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Abstract: As an important member of third generation solar cell, dye-sensitized solar cells (DSSCs)
have the advantages of being low cost, having an easy fabrication process, utilizing rich raw
materials and a high-power conversion efficiency (PCE), prompting nearly three decades as a
research hotspot. Recently, increasing the photoelectric conversion efficiency of DSSCs has proven
troublesome. Sensitizers, as the most important part, are no longer limited to molecular engineering,
and the regulation of dye aggregation has become a widely held concern, especially in liquid
DSSCs. This review first presents the operational mechanism of liquid and solid-state dye-sensitized
solar cells, including the influencing factors of various parameters on device efficiency. Secondly,
the mechanism of dye aggregation was explained by molecular exciton theory, and the influence of
various factors on dye aggregation was summarized. We focused on a review of several methods for
regulating dye aggregation in liquid and solid-state dye-sensitized solar cells, and the advantages and
disadvantages of these methods were analyzed. In addition, the important application of quantum
computational chemistry in the study of dye aggregation was introduced. Finally, an outlook was
proposed that utilizing the advantages of dye aggregation by combining molecular engineering with
dye aggregation regulation is a research direction to improve the performance of liquid DSSCs in the
future. For solid-state dye-sensitized solar cells (ssDSSCs), the effects of solid electrolytes also need to
be taken into account.
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1. Introduction

The properties of a material not only depend on the physical and chemical properties of the
elementary molecules that comprise it, but also on the aggregation patterns of molecules to a large
extent. Molecules tend to aggregate and assemble into ordered structures through the complex
synergistic effect of intermolecular interaction, thus enabling aggregates that have new functions [1].
At present, the research on molecular aggregation has covered almost all the frontiers of chemistry,
as well as other fields such as biology, medicine, materialogy and mathematics. Especially in the
field of photoelectric materials, with the discovery of aggregation-induced emission phenomenon [2],
the research on organic molecular aggregation has once again set off a great upsurge.

As a core member of the field of optoelectronics, the solar cell is an important way to solve
the energy and environmental crisis by using green energy, especially organic solar cells (OSCs),
which have variety materials, low energy consumption, and can be printed in large areas at low
cost [3,4]. As the third generation of OSCs, DSSCs use low-cost metal oxide and photosensitive dyes as
the main raw materials to convert solar energy into electricity by simulating the photosynthesis of
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plants using solar energy in nature. It is apparent that the superiority of DSSCs lies in the low-cost
and availability of raw materials, long life of the device, and large-area preparation. Owing to
factors the aforementioned DSSCs’ have a tremendous potential for commercial applications [5].
DSSCs can theoretically be divided into two categories, n-type DSSCs and p-type DSSCs; n-type
DSSCs research accounts for the vast majority due to its superior battery efficiency. The obtained
power conversion efficiency (PCE) of n-DSSCs has grown from 7% [6] to 13% [7] using I3

−/I− redox
couple additive electrolyte, and the highest PCE of 14.3% was achieved in cobalt-mediated DSSCs [8].
In accordance to their importance to the structure of DSSCs, most of the study is mainly focused on
nano-porous semiconductor thin films, counter electrode and sensitizers [9,10], specifically the research
pertaining to molecular aggregation. The research on the nano-porous semiconductor thin films is
diversiform and well-studied; materials with different morphologies, such as nanoparticles, nanorods,
and nanotubes, have been developed by regulating molecular aggregation patterns to improve device
performance [11–15]. For DSSCs, platinum counter electrodes give the best performance, but their high
cost restricts the commercialization. Therefore, researchers pay more attention to the development of
low cost and high activity nano carbon materials, conductive polymers and their composite materials,
etc. [16–18]. It is worth noting that in recent years, flexible DSSCs assembled on non-planar fibrous
conductive substrates with high curvature and excellent stitchability have been constantly developed,
which break through the limitations of traditional flat substrates and have the advantages of bendability,
light weight and wide application prospects [19–22]. As the most important core part of DSSCs,
the development of new dyes has always been the mainstream focus of DSSCs research, and people
have gradually turned their attention to the study of dye aggregation in recent years.

Dye aggregation is of paramount importance in determining the overall DSSC conversion
efficiency [23], short-circuit current (Jsc) [24,25], open-circuit voltage (Voc) [26,27] and fill factor
(FF) [28] of each device. In general, aggregation occurs during sensitization and can be classified
as H-aggregation and J-aggregation. Dye aggregation may lead to quenching of the excited state,
so many methods such as molecular engineering, the use of co-adsorbents, the alteration of sensitization
conditions, etc., have been used to inhibit the aggregation [29]. Meanwhile, the advantages of dye
aggregation cannot be ignored, especially J-aggregation, which is conducive to light absorption in
the near-infrared spectrum, and it will be a potential pathway to improve the efficiency of DSSCs,
though there are few reports at present [30–32]. Some materials characterization methods were
used to study the aggregation patterns of dyes, including UV/vis and fluorescence spectroscopy [33],
scanning tunneling microscopy (STM) [34,35], atomic force microscope (AFM) [36], X-ray reflectometry
(XRR) [37], etc. And with the development of quantum chemistry theory and computer technology,
we can better elucidate the structure and properties of dye aggregates at the molecular level [38].

