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Abstract

Systems biology models are used to understand complex biological and physiological sys-

tems. Interpretation of these models is an important part of developing this understanding.

These models are often fit to experimental data in order to understand how the system has

produced various phenomena or behaviour that are seen in the data. In this paper, we have

outlined a framework that can be used to perform Bayesian analysis of complex systems

biology models. In particular, we have focussed on analysing a systems biology of the brain

using both simulated and measured data. By using a combination of sensitivity analysis and

approximate Bayesian computation, we have shown that it is possible to obtain distributions

of parameters that can better guard against misinterpretation of results, as compared to a

maximum likelihood estimate based approach. This is done through analysis of simulated

and experimental data. NIRS measurements were simulated using the same simulated sys-

temic input data for the model in a ‘healthy’ and ‘impaired’ state. By analysing both of these

datasets, we show that different parameter spaces can be distinguished and compared

between different physiological states or conditions. Finally, we analyse experimental

data using the new Bayesian framework and the previous maximum likelihood estimate

approach, showing that the Bayesian approach provides a more complete understanding of

the parameter space.

Author summary

Systems biology models are mathematical representations of biological processes that

reproduce the overall behaviour of a biological system. They are comprised by a number

of parameters representing biological information. We use them to understand the behav-

iour of biological systems, such as the brain. We do this by fitting the model’s parameter

to observed or simulated data; and by looking at how these values change during the fit-

ting process we investigate the behaviour of our system. We are interested in understand-

ing differences between a healthy and an injured brain. Here we outline a statistical

framework that uses a Bayesian approach during the fitting process that can provide us
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with a distribution of parameters rather than single parameter number. We apply this

method when simulating the physiological responses between a healthy and a vascular

compromised brain to a drop in oxygenation. We then use experimental data that demon-

strates the healthy brain response to an increase in arterial CO2 and fit our brain model

predictions to the measurements. In both instances we show that our approach provides

more information about the overlap between healthy and unhealthy brain states than a fit-

ting process that provides a single value parameter estimate.

Introduction

Systems biology models are used to understand complex biological and physiological systems

comprised of large numbers of individual elements that give rise to emergent behaviours.

These complex systems are dependent on both the properties of the whole network and on the

individual elements [1]. This inherent complexity within the models can lead to difficulties in

determining how best to interpret information obtained through their use.

At University College London, the family of BrainSignals models (and the BRAINCIRC

model on which they are based) are used to understand the brain’s dynamics via a systems

biology approach. They bring together a number of mathematical models relating to different

aspects of blood circulation, oxygen transport and oxygen metabolism within the brain in

order to develop a more complete model that can be used alongside experimental data to simu-

late physiological phenomena of the brain, such as autoregulation and neural activation. This

allows us to understand how our measurements are linked to specific brain physiological and

metabolic mechanisms.

All of the models were developed to reproduce broadband near-infrared spectroscopy

(NIRS) measurements of brain tissue concentration changes of haemoglobin (oxygenation

and haemodynamics) and cytochrome-c-oxidase (mitochondrial metabolism) and vary in

their complexity and scope. The first model developed was the ‘BRAINCIRC’ model in 2005

[2], followed by the ‘BrainSignals’ model [3] in 2008. A number of additional versions were

then developed from this, such as the ‘BrainPiglet’ model [4] which was developed to to simu-

late the physiological and metabolic processes of the piglet brain often used as the neonatal

preclinical model. This was extended in BrainPiglet v2.0 to incorporate the effects of cell death

during injury [5]. In 2015, Caldwell et al. modified and simplified the BrainSignals model to

both reduce model complexity and improve model run time, producing the ‘BrainSignals

Revisited’ model [6]. All of these models are run using the Brain/Circulation Model Developer

environment (BCMD) and are defined in a simple text language. The data collected and ana-

lysed with the models primarily consists of broadband NIRS data, providing information

about tissue oxygenation, through monitoring of oxy- and deoxy-haemoglobin levels, and cel-

lular metabolism, through the concentration of cytochrome-c-oxidase. This data is then sup-

plemented by systemic information such as blood pressure, arterial oxygen saturation and/or

partial pressure of CO2.

One of the main uses of the models is to fit the model simulations to clinical and experi-

mental data and investigate how model parameters are affected. In the case where data is col-

lected from an injured or sick patient, these changes may illuminate what the underlying

causes/mechanisms are behind the illness or injury is.

The models are currently fit using a maximum likelihood based method, with a single value

obtained for each parameter. Sensitivity analysis performed on the models to determine which

parameters are most important in influencing each model output for any particular dataset.

Bayesian framework in brain modelling
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These parameters are then optimised using the PSwarm method [7] to minimise a given error

metric, such as the Euclidean distance, between the modelled and measured signals. Through

this each output has a set of optimised parameter values. Parameter values were limited to the

same ranges used in the sensitivity analysis [5].

This approach has a number of drawbacks. The models are mechanistic and, if fitted to sin-

gle value parameter estimates, will produce the same output for the same input. Physiology

and biology, however, is unlikely to operate in such a constrained manner. Additionally, this

set of best-fit parameters for the model may not be representative of the full parameter space

[8]. In an attempt to try to compensate for this potential drawback, Caldwell et al. [5] fit the

BrainPiglet model multiple times for two different piglets and found that, whilst parameter val-

ues can vary within the same data, separate parameter spaces for each piglet did seem to exist

based on the brain physiological status of the piglet following a hypoxic-ischaemic insult.

One of the key ways in which these models are used to extract information from data is

through the use of parameter estimation and fitting. However, this step remains a difficult

mathematical and computational problem, potentially originating in the lack of identifiability

[9]. In addition, there has been discussion of ‘universal sloppiness’ within dynamic systems

biology models. Gutenkunst et al. [10] proposed that sloppiness, where the parameters of a

dynamic model can vary by orders of magnitude without affecting model output, is a universal

property of systems biology models. Due to this sloppiness, it may not be possible to make

parameter estimations that can be used to make inferences about the system [10, 11]. Chis

et al. have stated however that sloppiness is not equivalent to a lack of identifiability and that a

sloppy model can still be identifiable [12]. Apgar et al. note that experimental design can be

used to constrain a sloppy parameter space by choosing a set of complementary experiments

[13].

The use of a Bayesian methodology, by avoiding point estimates, can allow the full uncer-

tainty of the problem to be captured [8]. In fact, the use of an Approximate Bayesian Computa-

tion (ABC) approach, discussed below, is particularly well suited to these kinds of problems

[14]. There are many examples of Bayesian methods being used to analyse bioinformatics data

and systems biology models [15], including in sequence analysis [16], gene microarray data

[17] and in models of genetic oscillators [18] and DNA network dynamics [19]. There are a

number of models that take a systems biology approach towards understanding physiology,

particularly oxygen transport and blood flow, including the previously mentioned BrainSignals

[2, 3, 5] and BrainPiglet [4, 5] models, the Aubert-Costalat model [20], and work by Fantini

[21–24] and Orlowski and Payne [25, 26] where Bayesian parameter estimation could also be

applied but has yet to be.

