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Recurrent disease remains the principal cause for treatment failure in acute myeloid

leukemia (AML) across age groups. Reliable biomarkers of AML relapse risk and disease

burden have been problematic, as symptoms appear late and current monitoring relies

on invasive and cost-ineffective serial bone marrow (BM) surveillance. In this report, we

discover a set of unique microRNA (miRNA) that circulates in AML-derived vesicles in

the peripheral blood ahead of the general dissemination of leukemic blasts and symp-

tomatic BM failure. Next-generation sequencing of extracellular vesicle-contained small

RNA in 12 AML patients and 12 controls allowed us to identify a panel of differentially

incorporated miRNA. Proof-of-concept studies using a murine model and patient-derived

xenografts demonstrate the feasibility of developing miR-1246, as a potential minimally

invasive AML biomarker.

Introduction

Acute myeloid leukemia (AML) evolves as an aggressive, molecularly heterogeneous disease arising from
clonal differentiation arrest and uncontrolled hematopoietic progenitor proliferation in the bone marrow
(BM), with late dissemination to the peripheral blood (PB). Early detection of AML has been challenging,
with no unifying molecular marker for noninvasive PB-based screening. Rather, symptoms appear late,
and disease detection relies on flow cytometry and morphologic assessment of BM aspirates.1,2 Disease
tracking based on cellular assays is further complicated by the prompt clearance of leukemic blasts in cir-
culation during therapy and after remission, when serial BM surveillance is invasive and cost-
ineffective.3,4

To address the urgent need for an actionable AML biomarker, we considered cell-free microRNA
(miRNA) a powerful, minimally invasive metric, and specifically, a subset of circulating AML-associated
miRNA that escapes ribonuclease degradation through incorporation into 30- to 130-nm extracellular
vesicles (EVAML).5-8 We hypothesized that plasma EVs from AML patients contain a unique complement
of miRNA, whereby EVAML seed the PB ahead of the general dissemination of leukemic cells. Small-RNA
sequencing in 12 AML patients and 12 controls allowed us to identify a panel of differentially incorpo-
rated miRNA. In a murine model of AML and patient-derived xenografts (PDX), we show that circulating
EVAML precede AML blasts and correlate with disease burden, and we validate miR-1246 as a potential
noninvasive EVAML miRNA biomarker.
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Key Points

� Candidate discovery
of translational
feasibility for
noninvasive measure-
ment of miRNA from
plasma vesicles as a
biomarker for AML
patients.

� Preclinical validation
of miR-1246
(candidate among 15
miRNA) as a potential
minimally invasive
AML biomarker for
early monitoring of
MRD.
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Figure 1. Correlation between EVs levels and AML disease burden. (A) In vivo imaging of mice xenografted with Molm-14 cells expressing luciferase at 1, 2, and 3

weeks. Images were taken by IVIS (left), and values were normalized to controls to calculate fold change (right). (B) Correlative analysis of tumor burden between human

CD45 (hCD45) levels measured by flow cytometer in both the PB and BM in red vs luciferase activity in gray. (C) EV quantification using NanoSight analyzer from Molm-14
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Methods

Animals

Animal studies were approved by the OHSU and St. Jude’s Insti-
tutional Animal Care and Use Committee. For Molm-14 xeno-
grafts, cells (0.1 3 106 per animal) were transplanted into
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice7 and imaged by
IVIS.6 For PDX, CD3-depleted blasts were injected into suble-
thally irradiated NSG-SMG3.

Cells and patient materials

Molm-14 cells were cultured in RPMI 1640 with 10% Fetal Bovine
Serum (FBS) and 13 penicillin/streptomycin (ThermoFisher) at
37�C, 5% CO2. Patient materials were obtained under Institutional
Review Board–approved protocols at Texas Children's Cancer Cen-
ter or St. Jude’s Children’s Research Hospital.

Flow cytometry

Data were acquired using LSR-FORTESSAII (BD-Biosciences) and
analyzed using FlowJo (TreeStar).

Statistics

Student t test was used to assess significance.