The objective of this review is to provide a broad overview of the current studies of dye aggregation
in DSSCs. Herein, we unfold the operational principles and structure of DSSCs, discuss the formation
and influencing factors of dye aggregation, and the current research trends are reviewed. Finally,
the application of quantum computation in the study of dye aggregation is described.

2. Operating Principle and Characterization Parameters of DSSCs

2.1. Operating Principle

The device structures of n-DSSCs and working steps are illustrated in Figure 1a. Traditional
n-type DSSC devices are mainly composed of a transparent conductive glass substrate, a porous metal
oxide semiconductor film (commonly, TiO2, ZnO, SnO) adsorbed with photosensitive dyes, electrolyte
containing a redox couple (typically, I−/I3

−) and counter electrolyte [39,40]. Solid-state dye-sensitized
solar cells (ssDSSCs) have a solid hole transport material (HTM) in place of the electrolyte [41,42].
The fundamental processes are introduced as follows:
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1. The ground-state dye molecules adsorbed on the metal oxide surface are excited by light, and the
electrons transition from highest occupied molecular orbital (HOMO) to lowest unoccupied
molecular orbital (LUMO).

2. Excited electrons are injected into the conduction band of the metal oxide, then electrons migrate
to the conductive substrate, and enter the external circuit to form a current.

3. Regeneration of the oxidized dye by electron donation from the redox couple of the electrolyte.
4. The oxidized species in the electrolyte receive electrons from the external circuit to complete

the process.

For n-ssDSSCs, the dye regeneration is attributed to direct hole transfer from the oxidized dye
molecule into the HTM, whereas the redox reaction in a liquid-state system is diffusion-limited.
The HTM is then regenerated by charge transfer at the counter electrode [43].

The structure of p-type DSSC devices and working steps are illustrated in Figure 1b. Its charge
transfer process is opposite to n-type DSSC [44]. The most frequently used p-type semiconductor is
NiO, while other inorganic materials also have been investigated, such as CuO, etc. [45–47].
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Figure 1. Schematic diagram of charge transport mechanisms in (a) liquid n-type DSSCs; (b) solid-state
n-type DSSCs); (c) liquid p-type DSSCs.

2.2. Characterization Parameters of Cell Efficiency

The overall power conversion efficiency (PCE) are evaluated by Jsc, Voc, FF and the incident light
power (Pin).

η =
JscVocFF

Pin
(1)

Jsc is the current density measured by without applied external bias. It is determined not only
by the molecular structure of dyes, but also by the amount of adsorption onto porous metal oxide
semiconductor films as well as the electrochemical properties of the porous film [48,49]. Voc is
determined by the potential difference between the quasi-Fermi level of the semiconductor and the
redox level of the electrolyte. It is influenced by the recombination rate and adsorption mode of
the dye [50]. FF is defined by the ratio of the maximum power of the solar cell to the product
of Jsc and Voc and is introduced to account for non-ideality of the I-V curve. This parameter is
influenced by the electrode materials, active materials, charge transfer resistance between interfaces
and battery package [51,52]. Moreover, the incident-photo-to-current conversion efficiency (IPCE) is
usually utilized to evaluate the spectral response of solar cells and defined as the ratio between the
photocurrent density produced in the external circuit under monochromatic illumination of the cell
and the incident photon flux.

IPCE = 1240 Jsc/(λ Pin) (2)

where λ (nm) and Pin (mW cm−2) are the wavelength and intensity of incident monochromatic
light. Considering the current generation process, IPCE is jointly determined by the light harvesting
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efficiency (LHE), the electron injection efficiency ϕinj and the charge collection efficiency ϕcoll at the
electrode [53,54]. The formula is as follows:

IPCE (λ) = LHE(λ) ϕinj ϕcoll (3)

In general, the overall conversion efficiency of DSSCs is tested under standard irradiation
conditions (100 mW cm2, AM 1.5). Over the past decade, we have investigated various dye molecules
and their derivatives in the attempt to understand and tune their photophysical properties to maximize
the cell efficiency [55–61]. These studies and the experience in fabricating solar cell devices have
demonstrated that any significant improvements in cell efficiency of DSSCs cannot be achieved without
in-depth studies of dye aggregation.