Bayesian inference utilises Bayes’ rule,

pðyjyÞ ¼
pðy; yÞ
pðyÞ

¼
pðyÞpðyjyÞ

pðyÞ
;

where p(y) =
R
θ p(θ)p(y|θ)dθ is the marginal probability of y and p(y|θ) is the likelihood. Typi-

cally, p(y) is not known and the likelihood will not be known explicitly or may require margin-

alising over some values of θ. This often leaves the solution analytically intractable. Instead

we can try solve for p(θ|y) using a Monte Carlo or Markov Chain Monte Carlo (MCMC)

approach.

Where a likelihood function can be defined there are a number of these methods that can

be used to infer a posterior distribution, p(θ|y). The simplest is the Gibbs Sampler [27], which

in its most basic form is a special case of the Metropolis-Hastings algorithm [28]. Although the

BrainSignals models are deterministic, the model noise is a combination of process noise and

Bayesian framework in brain modelling
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experimental error which is expected to depend on the state in a non-trivial manner. This

makes formulating an analytical expression for the likelihood difficult. In this case where a

likelihood expression is unobtainable a likelihood-free approach using ABC is required

instead. There are a number of different methods available with the simplest being the ABC

rejection algorithm (ABC REJ) approach. This has the additional benefit of allowing us to con-

sider different summary statistics that would not be valid in a likelihood-based approach. It

may be that these summary statistics allow us to optimise for specific behaviours that have

physiological relevance.

The aim of this paper is to introduce the new BayesCMD modelling platform that can be

used in systems biology models of physiology such as the BrainSignals models, but that can be

replicated beyond these. For this work, we have chosen to use ABC REJ as whilst it is less effi-

cient than the other methods mentioned here, the simplicity with which it can be implemented

is a significant factor. The models and modelling environment used are already complex and

so this initial work focuses on the use of the simplest method as proof of utility. We will dem-

onstrate the effectiveness of this approach by using it to analyse two simulated datasets chosen

to represent healthy and impaired brain states, before then using it on experimental data from

a healthy subject undergoing a hypoxia challenge. We will show that the Bayesian approach

allows us to extract more information from our data than the previous maximum likelihood

approach, with a more complete picture of the parameter space being obtained.

Materials and methods

Fig 1 shows a generalised outline of the final Bayesian analysis process. It can be split into

three main sections: sensitivity analysis, Bayesian analysis and model checking. However,

before applying the process, data must be generated or collected and an appropriate model

chosen.

Choice of model

Whilst a brief overview of the history of the BrainSignals models was given in the introduction,

in this section we provide more information about the specifics of the different models.

Table 1 compares the number of reactions, equations, relations, reactions, variables and

parameters in three different models. The BRAINCIRC model from 2005 built on an earlier

Fig 1. Generalised analysis process. A simplified representation of the Bayesian analysis process.

https://doi.org/10.1371/journal.pcbi.1006631.g001
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circulatory model by Ursino and Lodi [29] and combined models for the biophysics of the cir-

culatory system, the brain metabolic biochemistry and the function of vascular smooth muscle.

The BrainSignals model which succeeded it simplified the ‘BRAINCIRC’ model and added a

submodel of mitochondrial metabolism. As previously mentioned, in order to better simulate

the physiological and metabolic processes of the piglet brain, which is often used as the neona-

tal preclinical model, the ‘BrainPiglet’ model [4] was developed from the BrainSignals model.

It involved modifying the default values for 11 of the 107 parameters used and was extended to

include simulated measurements for magnetic resonance spectroscopy values that included

brain tissue lactate and ATP production, measurements of which are available in piglet studies.

Its extension, BrainPiglet v2, incorporated the effects of cell death during injury in order to to

investigate why two piglets showed different recoveries following hypoxia-ischaemia, finding

that the differences could be explained by including cell death within the model [5].

The ‘BrainSignals Revisited’ model was produced by making various simplifications to the

BrainSignals model by identifying various functions that could be replaced by linear approxi-

mators without reducing model applicability. This reduced complexity and decreased the

time taken to run a simulation, whilst being able to reproduce the same results and behaviour

of the original model. This reduced model of the adult brain was later extended to simulate

extracerebral haemodynamics to investigate confounding factors with brain near-infrared

spectroscopy measurements, the ‘BSX’ model [30].

The models are driven with input signals, such as the blood pressure and/or oxygen saturation,

and simulate brain tissue measurments of oxygenation, blood volume and metabolism, as well as

the middle cerebral artery velocity (Vmca) and the cerebral metabolic rate of oxygen (CMRO2).

The model can be split into roughly 3 compartments—blood flow, oxygen transport and metabo-

lism—with boundaries chosen to minimise interdependence. Fig 2 outlines this in more detail.

All of these models are solved using the BCMD framework and are written in a simple text

format that can be translated to executable C code and solved using the RADAU5 solver [31].

The models take a standard differential-algebraic equation representation, of the form:

M
dy
dt
¼ fðy; θ; tÞ ð1Þ

where y is a vector of variables of interest, M is a constant, possibly-singular, mass matrix spec-

ifying relations among the differential terms, and f is some vector-valued function, possibly

having additional parameters θ. If a row of M is zero, the corresponding equation in f is alge-

braic rather than differential.

In this work we have chosen to use the refactored BrainSignals model [6], with a minor

modification to include the haemoglobin difference (ΔHbO2 − ΔHHb = ΔHbD) as a model

output alongside the normal outputs of oxyhaemoglobin (ΔHbO2), deoxyhaemoglobin

(ΔHHb), total haemoglobin (ΔHbO2 + ΔHHb = ΔHbT), tissue oxygenation index (TOI), and

cytochrome-c-oxidase (ΔCCO). Both ΔHbD and ΔHbT are included in the experimental

Table 1. Comparison of the number of reactions, equations, relations, reactions, variables and parameters in the BRAINCIRC, BrainSignals Revisited and BrainPig-

let v2.0 models.

BRAINCIRC BrainSignals Revisited BrainPiglet v2.0

Reactions 81 5 17

Differential Equations 5 9 21

Algebraic Relations 72 3 3

Variables 168 40 128

Parameters 697 139 227

https://doi.org/10.1371/journal.pcbi.1006631.t001
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dataset due to them being good indicators of brain oxygenation changes and brain blood vol-

ume changes respectively, with both being easily measured using broadband NIRS. All NIRS

outputs, except TOI, are measured as changes relative to an initial value and therefore both

data and model outputs are normalised to an initial value of 0.

Data

Three datasets were used to test the new Bayesian model analysis process. Firstly, ‘healthy’ data

was simulated using the BrainSignals model with the default parameter settings, as per [2, 3].

