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Simple Summary: This article aims to study the COVID-19 data for New York City. We use both
the daily number of second dose vaccination and the daily number of reported cases for New York
City. This article provides a method to combine an epidemic model and such data. We explore the
influence of vaccine efficacy on our results.

Abstract: In this article we study the efficacy of vaccination in epidemiological reconstructions of
COVID-19 epidemics from reported cases data. Given an epidemiological model, we developed in
previous studies a method that allowed the computation of an instantaneous transmission rate that
produced an exact fit of reported cases data of the COVID-19 outbreak. In this article, we improve the
method by incorporating vaccination data. More precisely, we develop a model in which vaccination
is variable in its effectiveness. We develop a new technique to compute the transmission rate in
this model, which produces an exact fit to reported cases data, while quantifying the efficacy of the
vaccine and the daily number of vaccinated. We apply our method to the reported cases data and
vaccination data of New York City.

Keywords: vaccine efficacy; coronavirus; reported and unreported cases; parameters identification;
epidemic model

1. Introduction

Developing vaccines against an infectious agent often requires years of research and
testing to ensure efficacy and safety. In contrast, in the case of COVID-19, the vaccines
took less than a year to develop and deploy. This rapid development has left many open
questions whose answers may affect the usefulness of the epidemiological models proposed
for COVID-19 outbreak. In particular, vaccination efficacy rates are different for different
populations in terms of the level and duration of vaccination immunization [1–4]. We
will study vaccinated efficacy according to the epidemic state of vaccinated individuals:
susceptible, infected, or having received vaccine doses.

Mathematical modeling has been used since the beginning of the COVID-19 pandemic
to investigate the validity of parameters, to predict its development, and to compare
different containment scenarios. In previous studies [5–7], we developed a new method
to identify the transmission rate and the instantaneous reproduction number for various
COVID-19 models, in order to match the observed cumulative number of reported cases
as closely as possible. Due to the implementation of different vaccines against COVID-19,
which have varying efficacy against COVID-19 strains, it is important to incorporate
vaccination implementation into COVID-19 mathematical models. Our goal in this paper is
to develop a new vaccination model, which provides a method to allow the identification
of transmission rate parameters.
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In order to build a model that can be easily tractable, a few simplifying assumptions
are in order. We will neglect both the duration of the immunization period (we will assume
it is permanent) and the length of the acquisition phase of immunization after vaccine
injection (we will assume it is identical for all vaccinated individuals). We will suppose the
vaccination efficacy independent of age while noting that this hypothesis is very restrictive.

Despite these limitations, a first simplifying approach can lead to a model, making
it possible to predict an effective vaccination coverage at the population level that will
prevent the appearance of successive epidemic waves.

Daily vaccination data, even if they are global and unrefined (for example, by age
group or social classification), make it possible to better understand the effect of vaccination
policy and test the consequences of changes in this policy to improve effectiveness. We use
an epidemic model to understand the complex interactions between the epidemic control
and the epidemic data. Our model considers the changes in the public health policy, such
as confinement, social distancing measures, etc., through the time-dependent transmission
rate in the model. Data consists of the daily number of reported cases and the daily number
of second doses of vaccine. We refer to [8–16] for more results on the subject.

In the study, we propose a new model for vaccination implementation. We can
connect the model with vaccination to a model without vaccination. We will find a simple
transformation for the epidemic data to combine the daily reported case data and the
cumulative number of vaccinated individuals.

We can use the model to explore controlling the dynamics of virus propagation,
for example, by rapidly slowing down an epidemic wave. In this new model, we will take
explicitly into account the variable corresponding to the size of the vaccinated population,
and we will simulate the increasing efficacy of several vaccination scenarios. Then, we will
apply our model to the COVID-19 epidemic in New York City.

2. Materials and Methods
2.1. Data

The data are taken from the New York City Department of Health and Mental Hy-
giene [17]. The epidemic of SARS-CoV-2 started in NYC on 29 February 2020. The first
complete vaccination (i.e., vaccination with two doses) started in NYC on 15 December
2020. In Figure 1a, the green dots correspond to the day-by-day constant values of the
function CRData(t)′ that is used in the model. In Figure 1b, this green curve corresponds to
the value function CRData(t) =

∫ t
t0

CRData(σ)
′dσ that is used in the model.