3. Dye Aggregation in DSSCs

3.1. The Mechanism of Dye Aggregation

It is well-known that the molecules in real compounds do not exist as single molecules, some of
them form dimers, trimers and other higher order aggregates. Unlike crystalline solids, which have
long range orderliness, organic materials that aggregate mainly depend on different intermolecular
forces. Generally, the aggregation between dye molecules can be classified as H-aggregates (face-to-face
arrangements) and J-aggregates (edge-to-edge arrangements) [62], which can be explained by Kasha’s
molecular exciton theory [63]. Based on excited state resonance interaction, molecular exciton theory
describes a resonance splitting of the excited state composite molecule energy levels and expound
the relationship between the spectral properties of molecular aggregates and molecular structure
(Figure 2). When two molecules interacting to form a dimer, coupling phenomena lead to excited-state
energy-level splitting. For the face-to-face alignment of molecules, the molecular transition dipoles
corresponding to the higher excited state E′′ are arranged in the same direction, and the oscillator
strength of the radiation transition is concentrated in the exciton state E′′, thus, the hypsochromic
shift occurs in the absorption spectrum. The transitions from the ground state to exciton state E′ are
forbidden, while transitions from the ground state to exciton state E′′ are allowed. In contrast, for the
edge-to-edge alignment of molecules, the molecular transition dipoles corresponding to the lower
excited state E′ are arranged in the same direction, so the transition from the ground state to the exciton
state E′ are allowed, and the bathochromic shift is observed in the absorption spectrum. In addition,
the type of aggregates can be judged from the angle(α) between the transition dipole moment and the
line of molecule centers, i.e., H-aggregate (54.7◦ < α < 90◦) and J-aggregate (0◦ < α < 54.7◦).
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3.2. The Influence Factors of Dye Aggregation

The main cause of molecular aggregation is intermolecular interaction, which is generally weak,
such as van der Waals force, hydrogen bond, aromatic ring stacking, hydrophobic interaction, etc.
When the aggregate is formed, it affects the internal movement of each molecule in the aggregate,
resulting in new characteristics that single molecules do not have [64,65]. The formation of aggregates
is the manifestation of the overall effect of the complex synergy of various weak interaction forces.
Therefore, the aggregation of molecules is not only related to chemical structural characteristics (decide
on the possibility of achieving some kind of aggregation), but also changes with the environment in
which the molecules are located (influence the formation of aggregated structures).

Aggregation of dyes is strongly affected by dye structure, concentration of dye bath, ionic strength,
temperature, solvents, and so on [66,67]. It occurs in the sensitization process, mainly including the
following two processes: (1) The dye first aggregates in solution (caused by the interaction among dyes
and/or other molecules) and then adsorb on the metal oxide semiconductor; (2) The dye aggregates
after the dye has been adsorbed on the metal oxide semiconductor surface to form the dye/metal
oxide semiconductor interface. However, dye aggregation usually causes the quenching of molecular
excited states and unfavorable back electron transfer, which seriously affects the electron injection
efficiency, and then diminishes the device efficiency [68–70]. Besides, H aggregation will cause a
blue-shift of absorption spectrum, which is not conducive to improving the light absorption capacity.
Thus, most studies focus on improving the performance of the device by inhibiting aggregation.
At present, the methods for inhibiting dye aggregation mainly include changing the structure of dye
molecule, regulating the conditions of the dye sensitization process, and changing the dye/metal oxide
semiconductor interface environment.

3.3. Methods for Inhibiting Dye Aggregation

3.3.1. Molecular Engineering

Molecules with good planarity are prone to H aggregation, so reducing the planarity of dyes can
effectively inhibit aggregation. A twisted structure of π-conjugated organic dye 1 (shown in Figure 3)
was synthesized to inhibit aggregation, resulting in a 67% increase in device efficiency (see Table 1)
compared to the corresponding planar dye 2 [71].

Currently, the introduction of flexible chains and bulky groups are the most commonly used
methods to suppress dye aggregation in DSSCs. The presence of long flexible chains can increase the
distance between molecules on TiO2 surface or change the planarity of molecules [72], which results in
reduced dye aggregation. Aggregation of dyes on the TiO2 surface depends on the length and the
location of the flexible chains. A series of unsymmetrical squaraine dyes (3–8) with different alkyl chain
lengths at the indoline unit were synthesized to modulate the aggregation of sensitizers on the TiO2

surface, which resulted in an overall PCE ranging from 3.82% to 6.23% (see Table 1) [73]. In addition,
the long chain not only reduces the aggregation, but also prevents the electrolyte from penetrating the
dye [74].



Molecules 2020, 25, 4478 6 of 32

Molecules 2020, 25, x 5 of 31 

When the aggregate is formed, it affects the internal movement of each molecule in the aggregate, 
resulting in new characteristics that single molecules do not have [64,65]. The formation of aggregates 
is the manifestation of the overall effect of the complex synergy of various weak interaction forces. 
Therefore, the aggregation of molecules is not only related to chemical structural characteristics 
(decide on the possibility of achieving some kind of aggregation), but also changes with the 
environment in which the molecules are located (influence the formation of aggregated structures). 

Aggregation of dyes is strongly affected by dye structure, concentration of dye bath, ionic 
strength, temperature, solvents, and so on [66,67]. It occurs in the sensitization process, mainly 
including the following two processes: (1) The dye first aggregates in solution (caused by the 
interaction among dyes and/or other molecules) and then adsorb on the metal oxide semiconductor; 
(2) The dye aggregates after the dye has been adsorbed on the metal oxide semiconductor surface to 
form the dye/metal oxide semiconductor interface. However, dye aggregation usually causes the 
quenching of molecular excited states and unfavorable back electron transfer, which seriously affects 
the electron injection efficiency, and then diminishes the device efficiency [68–70]. Besides, H 
aggregation will cause a blue-shift of absorption spectrum, which is not conducive to improving the 
light absorption capacity. Thus, most studies focus on improving the performance of the device by 
inhibiting aggregation. At present, the methods for inhibiting dye aggregation mainly include 
changing the structure of dye molecule, regulating the conditions of the dye sensitization process, 
and changing the dye/metal oxide semiconductor interface environment. 

