pipeline

enables in-depth understanding of HVAC cooling performance and operational time.

Methods

Building dataset

Time series. Building-energy time-series datasets are electricity consumption data with

timestamps that capture many aspects of the behavior and performance of a building, as is

shown for one building over a one year period in Fig 1. This dataset has gone through a series

of preprocessing and data cleaning steps that are discussed here. For a cross-sectional study of

a population or sample of tens or hundreds of buildings, a number of challenges arise. First,

the building energy datasets should have a single, common data structure, independent of

their original source. Second, they should be “cleaned” to address issues such as anomalies,

outliers, missing data points, gaps in the time series, or inconsistencies in the time interval or

temporal data point spacing. Third, dataset sizes can become very large, as a function of the

time interval, which can vary from 15-minute interval data to sub-minute interval time-series.

The design and configuration of the compute infrastructure (high performance and/or distrib-

uted computing types) must integrate well with the analytics pipeline developed. Fourth, data

warehousing is required not only for storing the data and its metadata, but also to allow the
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storage of full and complete results of the analysis, so as to enable population-based meta-anal-

ysis across buildings.

Population of buildings. In this study we analyze a population of 816 buildings’ energy

datasets, whose characteristics are summarized in Fig 2. The buildings are classified into 10

building use types and their datasets are at least one year in duration and have time intervals

ranging from one to 60 minutes. The buildings are located across the United States and corre-

spond to a variety of distinct climate zones as specified by the Köppen-Geiger (KG) Climate

Zone schema [43–45].

Pipeline of data acquisition to analysis

The automated process which implies to automatic flow of building data to each step of the

pipeline, is designed to do all the required steps for data processing and analytics automatically

with an efficient framework and unified structure, and generate comparable results with data

from different sources and formats. As shown in Fig 3 the automated process includes the

steps for data acquisition, preprocessing, cleaning, ingestion, weather data acquisition and

ingestion, meta data processing and ingestion, building energy analytics and reporting. Our

developed pipeline enables any applied analysis to be distributed to all the datasets and results

stored in the database, automatically.

Data acquisition. Building datasets are provided in different formats such as csv, xml, txt,

etc. with plenty of variation in their structure. The implementation of the pipeline transforms

the heterogeneous datasets to structured ones. As the developed pipeline is automated, the

Fig 1. Energy pattern snapshot. Time series representation of the characteristic energy consumption of a building from Monday through Friday in the

past full year and during the summer (June, July, and August) and winter (December, January, and February) months. The blue vertical boxes show the

distribution (middle 50% variability) of energy consumption for the given hour across each season. The whiskers indicate the minimum to maximum

consumption, excluding outliers.

https://doi.org/10.1371/journal.pone.0240461.g001
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challenging issue in the pipeline is handling data with unknown structures, column names,

units, timestamps, etc. The following steps in the pipeline identify and fix those issues.

Preprocessing.

• Tidying: The desired data structure for a building-energy time-series dataset should be a col-

umn of POSIXct timestamps with proper structure and time zone, and associated columns

of energy consumption and other relevant variables such as temperature, and solar irradi-

ance of the local weather. Yet the smart-meter data is rarely of this format to start with, so a

tidying process converts the untidy data to the desired structure.

• Restructuring: In this step, first, the timestamps are fixed, including splining the time series

when the timestamps have non-uniform time intervals [46], and translating from UTC time

zone to the local timezone. Then, missing points in energy consumption are flagged in a col-

umn with logical values, where 1 denotes a missing value while 0 denotes a non-missing

value. Finally, columns derived from timestamps and energy consumption, such as day of

week, business or non-business days, sunrise and sunset time, etc., are generated. At this

Fig 2. Population of buildings. (a) breakdown of the buildings by building use type, (b) location of the buildings, (c)

distribution of time length of the dataset for each building use type (d) distribution of buildings by KG climate zone (e)

annual consumption distribution by type, and (f) time interval breakdown of dataset.

https://doi.org/10.1371/journal.pone.0240461.g002

PLOS ONE Automated pipeline framework for processing of large-scale building energy time series data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240461 December 1, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0240461.g002
https://doi.org/10.1371/journal.pone.0240461


point, all data from any source are transformed into a consistent structure. Table 1 indicates

an example of structured data. For consistency, all column names are 4 digit characters. The

description of column names is provided in Table 2.

• De-Identification: Due to inconsistency in file names and privacy and security issues, the

data are de-identified with random alphanumeric names.