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
0

1000

2000

3000

4000

5000

6000

7000

(a)

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
0

2

4

6

8

10
10

5

(b)

Figure 1. In (a), we plot CRData(t)′ the daily number of reported cases of SARS-CoV-2 for New York
City. In (b), we plot CRData(t) the cumulative number of reported cases of SARS-CoV-2 for New
York City.

In Figure 2a, the green dots correspond to the day by day constant values of the
function VData(t) that is used in the model. In Figure 2b, the red curve corresponds the
function CVData(t) =

∫ t
t0

VData(σ)dσ that is used in the model.
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Figure 2. In (a), we plot VData(t) the daily number of second doses of vaccine for New York City.
In (b), we plot CVData(t) the cumulative number of second vaccine doses for New York City (red
curve), and N −CVData(t) the number of unvaccinated individuals for New York City (blue curve).
The two curves in (b) cross when the number of vaccinated people reaches 50%.

2.2. Epidemic Model

Many epidemiological models are based on SIR or SEIR models, which are classical
in epidemic modeling. We refer to [18,19] for early articles devoted to such models and
to [20–28] for later models. In this section, we compare the following SEIUR model to
cumulative reported cases data

S′(t) = −τ(t)
[
I(t) + κ U(t)

]
S(t) −e VData(t)

S(t)
NUV(t)

,

E′(t) = τ(t)
[
I(t) + κ U(t)

]
S(t)− α E(t) −e VData(t)

E(t)
NUV(t)

,

I′(t) = α E(t)− ν I(t) −e VData(t)
I(t)

NUV(t)
,

U′(t) = ν (1− f ) I(t)− η U(t) −e VData(t)
U(t)

NUV(t)
,

R′(t) = ν f I(t)− η R(t),

(1)

where at time t, S(t) is the number of susceptible uninfected individuals, E(t) is the number
of exposed individuals (infected, but not yet capable of transmitting the infection), I(t)
is the number of asymptomatic infectious individuals, R(t) is the number of reported
symptomatic infectious individuals, and U(t) is the number of unreported symptomatic
infectious individuals. NUV(t) is the number of unvaccinated individuals. In the model,
S(t)/NUV(t) (respectively, E(t)/NUV(t), I(t)/NUV(t), and U(t)/NUV(t)) is the fraction
of susceptible (respectively, infected, reported, and unreported) in the population of unvac-
cinated individuals.

The system (1) is supplemented by the initial data

S(t0) = S0, E(t0) = E0, I(t0) = I0, U(t0) = U0, and R(t0) = R0. (2)

The mathematical model corresponds to the flowchart in Figure 3.
In the model, τ(t) is the time-dependent rate of transmission, 1/α is the average

duration of the exposed period, 1/ν is the average duration of the asymptomatic infectious
period, and for simplicity, we subdivide the class of symptomatic infectious individuals
into the fraction 0 ≤ f ≤ 1 showing severe symptoms, and the fraction 1− f showing
mild symptoms, assumed to be undetected. The quantity 1/η is the average duration
of the symptomatic infectious period for both unreported and reported symptomatic
individuals. Asymptomatic infectious and unreported symptomatic infectious individuals
both contribute to the infection of susceptible individuals, with the parameter κ (≥1 or
≤1) corresponding to their relative contributions. It is assumed that reported symptomatic
individuals do not contribute significantly to the transmission of the virus.
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Figure 3. Flowchart for the model. The colored arrows at the bottom represent the vaccination.

In the model, the parameter 0 ≤ e ≤ 1 is the vaccine efficacy. This means that
when e = 0 the vaccine is not effective at all, and if e = 1 the vaccine is fully effective.
The cumulative number of removed individuals t → ID(t), immunized (recovered or
vaccinated), and/or dead, satisfies the equation

ID′(t) = η[R(t) + U(t)] + e VData(t)
[

S(t) + E(t) + I(t) + U(t)
NUV(t)

]
. (3)

In this model, VData(t) is the flux of new vaccinated individuals. This means that∫ t2

t1

VData(σ)dσ,

is the total number of vaccinated individuals between t1 and t2.
Since no individuals were vaccinated at the start of the epidemic (i.e., for t = t0), we

can assume that the total number of individuals N in the population at time t0 is

N = S0 + E0 + I0 + R0 + U0.