3.3. Methods for Inhibiting Dye Aggregation 

3.3.1. Molecular Engineering 

Molecules with good planarity are prone to H aggregation, so reducing the planarity of dyes can 
effectively inhibit aggregation. A twisted structure of π-conjugated organic dye 1 (shown in Figure 
3) was synthesized to inhibit aggregation, resulting in a 67% increase in device efficiency (see Table 
1) compared to the corresponding planar dye 2 [71]. 

 
Figure 3. Chemical structures of dyes 1–19. 

Currently, the introduction of flexible chains and bulky groups are the most commonly used 
methods to suppress dye aggregation in DSSCs. The presence of long flexible chains can increase the 
distance between molecules on TiO2 surface or change the planarity of molecules [72], which results 

Figure 3. Chemical structures of dyes 1–19.

Table 1. The fabrication conditions and photovoltaic performance of DSSCs and ssDSSCs.

DSSCs

Dye Dye-Bath Solvent 1

(Co-Adsorbents) λmax/nm 2 λmax/nm 3
Dye Loading
Amount (10−7

mol cm−2)

Jsc/mA
cm−2 Voc/V FF η/% Ref.

1 CHCl3/MeOH 307, 344, 485 441 - 10.36 0.715 0.722 5.35 [71]
CHCl3/MeOH (DCA) - 441 - 10.02 0.714 0.712 5.09

2 CHCl3/MeOH 306, 368, 468 454 - 6.87 0.687 0.678 3.20
CHCl3/MeOH (DCA) - 450 - 7.48 0.683 0.734 3.75

3 ACN/CHCl3 643 - 2.16 7.64 0.668 0.710 3.62 [73]
4 ACN/CHCl3 643 - 2.29 8.89 0.683 0.770 4.67
5 ACN/CHCl3 643 - 2.00 10.95 0.706 0.750 5.80
6 ACN/CHCl3 643 - 1.96 11.55 0.715 0.700 5.78
7 ACN/CHCl3 642 - 2.47 8.78 0.671 0.770 4.53
8 ACN/CHCl3 650 - 1.63 11.95 0.717 0.710 6.08
9 ACN/TBA/DMSO 378, 496 - 14.11 0.660 0.653 6.08 [75]

10 ACN/TBA/DMSO 384, 494 - 14.32 0.910 0.539 7.04
11 Toluene/EtOH 465, 620, 675 - 1.55 10.51 0.700 0.719 5.19 [76]
12 Toluene/EtOH 465, 621, 678 - 1.62 12.79 0.701 0.716 6.42
13 Toluene/EtOH 465, 623, 683 - 1.67 17.93 0.711 0.715 9.12
14 THF/EtOH - - 0.782 8.60 0.604 0.690 3.60 [77]

THF/EtOH (CDCA) - - 0.537 8.90 0.610 0.680 3.70
THF/EtOH 4 - - 0.776 10.70 0.650 0.700 4.90

16 CHCl3/EtOH 432, 459, 580, 646 634 0.525 11.60 0.760 0.710 6.26 [78]
17 CHCl3/EtOH 446, 575, 628 626 0.358 11.47 0.860 0.670 6.60
18 CHCl3/EtOH 431, 457, 585, 646 640 0.402 12.50 0.781 0.720 7.03
19 EtOH/ACN 697 705 0.307 3.98 0.601 0.700 1.67 [79]

EtOH/ACN (CDCA) - - 0.276 4.27 0.611 0.720 1.89
23 THF/EtOH 458 - - 2.50 0.520 0.780 1.00 [80]

THF/EtOH (DCA) - - - 8.90 0.600 0.760 4.05
24 THF/EtOH 494 - - 9.25 0.630 0.610 3.56

THF/EtOH (DCA) - - - 10.8 0.650 0.600 4.20
25 CH2Cl2/MeOH 305, 424 422 8.12 12.26 0.756 0.660 6.14 [81]
26 CH2Cl2/MeOH 305, 414 412 9.48 11.92 0.740 0.660 5.85
27 CH2Cl2/MeOH 305, 420 422 10.57 10.92 0.705 0.680 5.25
28 Toluene 501 419 - 14.83 0.755 0.720 8.10 [82]
29 Toluene 494 416 - 13.21 0.756 0.750 7.50
30 Toluene 488 414 - 12.00 0.752 0.730 6.60
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Table 1. Cont.

DSSCs

Dye Dye-Bath Solvent 1

(Co-Adsorbents) λmax/nm 2 λmax/nm 3
Dye Loading
Amount (10−7

mol cm−2)

Jsc/mA
cm−2 Voc/V FF η/% Ref.

