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ABSTRACT There is a common preconception that reaching an estimated herd im-
munity threshold through vaccination will end the COVID-19 pandemic. However,
the mathematical models underpinning this estimate make numerous assumptions
that may not be met in the real world. The protection afforded by vaccines is imper-
fect, particularly against asymptomatic infection, which can still result in transmission
and propagate pandemic viral spread. Immune responses wane and SARS-COV-2 has
the capacity to mutate over time to become more infectious and resistant to vaccine
elicited immunity. Human behavior and public health restrictions also vary over time
and among different populations, impacting the transmissibility of infection. These
ever-changing factors modify the number of secondary cases produced by an
infected individual, thereby necessitating constant revision of the herd immunity
threshold. Even so, vaccination remains a powerful strategy to slow down the pan-
demic, save lives, and alleviate the burden on limited health care resources.
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The COVID-19 pandemic has had a massive impact on all facets of human life.
Despite major public health interventions and development of effective vaccines

with unparalleled rapidity, over 290 million cases and 5.4 million deaths have been
documented as of January 4th, 2021 (1). As the pandemic continues to abate and
resurge globally, individual countries have raced to vaccinate their populations in
order to save lives and to relieve strained health care systems, stifled economies, and
fatigued populations yearning for return to normalcy. Indeed, immunity elicited by
COVID-19 vaccination with BNT162b2, ChAdOx1 nCoV-19, mRNA-1273, Gam-COVID-
Vac, Ad26.COV2.S, and CoronaVac vaccines has greatly reduced the incidence of symp-
tomatic disease in individuals (2–8). It is assumed based on public health experience
with other infectious diseases that as population immunity rises, as a result of vaccina-
tion and natural infection, infections in those who remain susceptible should inevitably
decrease.

One approach to disease control has been to immunize populations to reach a (the-
oretical) “herd immunity threshold,” estimated by some to be approximately 67% (9,
10). The herd immunity threshold is here defined as “the proportion of a population
immune to a communicable disease, either from innate immunity, natural infection, or
vaccination, that prevents or significantly reduces serial transmission of its infectious
agent.” Such thresholds have been predicted mathematically using a transmissibility
estimate called the reproductive number (or R0) in the equation h = 1–1/R0 (9, 11). The
R0 is the critical variable in this equation, representing the average number of second-
ary cases produced by an infected individual in an immunologically susceptible popu-
lation (11). Initial R0 estimates varied for COVID-19 within different populations, with
most estimates generally ranging from 1.66 to 3.58 (12–15). Social and demographic
factors including population density, public health measures, and cultural attitudes
and behaviors impact R0, inevitably resulting in marked variation of estimates of herd
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immunity thresholds. Moreover, the herd immunity threshold formula relies on addi-
tional assumptions that are unlikely to hold in the case of COVID-19 due to its capacity
to mutate, and to the nature of immune responses against nonsystemic respiratory
viruses in general, which tend to be incomplete and transient (16–18). Thus, herd im-
munity threshold estimates should be considered moving targets rather than biologi-
cally determined values.

SARS-COV-2, like influenza, is an RNA virus with a high degree of plasticity in its
spike protein (S) surface antigen (which elicits protective immune responses) and con-
sequently a potential to rapidly mutate. Host adaptative mutations have been docu-
mented in viral variants of concern, including Alpha and Delta (19, 20), which result in
higher affinity binding of spike to the human angiotensin-converting enzyme 2 (ACE2)
receptor, leading to higher mucosal viral loads and enhanced transmissibility (21, 22).
Updated estimates of the reproductive number for variants such as Alpha, Beta, and
Gamma have been around 4.7–4.9 (21), and around 5 for the Delta variant (22, 23).
Early estimates of Omicron’s reproductive number are 4.2 times greater than estimates
for Delta (24). Hence, as variants with increasing R0 values emerge, estimates for the
herd immunity threshold will inevitably increase as well.