Results and discussion

Circulating EVAML concentration correlates with BM

disease burden

To formally demonstrate EV equilibration of AML blasts from BM to
PB, we modeled AML tumor burden in vivo using our validated
Molm-14 xenografts. In vivo imaging of mice bearing Molm-14 cells
transduced with luciferase or myristoylated/membrane-targeted
Green Fluorescent Protein (mGFP) lentivectors showed a gradual
gain in signal (Figure 1A). Luciferase activity matched high tumor
burden in the BM measured by human CD45% (hCD45), whereas
PB hCD45% was negligible, indicating the characteristic lack of
correlation that complicates disease monitoring (Figure 1B).
Although we did not detect circulating leukemia cells, we observed
a higher overall concentration of circulating EVs in xenografted mice
(Figure 1C). EVs are nanoscale particles (Figure 1D) constitutively
released by all cell types, but AML EVs (EVAML) are unique in their
composition and contribute to disease progression.6,7 Because we
previously showed that AML cells expressing mGFP release EVs
that are detectable by microscopy,7 we determined EVAML concen-
tration in plasma from xenografts and control animals with a
3-dimensional hydrogel-embedding technique for detection of EVs
by high-resolution microscopy (Figure 1E). Plasma from mice with
�20% BM chimerism contained �40 mGFP1 EVs per 1 3 1024

mL, whereas those with �50% chimerism had �658 mGFP1 EVs

per 1 3 1024 mL, indicating a correlation between circulating
EVAML and AML BM burden (Figure 1F,H). EVAML could be distin-
guished from circulating host EVs by labeling plasma-derived EVs
with CellMask a lipophilic dye. Our data demonstrated EVAML (cola-
beled with CellMask/GFP) make up a sizable fraction of circulating
EV, consistent with equilibration between BM and PB and their
potential utility as a cell-free biomarker (Figure 1G,I).

Identification of an AML signature from plasma

EV miRNA

We recently reported the selective in vitro and in vivo enrichment of
miRNAs in EVAML5,6. To identify an miRNA signature specific to
AML patients, we performed small-RNA sequencing of EVs, purified
from 1 mL plasma by serial ultracentrifugation, of 12 newly diag-
nosed AML patients (supplemental Table 1) and 12 healthy controls
(Figure 2A). NGS-miRNA libraries were constructed using NEB-
NEXT kit, and samples were sequenced using the Illumina Next-
Seq500. Gene-wise linear models were employed to compare
differential expression (DE) in these groups using R/Bioconductor
software, limma,9 and False Discovery Rate (FDR) adjustments.10

DE genes were defined as greater than or equal to twofold change
and FDR (P , .05), and 243 miRNAs met criteria (107 upregulated
and 136 downregulated in the AML group; Figure 2B; supplemental
Figure 1A). Principal Component Analysis (PCA) showed a good
separation between the groups using the selected DE miRNAs,
supporting the feasibility of a prediction model for AML (supplemen-
tal Figure 1B). We identified 15 large-effect size DE miRNAs that
were greater than or equal to eightfold upregulated in the AML
group with FDR (P , .05), including miR214425p , miR29625p,
miR214525p, miR2378a25p, miR222225p, miR2181a23p,
miR2181b25p, miR2199b25p, miR23154, miR292a2125p,
miR22525p, miR227a25p, miR21246, miR2650323p, and
miR2650325p (Figure 2C).

Validating EVAML miRNA in preclinical models

To demonstrate reproducibility and validity, we systematically deter-
mined levels of EVAML-associated miR-1246 in plasma from AML
xenograft models as a representative miRNA because it was consis-
tent with our previous report of EVAML miRNA from AML cell lines,5

which exposed it as a high-confidence reproducible candidate inde-
pendent of the analysis (Figure 2D). We observed a high correlation
between miR-1246 levels and tumor burden (hCD45%) in Molm-14
xenografts at week 4, whereas the frequency of PB blasts was neg-
ligible (Figure 2E). We further validated our data using 3 PDX mod-
els with variable latency (Figure 2F). In the more aggressive model,
PDX5, miR-1246 levels were significantly correlated with disease
progression (Figure 2G-H). Interestingly, in the long-latency PDX
models (PDX1 and 2), miR-1246 levels accurately mirrored the
tumor progression at early disease stages despite the low PB

Figure 1 (continued) xenografted (red) or control (black) mice. Data show relative vesicles abundance over time (left) and correlation analysis at week 3 of PB and BM