Data cleaning. Since the dataset quality is essential for accurate analytical results, an auto-

mated data cleaning process is used for data cleaning including data entry, measurement

instrument and data integration errors. The variables in the dataset include quantitative, cate-

gorical, postal, and identifier variables from multiple data sources, and can have distinct data

Fig 3. Energy data processing pipeline. The pipeline includes data acquisition, typically with differing data structures

and file formats, preprocessing for providing a unique data structure and de-identification, cleaning which checks, and

removal of anomalous data to improve data quality and prepares HBase triples, cradle ingestion of those triples into the

data warehouse, then followed by analysis in HBase.

https://doi.org/10.1371/journal.pone.0240461.g003

Table 1. Energy time series data structure.

tmst cons ecoi pwdm bzdy dywk wkdn snrs nmtm clen anfl forc amfl

2016-10-15 00:00:00 6.65 0 NA 1 Wed day NA 0.00 6.65 0 6.65 0

2016-10-15 00:15:00 6.49 0 -0.16 1 Wed day NA 0.25 6.49 0 6.49 0

2016-10-15 00:30:00 6.75 0 0.26 1 Wed day NA 0.50 6.75 0 6.75 0

2016-10-15 00:45:00 6.46 0 -0.29 1 Wed day NA 0.75 6.46 0 6.46 0

https://doi.org/10.1371/journal.pone.0240461.t001
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cleaning challenges such as single datapoint or sequential chunks of missing data points, and

timestamp merging, data structure, and redundant values issues. To address these issues, we

developed a data quality assessment and qualification tool and analysis pipeline.

Anomaly detection. To detect different types of the time series outliers [47], first we use

classical time series decomposition. Then anomaly detection is applied to the remainder com-

ponent of the time series and anomalies are removed. At this point the remainder, trend, and

seasonal components are recombined to produce a corrected time-series dataset without outli-

ers. In addition, single missing datapoints are imputed by linear interpolation. Due to the pos-

sibility of different behavior of the energy consumption pattern during weekends, we apply the

anomaly detection algorithm to the dataset for weekdays and weekends, separately.

Data qualification. The data quality of the building energy dataset is determined using an

A to D grading system based on quality metrics, as summarized in Table 3. The final assess-

ment (“P” for pass, or “F” for fail) requires at least 1 year of good quality time-series data to

enable time-series analysis. For example, a building energy dataset with grade of ACBP means

that it has an anomaly rate of less than 5%, missing data percentage of 15 to 20%, the largest

gap of 120 to 164 hours and, it is more than a year long. The ultimate goal of the data qualifica-

tion tool is to make sure that the data quality is AAAP and, if not, to try and transform it to

this grade as much as possible.

Table 2. Column names and description of building energy dataset.

column column name format description

tmst timestamp Posixct local time

cons energy consumption numeric in kwh

ecoi energy consumption 0 or 1 if 0, actual,

imputation flag if 1, missing.

pwdm power demand numric diff of energy consumption

bzdy business day 0 or 1 if 1, business day,

if 0, non-business day.

dywk day of week character three letter abbreviation

wkdn week day or end character if day, weekday,

if end, weekend.

snrs sunrise or sunset character if rise, sunrise,

if set, sunset, else, NA.

nmtm number of time numeric time of day in numeric value

clen cleaned energy numeric data with anomalies detected

anfl anomaly flag 0 or 1 if 0, actual,

if 1, anomaly.

forc energy with forecasted values numeric missings and anomalies imputed with forecast

amfl anomaly and missing flag 0 or 1 if 0, actual,

if 1, missing or anomaly.

https://doi.org/10.1371/journal.pone.0240461.t002

Table 3. Data quality grading criteria.

Anomalies (%) Missing percentage (%) Largest Gap (Hours)

A Below 5 Below 10 Below 120

B 5 to 7 10 to 15 120 to 164

C 7 to 10 15 to 20 164 to 240

D Above 10 Above 20 Above 240

https://doi.org/10.1371/journal.pone.0240461.t003
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Abnormal days detection. Other than those discussed earlier, some anomalies represent

abnormal daily energy consumption due to a significantly different consumption pattern com-

pared to other days, defined here as “abnormal days”. By a hierarchical clustering algorithm

[48], that uses daily time series energy consumption, the abnormal days with extremely high

or low consumption or irregular pattern are identified. The irregular pattern in daily energy

consumption corresponds to days with significantly different energy consumption curves

compared to other days. The clustering algorithm computes the euclidean distance of corre-

sponding energy data points of different days, and clusters based on the similarity of the

euclidean distance of days.

Data assembly. In addition to the energy consumption data, weather data and the build-

ing metadata are queried and assembled with the energy data. This data assembly is critical for

automation of the building analysis pipeline.