31 THF 422, 464, 569, 615 - - 13.20 0.650 0.620 5.33 [83]
32 DMSO 437 464 - 14.00 0.570 0.690 5.51 [84]
33 N/A 253, 290, 401 453 - 10.20 0.707 0.592 5.20 [85]
34 ACN/TBA 477 - 2.88 15.64 0.667 0.670 7.02 [86]
35 ACN/TBA 488 - 2.26 18.16 0.680 0.650 7.99
36 ACN/TBA 487 - 2.38 18.19 0.706 0.690 8.82
37 THF/EtOH (CDCA) - - 0.238 13.59 0.759 0.772 8.30 [87]

THF/EtOH (HC-A1) - - 0.220 15.62 0.759 0.762 9.05
38 THF/EtOH (CDCA) - - 0.208 15.58 0.858 0.738 9.87

THF/EtOH (HC-A1) - - 0.204 16.42 0.846 0.769 10.69
39 THF/EtOH (CDCA) - - 0.199 15.82 0.858 0.731 9.94

THF/EtOH (HC-A1) - - 0.186 16.50 0.846 0.772 10.80
40 CHCl3/EtOH 508 474 2.33 13.44 0.786 0.675 7.13 [88]

CHCl3/EtOH (CDCA) - - 2.32 15.06 0.775 0.704 8.21
CHCl3/EtOH (dye 41) - - 1.87 + 0.45 18.30 0.737 0.729 9.83

41 CH2Cl2 318, 405, 546 - - 8.46 0.601 0.760 3.86 [89]
CH2Cl2 (CDCA) - - - 17.50 0.657 0.740 8.56

CHCl3 - - - 16.25 0.618 0.720 7.22
CHCl3 (CDCA) - - - 17.82 0.646 0.720 8.29

N719 EtOH - - - 0.22 0.600 0.230 0.03 [90]
EtOH/H2O - - - 4.15 0.650 0.570 1.50

45 TBA/ACN 8.07 0.800 0.760 4.90 [91]
TBA/ACN (CDCA) 8.08 0.790 0.680 4.34

46 TBA/ACN 11.57 0.810 0.590 5.57
TBA/ACN (CDCA) 11.59 0.800 0.680 6.30

47 CH2Cl2 438 423 4.46 9.70 0.760 0.720 5.33 [92]
ACN - - 4.39 9.40 0.720 0.680 4.59
EtOH - - 3.36 9.10 0.709 0.660 4.23
THF - - 3.25 8.20 0.663 0.670 3.61
DMF - - 0.69 5.60 0.579 0.620 2.00

49 THF 5 - - 1.11 12.73 0.650 0.680 5.60 [93]
THF 6 - - 1.25 11.83 0.640 0.700 5.29

50 ACN/H2O 7 - - - 0.48 0.220 0.460 0.05 [94]
ACN/H2O 8 - - - 2.83 0.290 0.610 0.50

51 N/A - - - 14.37 0.740 0.685 7.23 [95]
N/A 9 - - - 14.91 0.780 0.715 8.28

52 N/A - - - 1.60 0.480 0.643 1.00 [96]
N/A 10 - - - 2.99 0.500 0.669 1.47

53 THF 513 - - 10.64 0.520 0.700 3.87 [97]
54 THF 488 - - 15.23 0.560 0.730 6.23
55 ACN/TBA/DMSO 262, 294, 345, 476 - - 15.78 0.601 0.640 6.04 [98]
56 ACN/TBA/DMSO 258, 298, 351, 478 - - 14.00 0.612 0.640 5.48
57 ACN/TBA 314, 429 - 3.69 12.09 0.620 0.670 5.02 [99]
58 ACN 285, 405, 475 - 1.92 6.56 0.540 0.689 2.44 [100]

ACN (CDCA) - - 2.04 5.87 0.560 0.686 2.25

ssDSSCs

14 N/A 11 438 - - 0.65 0.719 0.780 3.89 [101]
15 N/A 11 458 - - 0.78 0.740 0.730 4.51
20 ACN/TBA - - 0.28 6.40 0.710 0.570 2.60 [102]
21 ACN/TBA - - - 6.80 0.790 0.430 2.30
22 ACN/TBA - - 0.19 7.10 0.790 0.460 2.60
44 ACN - - - 12.90 0.550 0.483 3.40 [103]

ACN (CA) - - - 13.45 0.552 0.506 3.60
44 TBA/ACN - - 0.066 4.70 0.760 0.727 2.60 [104]

TBA/ACN (MAPbBr3) - - 0.052 5.40 0.810 0.704 3.10
48 ACN/TBA 439 - - 16.14 0.496 0.420 3.33 [105]