Next, the same inputs were used but with the model modified to represent an ‘impaired’ brain.

To do this, a single parameter was changed to reflect a potential pathology or injury, to gener-

ate an ‘impaired’ simulated dataset. Finally, we used experimental data from a healthy adult

undergoing a hypoxia challenge.

Simulated data. Partial pressure of CO2 (PaCO2) and arterial blood pressure (ABP) were

kept at their baseline values of 40 mmHg and 100 mmHg respectively, whilst arterial oxygen

saturation (SaO2) was varied to simulate hypoxia through a decrease in arterial oxygen satura-

tion from 97% to 65%. Initially, all model parameters were kept at their default values in order

to simulate a healthy brain’s response to this challenge. Fig 3 shows the arterial saturation data

and the model response across all considered model outputs.

Fig 2. Simplified structure of a typical BrainSignals model. A typical BrainSignals model can be split into four compartments

or submodels. The blood flow submodel represents blood flow from arteries to veins via the capillary bed and the oxygen transport
submodel estimates diffusion of dissolved O2 from the capillary blood to the brain tissue. Delivered oxygen is then utilised by the

metabolism submodel. Finally, the measurement submodel translates the internal states of the blood flow and metabolism

submodels into observable outputs. Model inputs are shown in red and consist of arterial blood pressure (ABP), arterial oxygen

saturation (SaO2), partial pressure of CO2 (PaCO2) and a parameter specifying relative demand, whilst measurable outputs are

shown in blue, including NIRS signals as well as middle cerebral artery velocity (Vmca) and cerebral metabolic rate of oxygen

(CMRO2).

https://doi.org/10.1371/journal.pcbi.1006631.g002

Bayesian framework in brain modelling
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Fig 3. Healthy and impaired brain simulations. Figures a)-e) show simulations of a healthy brain’s response to hypoxia, whilst f)-j)

show the impaired brain’s response. The input variable of arterial oxygen saturation is shown in blue and is the same for both

simulations, whilst the outputs of TOI, ΔHbO2, ΔHHb and ΔCCO clearly differ between the two brain states.

https://doi.org/10.1371/journal.pcbi.1006631.g003

Bayesian framework in brain modelling
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After simulating the healthy brain response and determining its posterior parameter distri-

bution, the model was altered to include a pathological or impaired brain state. Fig 3f)–3j)

shows the model response across all considered model outputs for this impaired brain state.

The response of the model outputs to the same change in arterial saturation is much smaller

than in the healthy simulation, with the TOI having a lower baseline value of around 45% as

compared to around 75%. This was done by changing a single parameter to be outside of the

healthy parameter space. r_t, which affects the shape of the muscular tension relationship,

was found to be sensitive in both the sensitivity analysis process (see Simulated data in the sen-

sitivity analysis results) and the Bayesian analysis. This is clearly seen in its comparatively nar-

row marginal posterior for the healthy data. Stifening of blood vessels in the brain has also

been noted as a potentially important factor in a number of different pathologies, including

Alzheimers [32], and in autoregulation, as seen in Fig 4.

The muscular tension relationship is defined as

Tm ¼ Tmaxexp �
r � rm
rt � rm

�
�
�
�

�
�
�
�

nm� �

; ð2Þ

where Tm is the muscular tension within the vessel wall and has a bell-shaped dependence on

the vessel radius, taking value Tmax at some optimum radius rm. rt and nm are parameters

determining the shape of the curve. Fig 4a illustrates the effect of changing rt on the shape of

the curve and shows that decreasing rt leads to increased muscular tension for the same vessel

radius due to a widening of the bell-shaped curve. This can be seen to represent a stifening of

vessels within the brain.

Changing rt has a significant effect on the brain’s ability to autoregulate within the model as

seen in Fig 4b, 4c and 4d. Fig 4b shows that higher blood pressure causes a decrease in cerebral

blood flow (CBF) for lower rt values, as opposed to an increase at the normal value of rt = 0.018

cm. Fig 4c shows that CBF is lower and decreases quicker for lower rt values as PaCO2 is

decreased and Fig 4d shows that across all considered oxygen saturations, lower rt gives a

lower CBF.

Whilst we would expect impairment of a real biological system to stem from multiple

parameter changes the intention here was to make the simplest modification possible whilst

still representing a potentially real physiological change in order test the method under the

simplest conditions. Additionally, it should be noted that a single parameter change will have

effects on various physiological variables. As outlined below, we also apply the method to

experimental data which is inherently more complex than this simple example and where we

expect multiple parameters to differ from baseline.

Experimental data. Experimental data will inherently contain more uncertainty for

parameter fitting than data generated by the model itself. This makes it important to test the

Bayesian analysis process on experimental data as well as that simulated from the model. The

data used was originally collected by Tisdall et al. [33] and is shown in Fig 5. Healthy adult

humans had their arterial oxygen saturation reduced from baseline to 80%, whilst minimising

changes in end tidal carbon dioxide tension (EtCO2).

The dataset contains three model inputs: arterial oxygen saturation, end tidal CO2 and arte-

rial blood pressure, with EtCO2 converted to partial pressure of CO2. Blood pressure data was

filtered using a low pass 5th order Butterworth filter, with a cut off of 0.05 Hz, to remove noise.

The heavily quantised nature of the partial pressure of CO2 data is not an issue here as the

model contains first order filters to smooth input signals over a given time period.

In terms of model outputs, only NIRS signals were used: ΔHbD, ΔHbT, ΔCCO and TOI.

All data was resampled to 1 Hz.

Bayesian framework in brain modelling
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Sensitivity analysis

When fitting a model as complex as BrainSignals, it is important to reduce the number of

parameters that are required to be fit. We expect that not all parameters will have a significant

impact on the model output for given set of input data. Instead, we can attempt to reduce the

Fig 4. Fig 4a shows the effect of different rt values on the shape of the muscular tension curve for a range of vessel radii. It can be seen that reducing rt widens

the curve, leading to increased muscular tension for the same vessel radius. Figures 4b, 4c and 4d show the effect of both increasing and decreasing model

inputs on cerebral blood flow for different values of rt. Cerebral blood flow (CBF) is given as a proportion of the normal CBF (40 ml 100g−1 min−1). Changing

rt has a significant effect on the brain’s ability to autoregulate within the model. Fig 4b shows that higher blood pressures causes a decrease in cerebral blood

flow for lower rt, as opposed to an increase at the normal value of rt = 0.018 cm. Fig 4c shows that for lower rt values, CBF decreases quicker as PaCO2 is

decreased. Fig 4d shows that across all considered oxygen saturations, lower rt gives a lower CBF.

https://doi.org/10.1371/journal.pcbi.1006631.g004

Bayesian framework in brain modelling
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number of considered parameters through sensitivity analysis. We used the Morris method

[34, 35], which is known to work well with a large number of parameters. The method requires

the time series to be reduced to a single number and identifies the parameters that have

produce the most variance in this summary value. Previously, we have used the Euclidean dis-

tance over the whole time series as our summary value but this has a number of significant

drawbacks.