In addition to host adaptational mutations, viruses have also developed numerous
mutations that may allow them to evade host immune responses. Decreased binding
of neutralizing antibodies (which are presumed to be correlates of protection) (25)
from both convalescent COVID-19 patients and vaccinated individuals, to the Beta,
Gamma, and Delta variants has been described (26, 27), and vaccine efficacy has been
lower in countries where the Beta and Gamma variants were more prevalent (3, 6). This
phenomenon is further exemplified with Omicron, which contains 32 S protein
changes contributing to a 27- to 127-fold reduction in neutralization titers relative to
wild-type SARS-COV-2. Not surprisingly, it has been spreading explosively in popula-
tions with high levels of vaccine- and natural infection-induced immunity (28). While
herd immunity threshold formulae assume robust and durable immunity, variants that
evade population immunity can change estimates dramatically. Furthermore, waning
of detectable anti-S, anti-receptor binding domain (RBD), and neutralizing antibody
titers against COVID-19 over time, has occurred in the setting of natural and vaccine-
induced immunity, with some half-life estimates ranging from 58 to 106 days (25, 29–
31). This is in contrast to immunity against other systemically-infecting respiratory
viruses like measles. After recovery from infection, measles immunity is usually lifelong,
associated with an estimated antibody half-life as high as 3,014 years (32). Similarly,
vaccination with a licensed live measles vaccine provides robust and durable immu-
nity, lasting decades. However, this is not the case with COVID-19, where susceptibility
to infection increases with increasing time since vaccination (33–35). Therefore, esti-
mates of herd immunity thresholds must account not only for partial vaccine efficacy
but also changes in key parameters associated with a dynamic, mutating virus and
with continuously waning immunity.

Asymptomatic infection, which occurs in nearly one third of all COVID-19 cases (36),
further complicates the ability to estimate vaccine efficacy and herd immunity thresh-
olds because it perpetuates occult transmission. While an effective vaccine would pro-
tect against symptomatic disease, an ideal vaccine would prevent infection entirely,
whether symptomatic or not. The effectiveness of COVID-19 vaccines in preventing
asymptomatic infection, which may still be associated with transmission, is often lower
and not well estimated (37, 38). A retrospective study of health care workers who
received the BNT162b2 vaccine determined that its effectiveness in preventing symp-
tomatic disease was 97%, but only 86% in preventing asymptomatic infection (39).
Estimates from randomized trials are less optimistic: efficacy against asymptomatic dis-
ease of the mRNA-1273 vaccine was only 63% (compared to 93.2% against sympto-
matic illness), while the efficacy of the ChAdOx1 nCoV-19 vaccine was only 3.8% with
the original dosing regimen (3, 40). If the public health goal is to eradicate COVID-19
entirely, the effectiveness of vaccines in preventing both symptomatic and
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asymptomatic disease must be considered, since asymptomatic transmission in a pan-
demic setting can continue indefinitely.

Finally, population heterogeneity must be considered: despite high overall theoreti-
cal population immunity, pockets of susceptible individuals can sustain viral circula-
tion, as has been demonstrated with many other viruses including smallpox virus and
polioviruses. Although more sophisticated mathematical models have attempted to
address imperfect immunity and population heterogeneity (at least from the perspec-
tive of social interactions) (41), it is important to consider that persistent circulation of
virus in pockets of susceptible hosts can facilitate further mutation and eventually
spark additional outbreaks after immunity wanes in the population at large, as seen
with vaccine-derived polioviruses (42). In short, mathematical estimates of R0 and herd
immunity thresholds may help guide public health responses but are likely to be poor
predictors of epidemic reality and should not replace effective and adaptive public
health responses against the evolving pandemic.

Such conclusions are not surprising considering experience with other respiratory
viruses. Serologic studies have demonstrated that the vast majority of the human popula-
tion has been exposed to seasonal coronaviruses, endemic influenza virus strains, and
other respiratory viruses like respiratory syncytial virus, but despite eliciting some degree
of protective immunity, the viruses continue to circulate (43, 44) and reinfect individuals
months or years after initial infection (17, 18, 45). Vaccine approaches that induce more
durable immunity and provide broader protection against future variants, so-called “uni-
versal vaccines” (46), may alleviate some of the issues associated with herd immunity
against respiratory viruses, but such vaccines are still under development.

SARS-COV-2, like the descendants of the 1918 influenza pandemic, is undoubtedly here
to stay. Indeed, all influenza pandemic strains since 1918 have established endemicity after
their initial explosive spread. Fortunately, the presence of some degree of immunity
against SARS-COV-2, even immunity that has waned over time or diminished in the face of
viral escape mutations, may still provide protection against severe disease and save lives
(47, 48). Current vaccine strategies may be able to slow down SARS-CoV-2 spread and are
likely to alleviate the burden that waves of severe cases can inflict on limited health care
resources, but they are unlikely to lead to SARS-COV-2 eradication.

Although herd immunity thresholds should not be thought of as precise biological
parameters that can predict SARS-CoV-2 control, they may nevertheless have value in
setting public health goals and in reminding us that our current pandemic control
tools, when used aggressively, can reduce viral circulation, thereby saving lives and
reducing illnesses and social–economic disruption.
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