Weather data. Weather data is obtained from the SolarGIS cloud [49]. SolarGIS uses sat-

ellite imagery in combination with a quantitative atmospheric model to produce ground-level

weather data for the United States on a 3.5 km pixel size and 30-minute time interval. The

weather variables include temperature, relative humidity, solar global horizontal irradiance,

and the UTC timestamp. Given the building’s location (longitude, latitude, or zipcode) and

the start and end time of its time series, we submit a SolarGIS API (application programming

interface) request, translate the timestamps of the response to the local time zone, and ingest

this to the weather table stored in HBase [50]. Storing weather data in a dedicated HBase

weather table, allows us to perform a local query to check if we already possess the needed

weather data, prior to making a SolarGIS query. At the point of building energy analysis, the

weather data timestamps are splined to match the energy data timestamps and merged with

energy dataset. Table 4 represents the structured and splined weather data of the correspond-

ing energy data shown in Table 1. The description of column names of the weather data is pro-

vided in Table 5.

Metadata. Metadata is the information given about the data and plays a crucial role in

connecting building energy data with other information such as weather, other characteristics

of the buildings and corresponding analytics results.

Table 4. Weather time series data structure.

tmst temp wspa ghir dhir relh gtir

2016-10-15 00:00:00 5.27 2.67 0 0 82.59 0

2016-10-15 00:15:00 5.29 2.53 0 0 82.92 0

2016-10-15 00:30:00 5.31 3.03 0 0 82.68 0

2016-10-15 00:45:00 5.41 3.10 0 0 82.48 0

https://doi.org/10.1371/journal.pone.0240461.t004

Table 5. Column names and description of weather energy dataset.

column column name format description

tmst timestamp Posixct local time

temp outside temperature numeric in ˚C

wspa wind speed numeric in m/s

ghir global horizontal irradiance numeric in W/m2

dhir diffuse horizontal irradiance numeric in W/m2

relh relative humidity numeric in %

gtir global tilted irradiance numeric in W/m2

https://doi.org/10.1371/journal.pone.0240461.t005
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• Metadata preparation: Building use type, number of floors, location, along with characteris-

tics calculated from the building data and information derived from the initial dataset such

as start and end time, and climate zone are stored in a dataframe and assigned to the build-

ings’ de-identified name, and is then ingested into HBase.

• Metadata Security: The metadata can contain proprietary information about the building,

which must be handled appropriately. For this we use a separate Research Electronic Data

Capture (REDCap) database. REDCap is a patient tracking medical study database with

HIPPA data privacy capabilities [51].

Ingestion. Triples for ingestion: HBase is a NoSQL database that operates under the

Hadoop/HDFS distributed computing framework. It does not use a fixed table schema, as is

typical for relational database management systems. For ingestion to HBase, a columnkey and

rowkey are assigned to each value (Fig 4) [10, 52, 53]. An advantage of a non-relational data

warehouse is that new variables, values and information can be added to the database tables

without the need to refactor the table schemas. This ability to incorporate new table columns

(new variables) and to have no performance impact of sparse columns is extremely important

because as we analyze buildings and develop new building markers and analysis functions,

writing back these results to HBase enables the overall dataset to be continually enhanced. In

building-energy time-series data the alphanumeric–yearmonth of the dataset is considered as

the rowkey and the column name as a column qualifier. And in each cell of a triple, we have a

one month period of comma-separated datapoint values.

Resources management

High Performance Computing (HPC). The Rider HPC cluster at Case Western Reserve

University is a state of the art computing resource, used for large-scale, data intensive, compu-

tational problems. Three login nodes act as a gateway to the HPC environment, which consists

of 4400 Intel Xeon compute cores. A separate SDLE Research Center’s dedicated Hadoop,

HBase, and Apache Spark [53, 54] cluster is integrated into the CWRU HPC environment. It

consists of 180 compute cores, 2 TB of RAM, and 92 TB of disk space, configured as 12 data

nodes, 2 name nodes, and 1 dedicated Apache Thrift and Rest server node [55]. We have devel-

oped R and Python packages that enable native interactions from either language to datasets

stored in HBase tables by returning requested data as a dataframe in the R or Python

environment.

Fig 4. HBase triples and their registration into a data table. A rowkey and columnkey is assigned to each value. In the HBase data table triples share

the same rowkey for a row and the columnkeys are the same for a column in data table.

https://doi.org/10.1371/journal.pone.0240461.g004
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Job schedulers. The job scheduler contains four functions: life cycle management,

resource management, scheduling and job execution [56]. These functions handle memory

and accelerator allocation, licenses, prioritization and sorting of jobs, allocation of compute-

nodes, job assignment to allocated resources, and reporting of logs.