If the summary measure is the distance across the whole time series, we’re failing to capture

specific changes that we know to be physiologically important. In the case of our hypoxia sim-

ulation, for example, we want to select parameters that are important in controlling the overall

Fig 5. Experimental hypoxia data. Data collected from a healthy adult during a hypoxia challenge. Systemic data used as model inputs are

shown in figures a), b) and c), with broadband NIRS measurements shown in figures d), e), f) and g).

https://doi.org/10.1371/journal.pcbi.1006631.g005

Bayesian framework in brain modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006631 April 26, 2019 10 / 29

https://doi.org/10.1371/journal.pcbi.1006631.g005
https://doi.org/10.1371/journal.pcbi.1006631


change from baseline. Taking the Euclidean distance over the time series as a whole however

does not prioritise this behaviour. Fig 6a shows three sets of data generated from the same toy

model function

yi ¼ a x sinðxÞ þ bþ �; ð3Þ

where a, b are both model parameters and � is random Gaussian noise.

Assume that without modification, our model produces data y0, with the default parameters

Θ0: a = 0, b = 0, and that the behaviour we want to reproduce is sinusoidal but, for some rea-

son, we don’t know which parameter is most important in producing this specific behaviour.

We decide to undertake sensitivity analysis, using a distance measure of some kind as our

summary statistic in order to identify the parameter most important in producing sinusoidal

behaviour. If when altering a parameter that distance measure increases, then the behaviour

summarised by that distance is sensitive to changes in that parameter. In this case, to produce

sinusoidal behaviour, we would want parameter a to be identified as important rather than

parameter b.

To generate our data x was varied from 0 to 2π, producing datasets y1 and y2 for the param-

eter sets Θ1: a = 1, b = 0, where only a is changed from baseline, and Θ2: a = 0, b = 0.707, where

only b is changed from baseline, respectively. y0 and parameter set Θ0 provide our baseline

data. This is seen in Fig 6a. It is clear from the figure that the two outputs y1 and y2 show very

different behaviour, the behaviour we want to optimise for is seen in y1.

Despite both y1 and y2 being qualitatively very different they are very similar when summa-

rised using only the Euclidean distance, with y1 having a Euclidean distance εeuc,1 = 10.01 and

y2 having a Euclidean distance εeuc,2 = 10.03. This means that we would fail to clearly identify

parameter a as being important than parameter b in producing sinusoidal behaviour.

Instead we can define a new summary measure, which we will call the “scaled baseline-to-

peak” (SBTP) distance. We know that we want to find the parameter that determines how

sinusoidal our model is. One way to emphasise this behaviour is to find the distance from our

baseline to the maximum or minimum (whichever has the largest absolute value) of our data,

as illustrated in Fig 6b. We then scale this by the range of our ‘default’ signal, y0, to normalise it

and avoid issues comparing data of different magnitudes. This gives us

SBTPðyiÞ ¼
max ðfjmaxðyiÞ � yiðt ¼ 0Þj; jminðyiÞ � yiðt ¼ 0ÞjgÞ

maxðy0Þ � min ðy0Þ
Þ ð4Þ

We then find the Euclidean distance between the SBTP value for our ‘default’ data, SBTP(y0),

and SBTP(y1) and SBTP(y2)

εSBTP; i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSBTPðy0Þ � SBTPðyiÞÞ
2

q

; ð5Þ

where here i 2 {1, 2}.

If we use εSBTP as our summary measure, we find that y1 has a distance εSBTP,1 = 240.2 and

y2 has a distance εSBTP,2 = 0.11. This would mean that parameter a could be clearly identified

as being more important in producing sinusoidal behaviour than parameter b.

We scale our baseline-to-peak distance because a number of model outputs significantly

vary over different scales. For example, cerebral oxygenation can be measured through TOI

which is a percentage and, as seen in Fig 3 can vary over 10-20%. Cytochrome-c-oxidase how-

ever, varies over a much smaller range, with a change of less than 1μM being typical. Failing to

account for these different scales will lead to parameters that affect larger magnitude outputs

being identified as more sensitive than those that affect smaller magnitude outputs, even if the

relative change is significant.
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For example, if changing a parameter θ1 causes the CCO change seen in Fig 3e) to double to

a minimum of -2μM, whilst a change in a parameter θ2 causes TOI to decrease to 55%, without

scaling the model seems more sensitive to θ2 because the magnitude of the change is much

more, even though the relative change is smaller. If we consider this change proportional to

the range of our data however, we account for its relative size.

It should also be noted that this choice of metric is specific to the behaviour being optimised

for. For example, in the case of a signal that is non-oscillatory, a different summary method

would be required based around the behaviour to be replicated within that particular signal.

We also acknowledge that there are a variety of different methods for identifying a sinusoidal

signal from a linear signal and that our choice of metric here is one of many. We have chosen

it as in the case of our hypercapnia data, we expect to see our signal to change from baseline to

maxima or minima, depending on the signal, before then returning to baseline. The SBTP dis-

tance emphasises this behaviour in a single number whilst also being easily comparable to pre-

vious work where the Euclidean distance was used.

We used the Morris elementary effect method [34] variant devised by Saltelli et al. [36].

This provides us with two notable statistics: the mean of the absolute values of the changes, μ�,

Fig 6. Fig 6a shows data generated from the same test function yi = a x sin(x) + b + �, where a, b are both model parameters and � is random Gaussian noise. x was

varied from 0 to 2π, producing data y0, y1 and y2 for the parameter sets Θ0: a = 0, b = 0, Θ1: a = 1, b = 0 and Θ2: a = 0, b = 2.5 respectively. Despite both y1 and y2

being qualitatively very different they are very similar when summarised using only the Euclidean distance, with y1 having a Euclidean distance εeuc,1 = 35.58 and y2

having a Euclidean distance εeuc,2 = 35.44. If we instead look at the scaled baseline-to-peak (SBTP) distance we find that y1 has a SBTP distance SBTP(y1) = 240.5

and y2 has a SBTP distance SBTP(y2) = 0.27, giving εSBTP,1 = 240.2 and εSBTP,2 = 0.11. Fig 6b illustrates how the scaled baseline-to-peak distance is defined using x
sin(x) + � as the example signal. The baseline-to-peak distance is the absolute distance from the baseline to max ({|ymax|, |ymin|}). This is then divided by the range of

the ‘default’ data, y0, to get the distance as a proportion of the total change seen within the data. In this example, baseline-to-peak distance is 4.82 and the range is

0.02, giving the previously mentioned SBTP distance of 240.5.

https://doi.org/10.1371/journal.pcbi.1006631.g006

Bayesian framework in brain modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006631 April 26, 2019 12 / 29

https://doi.org/10.1371/journal.pcbi.1006631.g006
https://doi.org/10.1371/journal.pcbi.1006631


and their standard deviation, σ. The larger the value of μ�, the more influential parameter is on

the output, whilst the larger the standard deviation, the more non-linear the influence of the

parameter is. The top ten most sensitive parameters, as per μ� were chosen to fit the model. σ
was not used to determine which parameters to fit as, whilst knowing the non-linearity of a

parameter is useful, in previous work [5, 6] we have opted to use simply μ� as this gives a good

summary of the sensitivity of a single parameter and feel it is pertinent to continue to do so

here. The parameter range considered for sensitivity is the default value ±50%. Sensitivities are

calculated for each output as well as across all outputs jointly. This joint sensitivity is calculated

by summing the SBTP value for each output and then determining variability in this total.