Toluene 484 - - 13.42 0.453 0.390 2.40

N/A is not available. 1 MeOH (methanol); CHCl3 (chloroform); ACN (acetonitrile); TBA (tert-butyl alcohol);
CH2Cl2 (dichloromethane); EtOH (ethanol); THF (tetrahydrofuran); DMF (dimethyl formamide); DMSO (dimethyl
sulfoxide). 2 The absorption data were measured in solvent. 3 Dyes were adsorbed on TiO2 films. 4 Dye loaded
TiO2 electrode is coated with Al2O3 by atomic layer deposition. 5 Sensitization time 12 h. 6 Sensitization time 24 h.
7 Add HClO4 to the dye bath and electrolyte. 8 Add H2SO4 to the dye bath and electrolyte. 9 The N3-sensitized TiO2
films are dipped into MPA solution to form N3-MPA on TiO2 by deprotonation. 10 The pure TiO2 was modified by
directly mixing the natural dye during synthesis of TiO2 to yield pre dye treated TiO2 nanoparticles. 11 The overall
conversion efficiency of DSSCs is tested under lower light intensity 9.3% sun.
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Quinoxaline-based sensitizers 9 and 10 with long alkyl chains on their auxiliary electron acceptors
successfully suppress dye aggregation and electrons recombination. Meanwhile, the incorporation
of alkyl chains into donor group broadens the light-harvesting in the long-wavelength region [75].
Zhu and co-workers suggested that the hexyl chains on the bridged thiophene rings help to avoid dye
aggregation on the NiO film and block I− in electrolyte from approaching the surface of NiO [106].

Tuning the length and number of alkyl/alkoxy chains, a substantial enhancement of PCE from
5.2% to 9.1% (see Table 1) was achieved in a series of donor-π-acceptor-type porphyrin dyes (11, 12
and 13), due to the aggregation being inhibited by introducing flexible chains into suitable positions
without seriously aggravating distortion of the dyes [76]. The photovoltaic performance comparison of
ssDSSCs using triphenylamine-based dyes 14 and 15 as sensitizers demonstrate the beneficial influence
of alkoxy units, enhancing light harvesting and resulting in a higher photocurrent. Various intensities
of light were used to test photovoltaic performance of ssDSSCs, and under low intensity (10% sun
and 50% sun), the lower observed photocurrent is attributed to aggregation of dyes on the TiO2

surface [101]. A dye packing model is proposed to reveal the impact of dye aggregation on the overall
photovoltaic performance, which has also been reported in p-type DSSCs [107].

Porphyrin sensitizers have a relatively strong tendency toward aggregation induced by their
large conjugated framework [108,109]. Sensitizers 16, 17, and 18 were designed by introducing bulky
dihexyloxyphenyl groups to suppress dye aggregation and improve the photovoltage, affording a
highest efficiency of 7.03% (see Table 1) [78]. With the six hexylsulfanyls as the bulky electron-donating
groups, sensitizer 19 suppresses dye aggregation on TiO2, and the higher electron donating ability
was favorable for light harvesting [79]. But at the same time, the introduction of bulky groups will
also decrease the loading amounts. A methyl group was introduced into the acceptor, effectively
suppressing dye aggregation, and thus simultaneously improving the Jsc and Voc values. Meanwhile,
the introduction of the methyl group had no obvious unfavorable steric hindrance and slightly increased
the dye-loading amounts [110].

Another molecular engineering technique to control the aggregation of dye on TiO2 was realized
by anchoring dyes on the surface with suitable anchoring groups [111]. However, the effect of anchoring
groups on dye aggregation haven’t been extensively investigated, and most of them focus on theoretical
research. The anchoring group mainly effects the molecular space stretching (Figure 4) and anchoring
mode (adsorption site [112] and orientation [113], etc), and the intermolecular interaction between the
anchoring groups have a direct influence aggregation [114,115].
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Figure 4. Illustration of molecular space stretching and distance from the electron recapture center to
TiO2 surface. Reprinted from [115], with permission from Elsevier.

Position engineering of anchoring group in a dye demonstrates its influence on the molecular
space stretching, and the different dye aggregation causes differences in device FF [116]. The number of
carboxylic acid anchoring groups in the dye is correlated to the extent of dye aggregation [117]. Due to
carboxylate ions that are formed during the dye sensitization process and carboxylic acids will interact
strongly with other chemical substituents to promote molecular aggregation [118]. Orduna et al.
reported three dyes with different anchoring groups (20, 21 and 22) (shown in Figure 5) for ssDSSCs.
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From the graph of dye bath absorption intensity and sensitization time, it can be known that the
concentration of dye 20 kept decreasing over the entire time. This trend may arise from undesired dye
aggregation at the TiO2 surface. Notably, the concentration of dye 22 in solution decreased rapidly and
then saturated, i.e., does not show any evidence of this type of dye aggregation, which may be a partial
cause for relatively high Jsc (see Table 1) [102].
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Figure 5. Chemical structures of anchoring groups and dyes 20–22.

Apart from the above methods, dyes containing two anchoring groups were synthesized to avoid
aggregation utilizing conjugate/configuration linkers through either donor or π-spacer component
of the sensitizer (Figure 6). Compared with the corresponding single-branch dyes, the double
branched dyes possess better broad absorption, stronger binding ability, and reduced tendency towards
aggregation [119,120].
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The photophysical and photovoltaic properties are influenced by the distance between two
anchoring units and flexibility of the linker. For example, dyes 23 and 24 (shown in Figure 7) linked two
donors using m-phenylene and fluorene units, the trapezoidal 24 exhibited lower aggregation and charge
recombination than the inter-planar 23 and achieved a broader light-harvesting range [80]. A series of
phenothiazine-based dyes (25, 26 and 27) have lower tendency to aggregate due to the characteristic of
the double branch, and the position of the linkage units influences the photophysical characteristics,
dye loading on films, and the electron lifetime [81]. Double branched triphenylamine-based dyes (28,
29, and 30) with bridge linked at different position of the π-bridge also have been designed, and the
cross structure is superior in the suppression of intermolecular interactions, reducing the charge
recombination rates in the DSSCs [82]. The PCE of DSSCs has been greatly improved compared to the
corresponding isomers. A meso-meso directly linked porphyrin dimer (dye 31) has been shown to
reduce intermolecular π-π interaction and suppress the approach of I3