The cumulative number of vaccinated individuals is given by

CV′Data(t) = VData(t), and CVData(t0) = 0,

which is equivalent to

CVData(t) =
∫ t

t0

VData(σ)dσ.

The number of unvaccinated individuals is

NUV(t) = N −CVData(t).

2.3. Equations of the SEIU Vaccination Model

Therefore the model (1) can be rewritten as follows

S′(t) = −τ(t)
[
I(t) + κ U(t)

]
S(t) −e

CV′Data(t)
N −CVData(t)

S(t),

E′(t) = τ(t)
[
I(t) + κ U(t)

]
S(t)− α E(t) −e

CV′Data(t)
N −CVData(t)

E(t),

I′(t) = α E(t)− ν I(t) −e
CV′Data(t)

N −CVData(t)
I(t),

U′(t) = ν (1− f ) I(t)− η U(t) −e
CV′Data(t)

N −CVData(t)
U(t),

(4)

Remark 1. We did not include an R equation in (4), because the R compartment is decoupled from
the rest of the system and we will not use it in the following.
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At the end of the asymptomatic infectious period (corresponding to the I compartment),
it is assumed that a fraction f ∈ (0, 1] of infectious individuals is reported. Therefore,
the cumulative number of reported cases CR(t) (Box 1) is connected to the epidemic model
by the following relationship

CR′Data(t) = ν f I(t), for t ≥ t0, and CRData(t0) = CR0. (5)

Box 1. Given and estimated parameters.

In the model, the data are represented by CR′Data(t), the daily number of reported cases,
and VData(t), the daily number of vaccinations.
In order to compare the model and the data, it is assumed that the known parameters are

S0, U0, κ, α, ν, f , η.

The three remaining parameters are estimated from the above quantities:

E0, I0, t→ τ(t).

2.4. Identification Problem

We define the fraction of not effectively vaccinated individuals at time t, starting from
the time t0, by

W(t) =
(

N −CVData(t)
N −CVData(t0)

)e
,

where CVData(t) is the cumulative number of second dose vaccinated. Then, W(0) = 1,
and t→W(t) is a non-increasing function (Box 2). Define

ĈRData(t) =
∫ t

t0

CR′Data(σ)

W(σ)
dσ. (6)

Box 2. Computation of the rate of transmission.

The transmission rate is fully determined by the parameters κ, α, ν, η, f , S0, E0, I0, U0, and by
using the five following equations for t ≥ t0

τ(t) =
τ̂(t)
W(t)

, (7)

where for t ≥ t0,

τ̂(t) =
1

Î(t) + κÛ(t)
× ĈE

′′
(t) + αĈE

′
(t)

E0 + S0 − ĈE
′
(t)− αĈE(t)

,

where

Î(t) =
ĈR
′
Data(t)
ν f

,

ĈE(t) =
1

α ν f

[
ĈR
′
Data(t)− ν f I0 + ν ĈRData(t)

]
,

Û(t) = e−η(t− t0)U0 +
∫ t

t0

e−η(t−s) (1− f )
f

ĈR
′
Data(s)ds.

The data that are represented by the functions t→ CRData(t) cumulative number of reported
cases, and t → VData(t) the cumulative number of second doses of vaccine are involved in
the Formula (6) to define ĈRData(t).
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The formula in Box 2 and Box 3 were obtained by applying the results in Griette,
Demongeot and Magal [7] to the system (A2) in Appendix A, we obtain the following
formula for the rate of transmission expressed in function of the cumulative number
of reported cases t → CRData(t), and the cumulative number of vaccinated individuals
t→ CVData(t).

Box 3. Computation of some initial values from the data.