Approximate Bayesian computation

After selecting the most important parameters, the model was fit using the rejection algorithm

[37]. This is defined, as per [38], as:

1. Sample a candidate parameter vector θ� from the proposal distribution p(θ).

2. Simulate a dataset yrep from the model described by a conditional probability distribution

p(y|θ�).

3. Compare the simulated dataset, yrep, to the experimental dataset, y, using a distance func-

tion, d, and tolerance, �. If d(y, yrep)� �, accept θ�. The tolerance �� 0 is the desired level of

agreement between y and yrep.

The output of the ABC algorithm used will be a sample from the distribution p(θ|d(y, yrep)
� �). If � is sufficiently small, then p(θ|d(y, yrep)� �) will be a good approximation for the pos-

terior p(θ|y).

The choice of d(�, �) is important, just as with the sensitivity analysis. Previously the Euclid-

ean distance has been used to fit the model but, as in the case of the sensitivity analysis, this

fails to account for outputs that vary over different magnitudes. Instead, we have chosen to

include a number of other distance metrics including the root-mean-square error (RMSE) and

the normalised root-mean-square error (NRMSE). These are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1
ðx1;t � x2;tÞ

2

T

s

ð6Þ

NRMSE ¼
RMSEðx1; x2Þ

x1;max � x1;min
ð7Þ

where x1 and x2 are the two time series being compared, running over t = 1 to t = T, with T
being the total number of time points.

By dividing the RMSE by the range of the data, the errors for time series that vary over dif-

ferent magnitudes are comparable. Without doing this, parameters that mainly affect outputs

that vary over larger magnitudes are preferentially optimised. Normalisation prevents overfit-

ting of one output at the expense of others, providing a more reliable joint posterior distribu-

tion after fitting.

After an initial exploratory fitting of the different datasets, it was found that setting an abso-

lute tolerance value was not a suitable selection criteria. This was due to massively differing

distance values between datasets, with all parameter combinations in the simulated healthy

dataset producing NRMSE values smaller than almost all parameter combinations on the

impaired dataset.
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In general, the number of accepted samples that gives an adequate approximation of the

posterior distribution is problem dependent; dispersed posterior distributions will ultimately

require more samples. Poor estimation of the posterior can in most cases result in a wide pos-

terior predictive distribution which appears to give a poor quality fit because outlier posterior

samples cause biases. To address this issue in a pragmatic way, a fixed acceptance rate of 0.01%

was set. This meant the 0.01% parameter combinations with the lowest d(y, yrep) were used as

the posterior. The posterior was visualised through kernel density estimation on a pairplot

using the Seaborn plotting package [39]. The posterior predictive density is then generated by

sampling directly from the posterior 25 times and the model simulated for each sample. The

results are aggregated and plotted, with the median and 95% credible interval marked on the

plot.

The model was run in batches of 10,000,000 and the parameter combinations within the

acceptance rate were used as a posterior. This batch size was chosen as a compromise between

sufficient sampling of the parameter space and the computational time required to run the

batch. The quality of the fit obtained from this posterior determined if the model had been run

a sufficient number of times to sample the posterior adequately. If the posterior predictive dis-

tribution failed to capture the behaviour seen in the “true” data, then the process was repeated

until a more adequate fit was obtained.

Results

Sensitivity analysis

Simulated data. Sensitivity analysis was performed for the simulated healthy data set for

the CCO, HbO2, HHb and TOI outputs. Fig 7 shows the sensitivity analysis results across all

four outputs individually and for the outputs considered jointly. The results are plotted as bar

charts, with sensitivity, as per the μ� value, on the x-axis. The corresponding σ values for each

parameter can be seen in S1 Fig.

Table 2 shows the selected parameters, their respective μ� values and their definitions and

default values. The total sensitivity analysis results, shown in Fig 7a, produced 10 parameters

to be used in fitting the model. Sensitivity analysis based on individual outputs showed that

different parameters were important for different outputs, with TOI, in Fig 7b being domi-

nated by r_m, P_v and sigma_coll and oxyhaemoglobin, in Fig 7c, and deoxyhaemoglo-

bin, in Fig 7d, dominated by sigma_coll and R_auto. Cytochrome-c-oxidase however

showed levels of dependence that were similar across many parameters, as seen in Fig 7e, with

μ� values falling within a range of 0.7. For all individual outputs and the combined output,

only Xtot, r_m and sigma_coll were within the 10 most sensitive in all cases.

Experimental data. Sensitivity analysis was undertaken on the experimental dataset to

determine the parameters to be fit. Table 3 shows the selected parameters, their respective μ�
values and their definitions and default values. Fig 8 shows the results across all outputs. The

corresponding σ values for each parameter can be seen in S2 Fig. When considering all outputs

jointly, the effect of n_m and r_m is significantly larger than all other parameters, but when

looking at the individual outputs it’s clear that the other parameters are still important, but the

magnitude of the impact n_m and r_m have on the overall variability is drastically larger.

Unlike the simulated dataset, 9 of the top 10 most sensitive parameters have μ� values

between approximately 10 and 1000 which is significantly smaller than the range of the μ� val-

ues for TOI in the simulated data.

Similarly, the most sensitive parameters for HbD fall within a very small range with no one

parameter obviously determining the majority of the output’s behaviour. In contrast, the two

most sensitive parameters for HbT, r_m and n_m, are approximately 106 times larger than the
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Fig 7. Sensitivity analysis across all outputs for simulated data set. Bar charts showing μ� for the 10 most sensitive

parameters across all model outputs, with values plotted on a log scale where appropriate. Distance used for calculation is the

sum of εSBTP across all model outputs. All outputs except cytochrome-c-oxidase alone have μ� values that vary on a logarithmic

scale. Fig 7a shows results for all outputs combined, Fig 7b for TOI, Fig 7c for HbO2, Fig 7d for HHb and Fig 7e for CCO.

https://doi.org/10.1371/journal.pcbi.1006631.g007

Table 2. Sensitivity analysis results for simulated data, including each selected parameter’s definition and default value. � See [6] and [3] for a full explanation of this

parameter and the stimulus μ.