Slurm. The Simple Linux Utility for Resource Management (Slurm), which was initially

developed at the Lawrence Livermore National Laboratory, is a full-featured job scheduler

with a multi-threaded core scheduler and substantially high scalability [57].

The Slurm workload manager is used to submit fleets of jobs in HPC [56] to speed up the

process and improve fault tolerance. Fig 5a indicates how a Slurm scheduler takes jobs from a

workstation that can be run through its cores and submits them to compute-nodes with robust

specifications. The compute and login nodes have access to the storage environment of the

home, scratch, and work directories. Completion of each job does not necessarily end up with

“success” status. Fig 5b represents the lifecycle of a given Slurm job. As can be seen, there are

several unsuccessful completion status for jobs, due to temperature or permanent issues.

Therefore, monitoring and controlling the jobs throughout their life cycle is necessary for suc-

cessfully completion of jobs and reporting their status.

The resources for Slurm jobs can be modified based on the dataset and computational

intensity. The number of nodes and cores per node, memory, time, etc. can be controlled in

the resource allocation step. This step is done using batch scripting. The flowchart of Slurm

job controller that takes a script for a task and generates fleets of jobs for a population of data-

sets is shown in Fig 6. After submitting each job, the resources are allocated. This step may be

time-consuming and proper allocation of resources affects the speed of the process. Finally,

the job runs until completion.

Building-energy analytics pipeline

As shown in Fig 7, in building-energy analytics, HBase is queried for the required dataset, and

upon retrieval it is transformed into an S3 R dataframe object [58] for analysis. Upon comple-

tion of building energy analysis, the results are stored as triples in the HBase results table. The

results which are plain text are stored as text, while results consisting of binary items (such as

model objects, plot file objects, or png files) which consist of multiple items and types, are

Fig 5. Slurm jobs workflow and life cycle. (a) jobs workflow and interactions with scheduler and storage and (b) job life cycle from submission to

completion.

https://doi.org/10.1371/journal.pone.0240461.g005
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combined in a single S3 R object and then stored as binary information in the HBase result

table. If the results are dataframes, we transform them back to a packed cell text format for

storage.

Results

Benchmarking

To benchmark the performance of our Building Energy Analytics Pipeline we compare analy-

sis of 816 buildings in our population analyzed sequentially or using the pipeline. The analytics

pipeline follows the steps presented in Fig 7, where in each job the data is queried from HBase,

and the analysis is done and the results are stored back in the HBase results table. In the

Fig 6. Slurm job controller flowchart. It represents the designed distribution and management of jobs and actions based on the execution result of

each job.

https://doi.org/10.1371/journal.pone.0240461.g006

Fig 7. Analytics workflow of jobs. Jobs are distributed through Slurm scheduler and in each job data are fetched from HBase and converted to a

dataframe. After being analyzed, the results are converted to HBase triples and registered to the results data table.

https://doi.org/10.1371/journal.pone.0240461.g007
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analytics, the completion time of each dataset is calculated. A comparison of the parallel and

sequential job execution times and individual building analysis times are shown in Fig 8a. Post

execution text processing of the job log files enables us to quantify the job timing and life cycle.

In addition, the pipeline approach provides automated error checking and occurrence report-

ing to the user, an advantage over the sequential approach.

Each job can be assigned to multiple cores for less computational time (multi-core parallel

jobs). However, since in parallel processing in a multi-core compute-node only one of the

cores in each job can query the data from HBase, a significant portion of job execution time is

consumed in the query and data i/o tasks. So, we do not expect significant savings in the

amount of time with multi-core parallel job execution. For the validation of the best combina-

tion of cores in parallel Slurm job execution, we submitted the same set of buildings as analysis

jobs to HPC with 1, 2, 4, and 8 cores for each job and compute-node. As our resources for

each Slurm fleet is restricted to 120 cores per user, increasing the number of cores will lead to a

reduction in the number of parallel nodes and thus reduction in number of jobs that can be

executed simultaneously. Therefore, if we allocate one core per job, 120 nodes will work simul-

taneously, and with the allocation of two and four cores, we get 60 and 30 nodes running at the

same time, respectively. Fig 9 demonstrates the performance of the pipeline with single-core

and multi-core parallel job submission systems.