From (5) we obtain

I0 =
CR′Data(t0)

ν f
,

and by using the I-equation of system (A2) and (A5), we obtain

E0 =
1
α

{
1

ν f

[
CR′Data(t0)

W(t0)

]′
+

CR′Data(t0)

f

}
.

2.5. Data Normalized by W(t)

In Figure 4a, we plot the daily number of reported cases normalized by W(t) (the
fraction of not efficiently vaccinated individuals at time t)

ĈRData(t)′ =
CRData(t)′

W(t)
= CRData(t)′

(
N

N −CVData(t)

)e

for several values of e = 0, 0.25, 0.5, 0.75, 1.
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Figure 4. We plot ĈRData(t)′ in (a), and we plot ĈRData(t) in (b) for New York City, and
e = 0, 0.25, 0.5, 0.75, 1. In (a), the green dots for e = 0 corresponds to the original daily num-
ber of reported cases CRData(t)′. In (b), the green curve for e = 0 also corresponds to the original
cumulative number of reported cases CRData(t).

In Figure 4b, we plot the daily number of cases normalized by W(t), that is

ĈRData(t) =
∫ t

t0

CRData(σ)
′

W(σ)
dσ =

∫ t

t0

CRData(σ)
′
(

N
N −CVData(σ)

)e
dσ

for several values of e = 0, 0.25, 0.5, 0.75, 1.

2.6. Phenomenological Model

This section is devoted to the phenomenological model used to regularize the data. We
refer to [6,7] for more information. The phenomenological model is fitted to the cumulative
reported cases data during the epidemic periods and extended by a lines in between. We
regularize the junction point between the period where the phenomenological model has
changed. The regularization is obtained using a convolution with a Gaussian function
having a standard deviation equal to 7 days (Figure 5).
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(a) (b)

Figure 5. In (a), we plot the phenomenological model used to represent the daily number of reported
cases normalized by the efficient vaccinations. In (b), we plot the phenomenological model used to
represent the cumulative number of reported cases normalized by the effective vaccinations. The blue
background color regions correspond to epidemic phases, and the yellow background color regions
to endemic phases.

2.7. Instantaneous Reproduction Numbers

In order to compute the day by day transmission rate t→ τ(t), we use the Formula (7).
Then by using the model (A2) we can consider the problem of the instantaneous reproduc-
tion numbers (see [7] for more information). To investigate the role of the vaccination for
the COVID-19 data, we use our method to compute the transmission rate, and we consider
the instantaneous reproduction number with vaccination

RV(t) =
τ(t)S(t)

ην
× (η + κν(1− f )), (8)

the quasi-instantaneous reproduction number with vaccination

R0
V(t) =

τ(t)W(t)S0

ην
× (η + κν(1− f )), (9)

and the quasi-instantaneous reproduction number without vaccination

R0(t) =
τ(t)S0

ην
× (η + κν(1− f )). (10)

3. Results

The parameters used in the simulations are listed in Table A1 in Appendix B.

3.1. The Instantaneous Reproduction Number

In Figure 6, we observe almost no influence of the vaccine efficacy e on the basic
reproduction number. This is due to some compensatory effects between τ(t) and S(t),
because τ(t) and S(t) are evaluated to adjust the number of cumulative reported cases,
which is fixed.

Figure 6. In this figure we plot the instantaneous reproduction number with vaccination
RV(t) = τ(t)S(t)

ην × (η + κν(1− f )). The blue background color regions correspond to epidemic
phases, and the yellow background color regions to endemic phases.
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3.2. The Quasi-Instantaneous Reproduction Number

In Figure 7, we see almost no difference with Figure 6. It means that the cumulative
number of infected is so small compared to the total size of the population of New York City
that the R0

V(t) is almost unchanged compared to RV(t). This means that the cumulative
number of infected is too small to have a significant impact to reduce the basic reproduction
number. In other words, the changes in the number of susceptible are not significant
enough to become observable in the instantaneous reproduction number. This result means
that, if we relax the social distancing measures, the epidemic outbreaks will likely be as
large as the most significant epidemic wave.