− electrolyte ions to the TiO2

semiconductor for charge recombination [83]. With respect to the corresponding non-spiro-linked
parent compounds, spiro compounds have higher solubility, improved morphological stability in
the solid-state and a reduced tendency to form aggregates [121,122]. The homodimeric spiro dye 32
showed higher PCE of 7.6% (see Table 1), which is 2.4 times the monomeric form, and the spiro linker
offers the dye better flexibility [84].
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Iyer and co-workers reported a A-type o,m-di fluoro substituted phenylene spacer di-anchoring
dye 33, which exhibited a strong ICT peak as both acceptor units help in efficient electron extraction
from the carbazole donor and reduced H-aggregation in solution as well as in solid-state. Compared
with the mono-anchoring dye, dye 33 has a higher PCE in the presence of iodide redox electrolyte,
but exhibits comparatively less efficiency when used to fabricate a ssDSSC due to aggregation between
dye and solid organic ionic conductor through H-bonding [85]. Lin et al. reported a new series of
A-type phenothiazine-based dye with double acceptors/anchors (34, 35 and 36), i.e., two branches
share one donor group. Compared to the congener containing only one anchor, they not only more
efficiently suppressed dark current and dye aggregation, but also provided more electron injection
pathways [86]. The substituents at the nitrogen atom of phenothiazine further contributed to the
inhibition of aggregation [86,123,124]. For A-type symmetric dyes, the functionalization of a central
core can not only force the absorption geometry of the dyes [125], but also greatly change the spatial
geometry of molecules and geometry of dyes chemisorption on semiconductor surface, thus affecting
the dye aggregation on the semiconductor surface [126].

3.3.2. Co-Adsorbents

Co-sensitization by adding co-adsorbing agents to the dye bath during the sensitization process
is also a broad class of methods commonly used to inhibit dye aggregation. Cholic acid (CA),
deoxycholic acid (DCA), chenodeoxycholic acid (CDCA) and their derivatives are commonly used as
co-adsorbents [127–129]. The co-adsorbents, with fewer restrictions and frequent use, can not only
effectively inhibit the formation of the undesired aggregates to reduce excited state quenching [130–132],
but also cover the exposed TiO2 surface between dyes, which could protect the dye-TiO2 working
electrode from electrolyte attack, and then reduce charge recombination [133,134]. Highly selective
co-adsorbents are also designed to improve the performance of DSSCs through effective spectral
complementation and suppression of dye aggregation [135–137], which are often seen in porphyrin dyes.

In previous studies, CDCA and its derivatives are frequently used as co-adsorbents to enhance
the efficiency of DSSCs by inhibiting dye aggregation (Figure 8). In the absence of co-adsorbents the
aggregation adversely impacts the performance of DSSC, but, since the co-adsorbent is a competitor to
the dye adsorption, a large concentration decreases the dye loading and consequently Jsc [138–140].
So, there is an optimal concentration of co-adsorbent in the solvent bath. In recent years, research on
CDCA and its derivatives is no longer aimed at improving device efficiency, but is more used to study
the types, regulation, and verification of dye aggregation.
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CDCA and HC-A1 were co-adsorbed with Zn-porphyrin dyes 37, 38, and 39 (shown in Figure 9)
respectively, and the addition of both co-adsorbents improves the PCEs of all sensitizers. The DSSCs
with HC-A1 exhibited higher Jsc and PCE (see Table 1) compared with CDCA due to the reduced
J-aggregation and improved light-harvesting ability in the 350–480 nm region [87].
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The steroid backbone of bile acids was harnessed to chemically modified co-adsorbents CA,
DCA and CDCA at their R3 position attaching sterically demanding amide groups. All co-adsorbents
regardless of the concentration ratio furnish better efficiencies compared to devices without them,
which correlates with a valuable effect of decreasing dye aggregation [141].

Zhu et al. adopted the strategy of co-sensitization to improve the device efficiency of benzothiadiazole-
based dye 40. Co-adsorption with CDCA reduces dye aggregation, and the amount of adsorbed dye 40
has almost no significant change, but there is no dramatic promotion in photovoltaic efficiency. For the
co-sensitized cells of 40 and 41, the IPCE spectra showed above 80% from 450 to 650 nm with the cutoff
wavelength extending to 800 nm, achieving an excellent efficiency of 9.83% (see Table 1) [88].
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Two organic co-sensitizers S3 and S4 containing bipyridine anchoring groups were used with
porphyrin dye 42 for DSSCs. The co-sensitizers not only suppress the dye aggregation and fill the
adsorption gap between the main dyes, but also successfully compensates for the absorption defects of
porphyrin dyes and improves the light response current [142]. As reported by Harrabi and co-workers,
it should be noted, the performance of the co-sensitization DSSCs depends strongly on the concentration
of the co-sensitizer [143].