Fig 8. Benchmarking of jobs. (a) comparison of single-core parallel and sequential job processing times, (b)

distribution of individual building analysis times for the 814 buildings in our population.

https://doi.org/10.1371/journal.pone.0240461.g008

Fig 9. Processing time comparison of jobs with number of cores, (a) single-core and multi-core parallel jobs

processing times, (b) performance of individual jobs with allocation of cores within each job.

https://doi.org/10.1371/journal.pone.0240461.g009
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Data qualification tool

The data qualification tool identifies data cleaning issues such as missing datapoints, gaps, and

anomalies. Then, it assigns a grade to the building energy dataset, and for the datasets with

quality grade of lower than AAAP, submits the dataset for additional cleaning processes. Fig 10

represents anomalies in the time series data.

After data qualification and cleaning for the full 812 building population, the results

shown in Fig 11 show that 40 buildings were upgraded to AAAP, leading to 752 high quality

building energy datasets in the study population. In addition, 16 buildings failed with a final

grade of AAAF, because the final time series was shortened to less than one year in length,

making those buildings ineligible for analysis. Fig 11b shows the progressive improvement

of the graded data quality by the sequential data cleaning processes of the data qualification

tool.

Fig 10. Anomalies in energy consumption data. Points represent the anomalies and the line represents the energy consumption in kWh.

https://doi.org/10.1371/journal.pone.0240461.g010

Fig 11. Data quality population of data. (a) Breakdown of data quality before and after cleaning (b) Status of data

quality after cleaning. Blue represents the data without change in quality, red represents the data that failed after

cleaning criteria, and green represents data that passed after cleaning.

https://doi.org/10.1371/journal.pone.0240461.g011
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Abnormal days

Some data quality issues do not arise from simple meter equipment data errors. We define

these as abnormal days, such as days corresponding to extraordinary energy consumption, as

could arise for a non-business day, where identifying them can enhance the interpretation of

the results inferred from data. To identify abnormal days, we use hierarchical clustering [48]

to classify the daily energy consumption during business days and identify and flag days with

abnormal or uncharacteristic behavior such as high and low consumption. Fig 12a represents

the clustering dendrogram of business days for one month of a building energy dataset, and in

Fig 12b one can see the energy consumption curve of the clustered abnormal days compared

to other typical business days.

Population study: HVAC schedules across building types and climate zones

The automated Building Energy Analytics Pipeline enables populations of buildings to be stud-

ied to develop statistically significant results, as compared to a smaller set of buildings used in

typical observational studies. As an example of this, we evaluated the HVAC turn-on and

turn-off times of each building and compared the distribution of HVAC cooling on and off

times across different building use types. We evaluated these for cooling degree days, which

are the days during which the average daily temperature is above the thermostat setpoint of

the cooling system that is required to operate. The specific HVAC turn-on and turn-off times

represent the building’s HVAC schedule, which is essential for identifying savings opportuni-

ties to reduce costs associated with air conditioning during relatively hot weather. The HVAC

turn-on and off schedules across the population of buildings are broken out for the 10 different

building use types, as shown in Fig 13.

The detailed distributions, or population densities for the HVAC turn-on and turn-off

events of the ten building use types are presented in Table 6 and the median, interquartile

range (IQR), and skewness are given. The median of the distribution is a measure of central

tendency and is most relevant for normal distributions, as compared to bimodal or highly

skewed distributions. IQR is a measure of the statistical dispersion and is equal to the differ-

ence of third and first quartiles, which is also a useful measure in normal distributions. Skew-

ness is a measure of the asymmetry of the distribution, and can help identify both skewed

normal distributions and bimodal or other distribution types. A distribution with positive

Fig 12. Clustering on a month of data. (a) Hierarchical clustering with red cluster showing the abnormal days, (b)

Energy consumption plot of one month with abnormal days detection.

https://doi.org/10.1371/journal.pone.0240461.g012
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Fig 13. Breakdown of HVAC scheduling time density on 10 different building use types. Red and green colors represent turn on and

turn off times, respectively.

https://doi.org/10.1371/journal.pone.0240461.g013
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skewness (right-skew) has a longer tail on the right side of the distribution, while negative

skewness has the longer tail on the left side.