(red) vs EV abundance (blue). (D) Cryo-TEM image of Molm-14–derived EVs. Scale bar is 100 nm. (E) Workflow for measuring circulating EVs in the PB of mice bearing

mGFP1 AML cells. (F) EV counts per unit volume (1 3 1024 mL) correspond to BM tumor burden. (G) Quantification of relative AML EV count in the PB compared with

total lipid vesicles in plasma. Each point represents EV count per unit volume (1 3 1024 mL). (H) Representative 3-dimensional images and concentration of 20% (top) and

50% (bottom) animal cohorts. Bounding box represents 100 mm 3 100 mm 3 10 mm volume. Concentrations determined using [EVs/mL 5 (average EV count) 3 (volume/

1) 3 (dilution factor)]. mGFP (white). (I) PB plasma of AML xenografted NSG mice contain numerous lipid vesicles and a discrete mGFP EV population (right) not seen in

nonengrafted control animals (left). CellMask Lipid Dye (red), mGFP (green). Bounding box is 5 mm x 5 mm. Images captured with CoreDV epifluorescence microscope with

1003 1.49 TIRF objective and Nikon Coolpix CCD camera. Significance determined by Student t test. *P , .05; ***P , .001.
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Figure 2. Identification of AML miRNA signature from patients’ plasma EVs . (A) Workflow for characterization of EVs miRNA content. The RNA content of EVs

from blood plasma collected from 12 AML patients and 12 healthy donors were sequenced using Nextseq500 analyzer. (B) Heat map showing the 243 differentially

expressed miRNA between the AML patients (orange) and the healthy donors (green) groups. (C) Heat map showing the AML signature composed of 15 miRNAs uniquely

upregulated in the AML patients (orange) vs the healthy donors (green). (D) Workflow for validation of miR-1246, a candidate miRNA among the AML signature. Molm-14

cells or PDXs were executed, and miR-1246 levels were measured in the blood plasma EVs by quantitative polymerase chain reaction (qPCR). (E) Correlative analysis at 4
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chimerism (Figure 2G-H). Moreover, miR-1246 monitored residual
disease early after chemotherapy initiation, and its levels were higher
in patients with elevated blast counts (supplemental Figure 2). Our
data, in sum, support further development of plasma EV-miRNA as
a minimally invasive biomarker and for longitudinal tracking in AML
patients.

Several recent reports support the potential of plasma miRNA as
minimally invasive markers of disease.11,12 However, unlike previous
attempts that examined freely circulating miRNAs, we set out to
take advantage of the disease-specific enrichment and extended
half-life of small-RNAs protected within circulating EVs.12 An addi-
tional advantage, given the molecular and cytogenetic heterogeneity
of AML, is that several distinct subtypes appear to share the overex-
pression of select miRNAs.13-15 Here, we leveraged these potential
advantages for EVAML and investigated circulating plasma EVs
miRNA from a cohort of 12 AML patients vs 12 healthy donors.
That screen not only identified a panel of 15 EV-contained miRNAs
that distinguish AML patients from healthy controls, but we selec-
tively validated EVAML miRNA using PDX models from human AML
patients. Our data consistently identified miR-1246 as a highly sen-
sitive marker of leukemic burden along with 7 uniformly expressed
miRNA as potential normalization controls: let27i25p,
miR294225p, miR2374b23p, miR236123p, miR258925p,
miR2361325p, and miR288525p. As previous studies,13,14 our
EVAML miRNA panel included freely circulating miR2181a23p,
miR2181b25p, hsa2miR2199b25p, and miR2650323p, sug-
gesting the reproducibility and sensitivity of our analysis, whereas
miR-1246 was EV-specific.

Current cell-based markers can provide useful prognostic guidance,
but BM-based qPCR and flow cytometry require an invasive and
costly aspiration procedure.1,2 Specifically, our results provide
proof-of-principle for miR-1246 (among 15 miRNA) as a potential
biomarker for AML for future monitoring of residual disease and
early detection of relapse. Follow-up studies will have to test AML
subtype specificity and longitudinal performance in patients, ideally
pairing EVAML miRNA(s) with an additional cell-free marker of dis-
ease. The generated results serve as preclinical validation and dem-
onstrate the translational feasibility of measuring miRNAs
noninvasively from patients’ plasma.
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