3.3. The Quasi-Instantaneous Reproduction Number without Vaccination

In Figure 8, the blue curve corresponds the R0(t). The instantaneous reproduction
number should be interpreted as the instantaneous reproduction number in the absence
of vaccination, conditionality to the fact that the vaccine is fully efficient. The same
interpretation holds for e = 0.75, 0.5, 0.25, 0. This means that vaccination has a strong
influence on the dynamic of the epidemic. This influence indeed strongly depends on the
vaccine efficacy e. We can see that during the most recent epidemic wave, the situation
in New York City would have been much worst in the absence of vaccination. We have,
indeed, for e = 0.75, the last peak of the red curve representing R0(t) around 4.5.

Figure 7. In this figure we plot the quasi-instantaneous reproduction number with vaccination
R0

V(t) =
τ(t)W(t)S0

ην × (η + κν(1− f )). The blue background color regions correspond to epidemic
phases, and the yellow background color regions to endemic phases.

Figure 8. In this figure we plot the quasi-instantaneous reproduction number without vaccination
R0(t) = τ(t)S0

ην × (η + κν(1− f )). The blue background color regions correspond to epidemic phases,

and the yellow background color regions to endemic phases. One may observe that R0(t) is a multiple
of the time dependent transmission rate.

We cannot estimate the value of the vaccine efficacy, because for each value of e, we ob-
tain a perfect match with the data (i.e., a perfect correspondence with the phenomenological
model plotted in Figure 5b). However, conditionally to the value of e, we can draw some
conclusions. If the vaccine efficacy is above 0.75, it means that, during the last epidemic
wave, New York City escaped an epidemic wave as bad as (or worse than) the first one
(this corresponds to the region between the blue curve and the red curve in Figure 8 in the
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last blue background color regions). If the vaccine efficacy is between 0.25 and 0.75, we can
see a significant gain compared to the green curve (this corresponds to the region between
the purple curve and red curve in Figure 8 in the last blue background color regions).

The above result means that a loss of vaccine efficacy increases the number of sus-
ceptible patients. So that with an equal number of daily reported cases, the reproduction
number must decay. Conversely, if the vaccine efficacy increases, the reproduction number
must increase.

4. Discussion
4.1. Inclusion of Vaccination Data in the Model

In this article, we developed a new method to model the COVID-19 epidemic by using
the daily reported cases and vaccination data. We use phenomenological models to get
an exploitable reconstruction of the history of the epidemic and develop a new method to
identify the parameters of an epidemic model with vaccination that reproduces the exact
behavior of the data.

Since the first efficient vaccines against SARS-CoV-2 appeared at the end of 2020, many
countries have implemented vaccination policies to protect their population. As a result,
a non-negligible fraction of the population has acquired at least a partial immunity against
the disease. This means that the number of susceptible hosts has been significantly reduced.
Several studies, including some of the authors’ works, developed methods to connect
the data with epidemic models. In the presence of vaccination, these models may over-
estimate the number of susceptible hosts, and their conclusions should therefore be taken
with precaution. We correct this flaw by including vaccination data in our model in the
present study. We construct, in particular, the transmission rate τ(t) and the instantaneous
reproduction number RV(t) of the disease.

4.2. Instantaneous and Quasi-Instantaneous Reproduction Numbers in the Model

In Figures 6 and 7, we present our computations concerning the instantaneous and
quasi-instantaneous reproduction number RV(t) and R0

V(t). The explicit formula devel-
oped in this paper allows us to investigate the role of the vaccine efficacy parameter e.
Surprisingly, the instantaneous reproduction number reconstructed from the data does not
depend very much on the vaccine’s efficacy. We observe that the five curves presented in
Figure 6 are almost equal (the same can be said about the quasi-instantaneous reproduction
number in Figure 7). We understand this phenomenon as a balance between the number
of susceptible hosts S(t) and the transmission rate τ(t). This is because, since the data is
unchanged, the increase in the efficacy of the vaccine reduces the number of available hosts,
so the transmission rate must be increased to recover the data. In this process, the product
τ(t)S(t) (and therefore RV(t) and R0

V(t)) is almost unchanged.