With the determination of the building schedule, the operating time of the cooling system

is obtained, which is representative of expected occupancy. Fig 14 represents the breakdown of

Table 6. Turn on and off times of HVAC systems of different building use types for cooling degree days.

industry turn on turn off

median IQR skewness median IQR skewness

1 Food Sales 4.25 1.75 1.57 21.75 2.00 -3.62

2 Healthcare 5.25 1.35 3.87 20.83 5.12 -2.31

3 Skyscraper 5.50 3.19 1.54 17.75 3.21 -0.94

4 Office 5.51 2.45 2.03 18.12 4.06 -1.30

5 Services 5.75 3.00 1.74 20.67 7.72 -1.26

6 Educational 5.97 2.29 3.62 18.00 6.05 -1.64

7 Entertainment 5.97 1.75 2.77 21.75 7.25 -1.88

8 Utilities 7.75 4.79 1.24 21.22 7.03 -1.21

9 Retail 7.97 0.52 2.27 22.00 1.43 -2.43

10 Industrial 9.77 18.38 0.15 19.93 9.87 -0.73

https://doi.org/10.1371/journal.pone.0240461.t006

Fig 14. Breakdown of operating time for (a) 10 building use types and (b) four KG climate zones. Three red bars represent first, second and third

quartiles. Dots represent the actual operating hour of each building and black lines represent the density of the distribution in each category.

https://doi.org/10.1371/journal.pone.0240461.g014
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operating time in different building use type and four KG climate zones for which we have sta-

tistically significant quantities of buildings in. The building use types are sorted from the ones

with highest median operating time to the lowest.

Discussion

Data qualification

Anomalies, despite the possibility of representing physical meaning such as abrupt equipment

turn on and off, alter our confidence in the analytical results. The Building Energy Analytics

Pipeline’s anomaly detection detects and flags anomalous data points. Fig 10 shows detection

of an anomalous point due to an irregular spike. Further cleaning using the developed qualifi-

cation tool can resolve most of the cleaning issues of the data. Applying the qualification tool

on 816 buildings shown in Fig 11 results in improving the grade of 40 low quality data to

AAAP with 18 buildings upgrading from BAAP to AAAP. Note that if the qualification tool

could not improve the quality of data, the original format is still stored and can be analyzed.

Further improvement in the validity of analytics results is done by detecting anomalous

days. Applying the hierarchical clustering algorithm to the data singles out the days with irreg-

ular patterns. For example, by applying the developed method on a month of data shown in

Fig 12, it can be seen that the detected day, which is a Friday, has significantly lower consump-

tion compared to other days.

Parallel slurm jobs performance

The execution of fleets of parallel Slurm jobs in HPC lowers the computation time for large-

scale data, dramatically. As shown in Fig 8a, the fleets of single-core parallel jobs process all the

files in 34.3 minutes, which is 85 times faster than sequential execution. The slowing down of

parallel jobs at the end of the execution is due to processing of the much larger, 1-minute inter-

val, building energy datasets, which therefore require more data cleaning time, and failure of

jobs due to temporary issues that are resolved with re-submission of jobs. As illustrated in Fig

8b, the majority of jobs are executed in around 2.5 minutes, while some jobs for larger datasets

require more processing time. Overall, completion of all individual jobs takes less than 10

minutes.

Comparison of single-core and multi-core parallel Slurm jobs (Fig 9) shows that for large-

scale data, single-core parallel Slurm jobs execution results in the lowest total processing time.

With the implementation of two-core parallel Slurm jobs, the jobs are completed in 53.9 min-

utes, which is 1.57 times slower than single-core implementation. However, by increasing the

number of cores per job, the completion time of individual jobs is faster (Fig 9b). Note that the

allocation time of resources with increasing the number of cores per job increases due to

restrictions in the availability of multiple cores in a compute-node.

For example, when a single core is assigned to a job, it can get the core from any compute-

node. Even multiple jobs could get cores of the same compute-node. However, if eight cores

are assigned to a job, a compute-node with 8 cores free for allocation is required which might

not be available promptly, resulting in a waiting time.

Population study: HVAC schedules across building type and climate zone

Utilization of the Building Energy Analytics Pipeline on a population of buildings enabled

conducting a large-scale comparative study of HVAC schedules by building use type and KG

climate zone. As illustrated in Fig 13, turn on schedules are more normally distributed with
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less variability compared to turn off times. Also, the turn-on schedules are right-skewed with

skewness ranging from 0.15 to 3.87, unlike turn-off schedules which are left-skewed.

The breakdown of the savings by building use types show that food sales buildings have the

earliest turn-on schedules with a median of 4.25 (4:15 AM) and turn-off time with median of

21.75 (9:45 PM). Furthermore, the difference in skewness of the turn-on schedules illustrates

that food sales have a tighter turn-on schedule. In healthcare buildings turn-on and off sched-

ule patterns are completely different. The turn-on variability is one of the lowest in all build-

ings types with an IQR of 1.35 compared to 5.12 for turn off times, illustrating a much tighter

control of the turn-on schedules. In industrial buildings the distributions of schedules are

almost uniform, implying lack of schedule. Also, office, entertainment, and utility building use

types have most spread in turn off times with IQRs of 7.72, 7.25, and 7.03 respectively. Despite

less variability in turn-on times, utilities, skyscrapers, and services have the highest variability

in turn on times with IQRs of 4.79, 3.19, and 3 respectively. Retail buildings have the lowest

variability in both turn-on and turn-off times with IQRs of 0.52 and 1.43, implying a tight

schedule.