Parameter μ� Definition Default value

sigma_coll 1.32 × 106 Pressure at which blood vessels collapse. 62.79 mmHg

R_auto 1.16 × 106 Autoregulatory reactivity to oxygen. 1.5

n_h 1.68 × 105 Hill coefficient for oxygen dissociation from haemoglobin. 2.5

r_t 8.82 × 104 Radius in the muscular tension relationship. 0.018 cm

mu_max 8.82 × 104 Upper bound for the transformed stimulus μ�. 1

n_m 9.97 × 103 Exponent in the muscular tension relationship. 1.83

r_m 9.77 × 103 Vessel radius at which muscular tension is maximal. 0.027 cm

P_v 4.88 × 103 Venous blood pressure. 4 mmHg

phi 7.85 × 102 Oxygen concentration at half-maximal saturation. 0.036 mM

Xtot 5.54 × 102 Total concentration of haemoglobin O2 binding sites in blood. 9.1 mM

https://doi.org/10.1371/journal.pcbi.1006631.t002
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third highest. As with the simulated data, μ� values for CCO have much smaller values than all

other outputs and fall within a range of 1.0. Unlike the simulated data, no parameters were

sensitive across all individual and joint outputs.

Parameters. Whilst a full exploration of the parameters within the BrainSignals model is

outside the scope of this paper, we advise the reader to look at the original publications [3, 6],

and provide a brief overview of some of those identified as important here.

A number of the parameters identified as being important for the above datasets, such as

R_auto and mu_max, are dimensionless parameters. They are often model specific parame-

ters that cannot be directly measured and instead need to be considered in the context of their

meaning within the model. For example, an increase in R_auto would mean that the autore-

gulatory response would become more sensitive to changes in oxygen concentration. In con-

trast, other parameters such as Xtot, which is four times the concentration of haemoglobin,

are more easily measured in an experimental or clinical setting.

Some of the parameters identified as important are linked closely to the shape of the

autoregulatory response of the model and its sensitivity to changes in model inputs. These are

R_auto and mu_max in the simulated dataset, and v_on, v_un, R_autc and v_cn in the

experimental dataset. As we are driving the model with a changing input, the identification

of these parameters as important seems physiologically sensible. It should also be noted that,

despite other parameters not directly controlling the autoregulation response, the interconnec-

ted and complex nature of the BrainSignals model means that other parameters may still have

an impact on it indirectly, for example the parameter r_t controls the stifness of blood vessel

walls, which is important in controlling blood flow during autoregulation.

More detailed information on the exact nature of these parameters and how they function

within the BrainSignals model can be found in [6].

Bayesian analysis

Simulated data. The BrainSignals model was fit to the simulated “healthy” dataset ini-

tially. The model was run for 10,000,000 different parameter combinations before determining

that the posterior had been estimated sufficiently well, based on the quality of the posterior

predictive distribution. The samples in the posterior were found to have 0.019170� εNRMSE�

0.098098. Fig 9 shows this posterior distribution in blue. Xtot, phi and r_t show narrow

marginal distributions whilst the others are much wider. Median values for all parameters are

close to the model value, with R_auto showing a skew towards lower values in its marginal

Table 3. Sensitivity analysis results for experimental data, including each selected parameter’s definition and default value. �See [6] and [3] for a full explanation of

this parameter and the stimulus μ. †This is the arterial PaCO2 input put through a first order filter to simulate varying time response and is typically the same as arterial

PaCO2. For more information see [3].

Parameter μ� Definition Default Value

n_m 1.87 × 107 Exponent in the muscular tension relationship. 1.83

r_m 1.87 × 107 Vessel radius at which muscular tension is maximal. 0.027 cm

K_sigma 1.01 × 103 Parameter controlling the sensitivity of σe to vessel radius �. 10

p_tot 6.29 × 103 Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions. 20

k_aut 3.65 × 102 Parameter controlling overall functioning of autoregulatory response, with a value of 1 meaning intact autoregulation. 1

v_cn 2.76 × 102 Normal filtered PaCO2
†. 40 mmHg

sigma_e0 2.37 × 102 Parameter in the elastic tension relationship. 0.1425 mmHg

k2_n 2.17 × 102 Normal forward reaction rate for the reduction of a3. 3915.68 s−1

Xtot 1.48 × 102 Total concentration of haemoglobin O2 binding sites in blood (4 times the haemoglobin concentration). 9.1 mM

R_autc 1.31 × 102 Autoregulatory reactivity to carbon dioxide. 2.2

https://doi.org/10.1371/journal.pcbi.1006631.t003
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distribution that also leads to a median slightly lower than the model value. Fig 10a shows the

posterior predictive distribution produced by sampling 25 times directly from the posterior,

and shows a very good fit.

This healthy posterior was then used to define an impaired brain, as mentioned above. r_t
was set to 0.013 mmHg and the model driven with the same inputs as the healthy simulation.

This “impaired” dataset was then fit using the same approach as above, using the sensitivity

analysis results. The model was run 30,000,000 different parameter combinations, with the

increased run number required in order to sufficiently estimate the posterior. With an accep-

tance rate of 0.01%, a posterior was produced based on 3000 samples having 0.019170�

εNRMSE� 0.267152. Despite the higher error values as compared to the healthy data, the result-

ing fit was still deemed very good. Fig 9 shows this posterior in orange and Fig 10b shows the

time series generated by sampling 25 times directly from this posterior. Xtot, phi and r_t
show marginal distributions that are narrower than the others, but wider than those seen in

Fig 8. Sensitivity analysis across all outputs for experimental data set. Barplots showing μ� values for the 10 most sensitive

parameters across all model outputs, with the x-axis plotted using a log scale where appropriate. Distance used for calculation

is the sum of εSBTP across all model outputs. Fig 8a shows results for all outputs combined, Fig 8b for TOI, Fig 8c for HbT, Fig

8d for HbD and Fig 8e for CCO.

https://doi.org/10.1371/journal.pcbi.1006631.g008
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the healthy posterior. All parameters have median values close to the value set in the model.

A separation between the healthy r_t and impaired r_t marginal distributions is clearly

visible.

Fig 10c and 10d show a zoomed in view of each output in order to show the 95% credible

interval of the posterior predictive distribution. This is not clearly visible on the full trace as it

is reasonably small.