4.3. Impact of Vaccination Policies in the Model

Immunization data can help to understand better the effectiveness of a city, a state,
or a country’s immunization policy. Strictly speaking, this policy should be adapted to the
populations at risk and, for example, be different according to the age groups and take into
account the progressive degradation of the immunity conferred by the vaccines, due to
the appearance of variants of the initial virus.The data used in this article do not consider
any specificity of sub-populations for New York City. Therefore, the age groups were not
considered, nor the extinction of immunity over time, which could be taken into account
by considering an efficacy e dependent on the time and a flux of the vaccinated back into
the susceptible compartment.

4.4. Extensions of the Model and Future Work

Despite these shortcomings, the model clearly shows the impact of the vaccine policy
on the epidemic dynamics, thanks to the explicit formulas allowing the calculation of
important parameters, such as the transmission rate. In addition, the model allows for the
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introduction of additional elements, when documented by observed data, such as age, loss
of immunization, and cross-immunization. This last phenomenon causes weights on the
vaccine policy’s effectiveness, which is interesting for further investigation.

Vaccination confers a new immunity, which is in addition to a possible pre-existing
cross-immunity [29], and the vaccination policy could be adjusted in relation to the response
via cross-immunity against epitopes common to numerous coronaviruses. For example,
if the age classes are considered, young individuals are those whose cross-immunity is
still active, causing a strong response to vaccination with possible systemic undesirable
effects. Consequently, it would be interesting in the future to develop improvements of
the model in order to refine the number of doses per target population at risk and thus
ensure, for a smaller quantity of vaccinated, the same efficacy in the immunization of the
general population.

Our model could be extended in several other directions. Here we did not distinguish
between immunized, dead, and vaccinated individuals. These could be added to the model,
and other phenomena could be included as well, like a different fading rate of immunity
coming from the disease and the vaccine, provided the associated parameters (death rate,
etc.) are known. By including age classes, we could also distinguish the strength of the
immune response according to age and better measure the benefit–risk ratio of vaccination
with respect to age. We could also implement a different rate of loss of immunity by
age class.

More careful considerations encourage caution with regard to the above simplifications
and could lead to further studies. For example, vaccination efficacy is dependent on the
appearance of variants and the existence of cross-immunization:

(1) Inducing an antibody response may help select variants [30,31], a phenomenon very
difficult to control because it is impossible to know what exact dose of antigenic Spike
protein is released after each vaccination and what is its pharmacokinetics and its
bio-distribution over time.

(2) In the development of mRNA vaccines, cross-immunity was overlooked entirely [29].
There are anti-coronavirus antibodies and many epitopes common to the various
endemic known coronaviruses, conserved with SARS-CoV-2. Vaccination ignores
pre-existing cross-immunity, which is unfortunate, as the doses injected could be
adjusted for a response via cross-immunity against epitopes common to coronaviruses.
Young individuals are those whose cross-immunity is still active, and it would be
helpful to design a vaccination policy to obtain the best efficacy per target population
at risk.

In future work we will investigate these issues.

5. Conclusions

This article provides a new approach to include vaccinations in epidemic models.
This approach is general and could be employed in other types of epidemic models. We
successfully used the daily reported cases and vaccination data, which allowed us to
understand New York city’s situation better.
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Appendix A. Transformation of the System into a System into a Standard
Epidemic Model

The goal of this section is to connect the model with vaccination to the model without
vaccination used previously in [7]. Our goal is to apply to the transformed system some of
the results obtained in [7]. Set

W(t) := exp
(

e
∫ t

t0

−CVData(σ)
′

N −CVData(σ)
dσ

)
.

Then,
W(t) = exp(e {ln[N −CVData(t)]− ln[N −CVData(t0)]})

therefore,

W(t) =
(

N −CVData(t)
N −CVData(t0)

)e
.

By integrating the S-equation of system (4) we obtain

S(t) = S0 exp
(
−
∫ t

t0

τ(σ)
[
I(σ) + κ U(σ)

]
dσ + e

∫ t

t0

−CVData(σ)
′

N −CVData(σ)
dσ

)
.

Hence, we have

S(t) = S0 exp
(
−
∫ t

t0

τ(σ)
[
I(σ) + κ U(σ)

]
dσ

)
W(t). (A1)

Define

Ŝ(t) :=
S(t)
W(t)

.