Longer operating times lead to greater energy consumption offering more HVAC related

savings opportunities. The results of the breakdown of operational hours by building use type

(Fig 14) show that food sales buildings are a decent target for this purpose, with an operating

time of 17.75 hours and a relatively small variability of 1.62. Also, the HVAC operating time of

entertainment, healthcare, and retail buildings have the highest operating time of HVAC with

that of retail buildings being relatively high. The bimodal distribution in educational buildings

corresponds to two types of scheduling patterns in them. The scheduling in rest of the building

use types, i.e. Utilities, Services, Skyscrapers, and industrial buildings are more uniformly dis-

tributed compared to other building use types. The evaluation of operating time in different

climate zones represents a very similar distribution of Cfa and Dfa climate zones. This is

because these climate-zones are in fully humid and hot summer areas, and the analytics results

are for cooling degree days. It is represented in Fig 14 that the operating time and turn on/off

schedules correlate more strongly with building use type compared to climate zone, since, the

scheduling is more impacted by building management system.

Conclusion

In this study, we introduced a fully automated Building Energy Analytics Pipeline for process-

ing large volumes of building energy time series and developed a robust data cleaning process

that not only improves the quality of dataset, but also, detects the daily consumption pattern

and abnormalities. Our data qualification tool grades the quality of data in terms of anomalies,

missing data points, and gaps, and if possible, improves the low-quality datasets to the highest

standard with proper imputation and subsetting methods. In the processing of 816 buildings

datasets with 712 of them already of high quality, we were able to upgrade the quality of 40

low-quality data to the highest grade of AAAP.

The processed and analyzed datasets along with meta and weather data are transformed

into HBase triples and ingested into HBase for analysis. This pipeline and associated compute

infrastructure is capable of fast dataset processing at scale with robust error handling. For opti-

mal allocation of computational resources, we also designed a smart Slurm scheduler on top of

the HPC Slurm infrastructure, that controls all the jobs and manages their lifecycle. Our pipe-

line can process 816 buildings in less than 35 minutes which is 85 times faster than a sequence

processing time.

In addition to data anamolies, the dataset quality issues as a result of abnormal time series

patterns arising from irregular equipment operation are also identified. For example, with
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hierarchical clustering, days with abnormal time series pattern arising from significantly high,

low, or irregular consumption are detected. The abnormal days are flagged in the time series

data for exclusion or inclusion in further analysis.

By utilizing the BEA pipeline, we are able to analyze the HVAC cooling schedule of a popu-

lation of 816 buildings’, broken out into 10 building use types and 4 KG climate zones with a

statistically significant number of buildings. We compared the HVAC performance with turn

on and turn off schedules, discussed their distribution and identified high potential building

use types for savings. The results show that food sales buildings have the highest air condition-

ing operational hours (a median of 17 hours) and thus are decent targets for savings. Also, the

retail buildings have the least variability in their schedule with turn on and turn off IQRs of

0.53 and 1.43, respectively. The breakdown of scheduled hours by climate zones showed that

the Cfa and Dfa climate zones have a similar distribution of operating time. The results showed

that the operating period correlates with building use types stronger than climate zones. Our

developed pipeline addresses the automation, scalability and efficiency challenges of large-

scale time-series processing, hence, can be utilized in live buildings data analysis applications.
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30. Molina-Solana M, Ros M, Ruiz MD, Gómez-Romero J, Martı́n-Bautista MJ. Data Science for Building

Energy Management: A Review. Renewable and Sustainable Energy Reviews. 2017; 70:598–609.

https://doi.org/10.1016/j.rser.2016.11.132

31. Ascione F, Bianco N, Maria Mauro G, Ferdinando Napolitano D, Peter Vanoli G. Weather-Data-Based

Control of Space Heating Operation via Multi-Objective Optimization: Application to Italian Residential

Buildings. Applied Thermal Engineering. 2019; p. 114384. https://doi.org/10.1016/j.applthermaleng.