Fig 9. Comparison of posterior distributions for healthy and impaired simulated data. Fig 9 shows the posteriors for healthy and impaired data based on an

acceptance rate of 0.01%. Posterior are shown over the full prior range as defined in S1 and S2 Tables.

https://doi.org/10.1371/journal.pcbi.1006631.g009
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Fig 10. Comparison of predictions for healthy and impaired simulated data. Figures 10a and 10b show the predicted time series data from the healthy and

impaired posteriors respectively. Each posterior was sampled 25 times and the resulting runs aggregated, with the median and 95% credible intervals plotted in

dark blue and light blue respectively. Figures 10c and 10d show a zoomed in view of each output in order to show the credible interval of the posterior

predictive distribution.

https://doi.org/10.1371/journal.pcbi.1006631.g010
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Sections S3 to S10 Figs of the supplementary material show a number of different statistical

analyses of the results for the healthy and impaired datasets respectively. These are all posterior

predictive checks, where the posterior predictive distribution is used to produce a number of

statistical results that can be used to assess the quality of the model fit. S3 Fig shows the auto-

correlation of both the posterior predictive and observed data as a function of lag for each sig-

nal in the healthy data. S4 Fig shows the distribution of the residuals for each signal in the

healthy dataset, with the mean and standard deviation drawn on. Q-Q plots for these distribu-

tions are shown in S5 Fig and are used to assess the normality of the residuals. S6 Fig shows

the prior and posterior distributions for each parameter along with the Kullback-Leibler

Divergence for each of these, giving us a sense of how much information was gained when

moving from prior to posterior distribution. S7, S8, S9 and S10 Figs show these same posterior

predictive checks but for the impaired distribution.

The autocorrelation plots in S3 and S7 Figs show that the autocorrelation of the posterior

predictive distribution and the observed data match closely across all lag values for both

healthy and impaired datasets. Looking at the distributions of the residuals for each signal in

S4 and S8 Figs we can see that the residuals for TOI appear to be normally distributed, whilst

the other three signals all show generally symmetric but leptokurtic distributions. The Q-Q

plots in S5 and S9 Figs confirm this, suggesting that the residuals across all signals are gener-

ally normally distributed, with some slight differences at the highest and lowest quantiles.

Residuals for HHb and CCO both appear to be generally more leptokurtic than both TOI

and HbO2.

Experimental data. When approaching the experimental data, the criteria for a good fit

were different to those in the simulated dataset. With the simulated dataset, any parameters

not chosen for fitting would have the same value during the fitting process as during the gener-

ation of the simulated dataset. In the experimental data however, it is almost certain that the

default values of any parameters not chosen for fitting would not have the exact same value as

their biological, real-world analogue. As a result, instead of looking for a perfect fit, we instead

look for qualitative behaviours to be reproduced, such as the periodic increase and decrease in

output values due to the repeated hypoxia challenges.

The fitting process required 20,000,000 parameter combinations before a satisfactory fit

was obtained, and with an acceptance rate of 0.01% the posterior in Fig 11 consisted of 2000

samples with 0.778492� εNRMSE� 0.802900. The model was also fit using the previous Open-

Opt method, and the values obtained from that are also shown for comparison. We can see

that for parameters with reasonably well defined posterior, the OpenOpt values and the poste-

rior median are reasonably close, but for those showing a wider distribution, the OpenOpt

value can vary massively from the posterior median. For sigma_e0 and k2_n the OpenOpt

value is at one extreme end of the prior range, whilst the median remains central due to the

distribution being uniform. Fig 12 shows the predicted time series for all outputs based on the

posterior shown in Fig 11. The posterior was sampled 25 times with the resulting time series

aggregated, with the median and 95% credible intervals plotted. Overall behaviour is reflected

in the predicted trace, with 3 distinct periods of hypoxia visible as periodic behaviour within

all signals. Shown in green is the fit obtained using the OpenOpt method, which has an error

εNRMSE = 0.77518. It is clear that both methods are able to achieve similar fits, but the Bayesian

method provides more information about the space of possible parameter combinations and

the resultant uncertainty in fitted model output.

As with the simulated datasets, we have produced posterior predictive checks to assess the

fit of the model to the data. These are shown in Sections S11 to S14 Figs of the supplementary

material. S11, S12, S13 and S14 Figs show the autocorrelation comparisons, distribution of

residuals, Q-Q plots and prior-posterior comparison plots respectively.
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The autocorrelation plot in S11 Fig show that the autocorrelation of the posterior predictive

distribution and the observed data generally match across all lag values, with the same shape

seen in both plots, but with a slight difference in the magnitude of the autocorrelation. The

distributions of residuals in S12 Fig all appear to be relatively normally distributed, with TOI,

CCO and HbD showing a mean close to zero. HbT however has a mean noticeably less than

Fig 11. Posterior distributions for the experimental data set. Fig 11 shows the posterior distribution for the experimental data set, based on an acceptance

rate of 0.01%. The posterior median is shown in black and the OpenOpt predicted value is shown in red. Posterior are shown over the full prior range as

defined in S3 Table.

https://doi.org/10.1371/journal.pcbi.1006631.g011
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zero, which is due to the simulation predicting generally lower values than in the observed

data, as seen in Fig 12. These results are more clearly seen in S13 Fig, which suggests that the

residuals for all signals are generally normal, with some bimodality in the HbT distribution

and a significant amount of positive skew in the HbD distribution.

Discussion

In this work we have introduced a new Bayesian analysis for interpretation of the BrainSignals

models. The process was tested and used to analyse two simulated datasets and one experimen-

tal data set. The Bayesian approach provides us with complete information about the parame-

ter space and takes into account the prior information we have about physiological parameters

via the proposal distribution, p(θ), which allows us to simulate distributions of input parame-

ters. Both of these factors are extremely important when drawing physiological conclusions

from any parameter estimates.

Using the posterior predictive checks in sections S3 to S14 Figs we have shown that the

Bayesian method is able to produce good fits for a range of different datasets, including both

overly simplistic test cases, with just a single parameter change, and real world measured data

which contains inherently more complexity than simulated data. It can also be seen from

Fig 12. Predicted fits for the experimental data set. Fig 12 shows the predicted time series for all output based on the

posterior shown in Fig 11. The posterior was sampled 25 times with the resulting time series aggregated, with the

median and 95% credible intervals plotted in dark and light blue respectively. Overall behaviour is reflected in the

predicted trace, with 3 distinct periods of hypoxia visible as periodic behaviour within all signals. The fit obtained using

OpenOpt is shown in red.

https://doi.org/10.1371/journal.pcbi.1006631.g012
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direct observation of the posterior predictive distribution in Fig 12 that the Bayesian method is

able to provide a fit equally as good as the previous OpenOpt method.