It follows that from (A1) that

Ŝ′(t) = −τ(t)
[
I(t) + κ U(t)

]
Ŝ(t).

By setting

Î(t) :=
I(t)

W(t)
., Û(t) :=

U(t)
W(t)

, and τ̂(t) = τ(t)×W(t),

we obtain
Ŝ′(t) = −τ̂(t)

[
Î(t) + κ Û(t)

]
Ŝ(t).

By replacing (A1) in the E-equation of system (4), we obtain

E′(t) = τ(t)
[
I(t) + κ U(t)

]
S0 exp

(
−
∫ t

t0
τ(σ)

[
I(σ) + κ U(σ)

]
dσ
)

W(t)

−α E(t)− e
CVData(t)′

N −CVData(t)
E(t).

We observe that

1
W(t)

= exp
(∫ t

t0

e
CVData(σ)

′

N −CVData(σ)
dσ

)
=

(
N −CVData(t)
N −CVData(t0)

)e
,

and (
E(t)
W(t)

)′
=

E′(t)
W(t)

+ e
CVData(t)′

N −CVData(t)
E(t)
W(t)

,

therefore, we obtain(
E(t)
W(t)

)′
= τ(t)

[
I(t) + κ U(t)

]
S0 exp

(
−
∫ t

t0

τ(σ)
[
I(σ) + κ U(σ)

]
dσ

)
− α

E(t)
W(t)

,



Biology 2022, 11, 345 12 of 14

and by setting

Ê(t) :=
E(t)
W(t)

.

we obtain
Ê′(t) = τ(t)

[
I(t) + κ U(t)

]
Ŝ(t)− αÊ(t).

By using similar argument for the remaining equations of (4) we obtain the following result.

Lemma A1 (Transformation of the system). We define for t ≥ t0,

Ŝ(t) =
S(t)
W(t)

, Ê(t) =
E(t)
W(t)

, Î(t) =
I(t)

W(t)
, Û(t) =

U(t)
W(t)

.

Then the system (4) becomes for each t ≥ t0,
Ŝ′(t) = −τ̂(t)

[
Î(t) + κ Û(t)

]
Ŝ(t),

Ê′(t) = τ̂(t)
[
Î(t) + κ Û(t)

]
Ŝ(t)− α Ê(t),

Î′(t) = α Ê(t)− ν Î(t),

Û′(t) = ν (1− f ) Î(t)− η Û(t),

(A2)

with initial data

Ŝ(t0) = S0, Ê(t0) = E0, Î(t0) = I0, R̂(t0) = R0, Û(t0) = U0,

and
τ̂(t) = τ(t)×W(t). (A3)

Connection with the data: By using the Equation (5) (connecting the model and the data),
we obtain

ν f Î(t) =
CR′Data(t)

W(t)
, ∀t ≥ t0.

We define for all t ≥ t0,

ĈRData(t) :=
∫ t

t0

CR′Data(σ)

W(σ)
dσ. (A4)

Then we obtain the same formula than (5) (with hat), namely,

ĈR
′
Data(t) = ν f Î(t), ∀t ≥ t0. (A5)

Appendix B. Table of Parameters

Table A1. In this table we list the values of the parameters of the epidemic model used for the simulations.

Period Interpretation Parameters Value Method

S0 Number of susceptible individuals at time t0 8.419× 106 [32]

E0 Number of exposed individuals at time t0 Computed

I0 Number of asymptomatic infectious individuals at time t0 Computed

U0 Number of unreported symptomatic infectious at time t0 0 Fixed

τ(t) Transmission rate Computed

f Fraction of reported symptomatic infectious 0.8 Fixed

κ
Fraction of unreported symptomatic infectious

capable to transmit the pathogen 1 Fixed
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Table A1. Cont.

Period Interpretation Parameters Value Method

1/α Average duration of the exposed period 3 days Fixed

1/ν Average duration of the asymptomatic infectious period 7 days Fixed

1/η Average duration of the symptomatic infectious period 7 days Fixed

e Vaccine efficacy 0, 0.25, 0.5, 0.75, 1 Fixed
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