2019.114384

32. Taylor ZT, Xie Y, Burleyson CD, Voisin N, Kraucunas I. A Multi-Scale Calibration Approach for Process-

Oriented Aggregated Building Energy Demand Models. Energy and Buildings. 2019; 191:82–94.

https://doi.org/10.1016/j.enbuild.2019.02.018

33. Wang J, Li S, Chen H, Yuan Y, Huang Y. Data-Driven Model Predictive Control for Building Climate

Control: Three Case Studies on Different Buildings. Building and Environment. 2019; 160:106204.

https://doi.org/10.1016/j.buildenv.2019.106204

34. Ye Y, Zuo W, Wang G. A Comprehensive Review of Energy-Related Data for U.S. Commercial Build-

ings. Energy and Buildings. 2019; 186:126–137. https://doi.org/10.1016/j.enbuild.2019.01.020

35. Hu S, Yan D, An J, Guo S, Qian M. Investigation and Analysis of Chinese Residential Building Occu-

pancy with Large-Scale Questionnaire Surveys. Energy and Buildings. 2019; 193:289–304. https://doi.

org/10.1016/j.enbuild.2019.04.007

36. Pasichnyi O, Wallin J, Kordas O. Data-Driven Building Archetypes for Urban Building Energy Modelling.

Energy. 2019; 181:360–377. https://doi.org/10.1016/j.energy.2019.04.197

37. Kim W, Katipamula S, Lutes R. Development and Evaluation of HVAC Operation Schedule Detection

Algorithm. Energy and Buildings. 2019; 202:109350. https://doi.org/10.1016/j.enbuild.2019.109350

38. Cetin KS, Fathollahzadeh MH, Kunwar N, Do H, Tabares-Velasco PC. Development and Validation of

an HVAC on/off Controller in EnergyPlus for Energy Simulation of Residential and Small Commercial

Buildings. Energy and Buildings. 2019; 183:467–483. https://doi.org/10.1016/j.enbuild.2018.11.005

39. Capozzoli A, Piscitelli MS, Gorrino A, Ballarini I, Corrado V. Data Analytics for Occupancy Pattern

Learning to Reduce the Energy Consumption of HVAC Systems in Office Buildings. Sustainable Cities

and Society. 2017; 35:191–208. https://doi.org/10.1016/j.scs.2017.07.016

40. Soltanaghaei E, Whitehouse K. Practical Occupancy Detection for Programmable and Smart Thermo-

stats. Applied Energy. 2018; 220:842–855. https://doi.org/10.1016/j.apenergy.2017.11.024

41. Gholami H, Khalilnejad A, Gharehpetian GB. Electrothermal Performance and Environmental Effects of

Optimal Photovoltaic–Thermal System. Energy Conversion and Management. 2015; 95:326–333.

https://doi.org/10.1016/j.enconman.2015.02.014

42. Perez KX, Baldea M, Edgar TF. Integrated HVAC Management and Optimal Scheduling of Smart Appli-

ances for Community Peak Load Reduction. Energy and Buildings. 2016; 123:34–40. https://doi.org/10.

1016/j.enbuild.2016.04.003

PLOS ONE Automated pipeline framework for processing of large-scale building energy time series data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240461 December 1, 2020 21 / 22

https://doi.org/10.1016/j.compind.2018.12.010
https://doi.org/10.3390/en11020452
https://doi.org/10.1016/j.enconman.2014.01.040
https://doi.org/10.1016/j.ijhydene.2016.05.082
https://doi.org/10.1007/s40565-017-0293-0
https://doi.org/10.3390/en9050332
https://doi.org/10.1016/j.enbuild.2014.02.005
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.rser.2016.11.132
https://doi.org/10.1016/j.applthermaleng.2019.114384
https://doi.org/10.1016/j.applthermaleng.2019.114384
https://doi.org/10.1016/j.enbuild.2019.02.018
https://doi.org/10.1016/j.buildenv.2019.106204
https://doi.org/10.1016/j.enbuild.2019.01.020
https://doi.org/10.1016/j.enbuild.2019.04.007
https://doi.org/10.1016/j.enbuild.2019.04.007
https://doi.org/10.1016/j.energy.2019.04.197
https://doi.org/10.1016/j.enbuild.2019.109350
https://doi.org/10.1016/j.enbuild.2018.11.005
https://doi.org/10.1016/j.scs.2017.07.016
https://doi.org/10.1016/j.apenergy.2017.11.024
https://doi.org/10.1016/j.enconman.2015.02.014
https://doi.org/10.1016/j.enbuild.2016.04.003
https://doi.org/10.1016/j.enbuild.2016.04.003
https://doi.org/10.1371/journal.pone.0240461


43. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger Climate Classification
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