We have shown how the method can be used to define healthy and impaired parameter

spaces, as shown with the simulated datasets, and how for some parameters these spaces may

overlap. We have also shown how the new Bayesian approach provides more information

about the parameter space than the previous OpenOpt maximum likelihood method. Looking

at only the healthy data set, the parameters sigma_coll, P_v and mu_max all have mar-

ginal posteriors with a median at the default value set in the model, but with distributions that

cover the entirety of the prior distribution initially set. Determining that a parameter’s poste-

rior distribution is not tightly constrained is important when drawing physiological conclu-

sions from the model fitting process. This is seen even more clearly in the direct comparison

between prior and posterior distributions for these parameters in S6 Fig and in their K-L diver-

gence values of 0.00971 nats, 0.0109 nats and 0.014 nats respectively. If we compare these to

the plots and K-L divergence values for phi and Xtot, which have values of 1.38 nats and

1.04 nats respectively, it is clear that the Bayesian process provides significantly more informa-

tion than the previous OpenOpt method, both in terms of producing posteriors that have sig-

nificant information gains compared to prior distributions, and in identifying parameters

where a good fit is produced despite minimal information gain. Using only sensitivity analysis

and OpenOpt would not provide this extra insight.

This is seen more clearly when looking at the experimental data. Many of the parameters

show relatively narrow marginal posteriors, but sigma_e0 and k2_n, which were both iden-

tified as important by the original sensitivity analysis, are both shown to have wide distribu-

tions, suggesting insensitivity within the prior range. The previous OpenOpt method produces

an almost identical fit as the Bayesian approach but provides significantly less information

about the parameter space. For sigma_e0, k2_n, v_cn, R_autc and k_sigma the Open-

Opt values fall outside of the interquartile range of the posterior distribution, yet produce

equivalent model simulations. If considering the OpenOpt estimate alone, it would be simple

to draw the conclusion that these parameters have shifted away from the default ‘healthy’

value, showing some sort of physiological change during the hypoxia challenge. However,

when we look at the posterior obtained through the Bayesian method, the median value is

close to the default value and in fact parameter values across the entire prior range produce

similar results. As a result we can instead say that for this data the model is insensitive to these

parameters, with a median value that would be considered ‘healthy’. Again, if we look at the

comparison between prior and posterior distributions and consider the K-L divergence for

each parameter in S14 Fig, it is clear to see where we have and have not gained information

through the use of the Bayesian process.

There are a number of other methods that can also be used to explore and define the param-

eter space. The previously used maximum likelihood based method, for example, can provide

estimates and confidence limits of parameter values, but under the assumption that the maxi-

mum likelihood estimator is normally distributed around the maximum. It may also be

possible to use a profile likelihood [40], but whilst this will provide information about the dis-

tribution of the parameter space without assuming normality, it is computationally expensive

and does not take into account prior information about the parameters.

It is acknowledged that the Bayesian approach is not without its own limitations. Histori-

cally, non-trivial problems were not solvable analytically due to the high dimensional integrals

required. However, with the relatively recent availability of more computational power, a

number of algorithms and approaches are now available that allow these problems to be

approximated. This has seen increased uptake of Bayesian approaches within the fields of sys-

tems biology and genetics, where the inherently complex models and noisy data that these
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fields involve are particularly well suited to being analysed through the Bayesian approach. As

long as a statistical model can be used to relate the relevant quantities, Bayesian inference can

be used to give full probabilistic information on all unobserved model variables.

One of the main drawbacks to this method is that the number of model runs required to

have sufficient samples in the posterior may be prohibitively high, especially where the toler-

ance is low or the prior distribution is very different from the posterior distribution.

This requirement for a large number of simulations for a reliable posterior is seen in all of

the datasets used here. For the simulated ‘healthy’ data, the model sampled 10,000,000 parame-

ter combinations in order to achieve the obtained fit. In contrast, to fit the ‘impaired’ simulated

data the model required 30,000,000 parameter combinations to be sampled and for the same

acceptance rate the accepted samples had generally higher εNRMSE values. Finally, the experi-

mental data was only able to obtain a good posterior after being sampling 20,000,000 parame-

ter combinations and all εNRMSE values were significantly above those seen in the simulated

datasets. This is clearly visible in Fig 13, where the distribution of εNRMSE values for each poste-

rior are clearly very different. This figure clearly highlights the variance in both the error values

that define a ‘good’ fit and the number of samples required for a reliable posterior distribution

for different datasets.

It should be noted that all of the obtained posterior distributions produce what are consid-

ered good fits, with those obtained for the simulated datasets far more accurate than we would

ever expect to achieve when fitting experimental data. When looking at the experimental data

Fig 13. Distribution of εNRMSE values for the posteriors of each dataset. It can be seen here that the three datasets

had very different distributions εNRMSE values for the samples that made up their respective posteriors. Despite this,

the posterior predictive distributions for all datasets were good fits.

https://doi.org/10.1371/journal.pcbi.1006631.g013
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in particular, despite the εNRMSE values being much higher than in the simulated data, the

obtained fit captures all important behaviour and phenomena, with three clear hypoxia events

visible in the inferred data trace.

More efficient methods of ABC, may alleviate the problem of requiring so many model

runs to obtain good posteriors. An approach based on MCMC is more efficient than ABC REJ

but the chain may become stuck in regions of low probability for long periods of time [41].

In order to deal with this problem and also the disadvantages of the rejection algorithm, an

approach based on sequential Monte Carlo (ABC SMC) [38] was first proposed by Sisson et al.

[42], as well as Beaumont et al. [43] and Cappé et al. [44]. In this approach, a number of sam-

pled parameter values, known as particles, are sampled from the prior distribution and then

propagated through a number of intermediate distributions before reaching a final target dis-

tribution. The tolerance for each successive distribution is smaller than the previous, allowing

them to evolve towards the target posterior. Additionally, for a sufficiently large number of

particles, the problem in MCMC of getting stuck in areas of low probability can be avoided.

Developing the BayesCMD framework to use an ABC SMC approach is a key focus for future

work.

Conclusion

We have outlined how this new Bayesian framework for model analysis can be used with mod-

els of brain haemodynamics to extract information from physiological data. A more compre-

hensive picture of the parameter space is obtained, allowing physiological conclusions to be

based on a broader picture. This is most clearly seen in the experimental data, where point esti-

mates suggested that the values for a number of parameters had changed significantly during

fitting, whilst the Bayesian method showed that the parameters were defined by a broad,

roughly uniform distribution. We have also shown, through the use of data simulated from the

BrainSignals model in healthy and impaired states, how the Bayesian approach allows us to

better distinguish different parameter spaces. Finally, whilst we have focussed on using the

BrainSignals model here, any model that can be written in a format compatible with BCMD

can use this method to estimate model parameters.

A major interest within our research group is to use these models and approaches to under-

stand and investigate further our novel measures of brain tissue physiology and metabolism

and how they are linked to brain injury [45, 46]. In particular, we are interested in neonatal

hypoxic ischaemic injury. The Bayesian approach provides a better representation of the

parameter space and can inform a better distinction between different brain states, such as

between a mild and severe injury. The method will also be adapted to use more efficient meth-

ods of parameter estimation, such as ABC SMC, reducing the number of model runs required

to obtain a given tolerance.
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