And the same approach is also used in ssDSSCs [144,145]. Grätzel and co-workers reported
a near-IR squaraine-based dye 43 for ssDSSCs. By effectively reducing the dye aggregation via
adding CDCA in the dye bath, the aggregation peak is decreased, and the absorption peaks are
slightly red-shifted. Interestingly, the addition of spiro-MeOTAD has a similar effect to CDCA [146].
Buddhapriya and co-workers showed that replacement of the ethyl group on the terminal rhodamine
ring of indoline dye 44 by octyl substitution does not completely stop aggregation. The dye aggregation
was further inhibited by adding co-sensitizers, and maximum PCE of 3.6% (see Table 1) was observed
for TiO2/dye/CuI ssDSSCs [103]. For ssDSSCs, the solid hole transport layer itself makes a certain
contribution to the inhibition of dye aggregation. The process of depositing the HTM by spin-coating
may remove the aggregates not firmly attached to the TiO2 surface or disrupt the dye aggregates [146].

It is well-known that CDCA is generally used to inhibit dye aggregation in DSSCs, as many of
the studies mentioned above, but it is very interesting that Kothandaraman and co-workers reported
two pyrene carbazole dyes 45 and 46, which showed opposite effects after co-adsorption with CDCA.
On TiO2 film, 46 dye, along with CDCA, show a slight broadening in their absorption spectrum
compared to CDCA free solid-state spectrum, whereas for 45+CDCA, a significant blue-shift was
observed. Also, 46 showed an enhancement of PCE upon the addition of CDCA, while 45 showed a
decrease, which was directly related to the change of FF (see Table 1) [91].

3.3.3. Sensitization Conditions

Sensitization is an important step in the preparation of DSSCs; dye baths (solvents and their
concentrations) have an important impact on dye aggregation by affecting the anchoring mode,
adsorption capacity and absorption spectrum of dyes [147–149]. By influencing the anchoring mode of
the dye, the solvent can control the arrangement mode on the TiO2 surface to achieve the purpose
of regulating aggregation. Compared with the above two methods of molecular engineering and
co-sensitization, it is more convenient to regulate the aggregation of dyes through solvent selection.
Rensmo et al. reported that water in the dye solution greatly reduced ZnO surface dye aggregation
and thereby enhances the solar cell performance for N719 by using XPS (see Table 1) [90].

The dyes in different solvents exhibit diversified interactions between the dyes and solvents [150],
which could cause changes to the physical and chemical properties between the dyes and semiconductor
surface. Triphenylamine-based dye 47 (shown in Figure 10) was employed to sensitize TiO2 in different
solutions (CH2Cl2, ACN, EtOH, THF, and DMF) [92]. The decrease of photocurrent density of DSSCs
via different solutions is in direct proportion to the decreasing adsorbed amount.

Two solvents (CH2Cl2 and CHCl3) were used to study the dye-bath solvent effect on aggregation
effect of benzothiadiazole-based dye 41 (shown in Figure 9). The augmentation of surface coverage
in CH2Cl2 does not lead to an increase of the photocurrent. Non-polar solvent CHCl3 appears to
solvate the dye better, resulting in lower dye loading, but in better spatial distribution, preventing
the undesired π-π stacking, which increased PCEs from 3.86% (CH2Cl2 solvent bath) to 7.22% (see
Table 1) [89].
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It is well-known that some organic dyes can exhibit positive solvatochromism that causes a
bathochromic shift of the absorption band with increasing solvent polarity, and some dyes show
negative solvatochromism that can lead to a hypsochromic shift [151–153]. Therefore, the polarity
of solvents has a great influence on the aggregation pattern of dyes. By dissolving more than
3000 dyes in different solvents, the fingerprint-based classification models proposed by Venkatraman
is demonstrated in experiment. Also, in the collected data, highly polar solvents such as ethanol,
methanol, and dimethylformamide show a higher incidence of J aggregation, while those on the
mid-lower range of the scale, such as chloroform and tetrahydrofuran, show mixed behavior [154].

The interaction between dye molecules and solvents also has an important effect on dye aggregation.
For alkyl-functionalized carbazole dye 48, a clear distinction in the absorption peaks in two cases
indicate a difference in the aggregative blue-shift in toluene due to J-aggregation and the red-shift in
ACN due to H-aggregation. The higher affinity of the hydrophobic moiety due to toluene account for
the difference [105].

In addition to the dye bath itself, the sensitization time and temperature also affect the formation
of dye aggregation [145,155,156]. The length of time determines the amount of dye adsorption,
and aggregation prevails with time at the expense of the monomer species due to the increasingly
confined surface area [157]. For example, Park et al. prolonged the adsorption times (quinoxaline-based
dye 49), and it showed reduced efficiencies and Jsc values (see Table 1), resulting from dye aggregation
and intermolecular quenching [93]. Upon acidification of the solution [158] and change of anions in the
electrolyte [94], the H-aggregation of porphyrin-based dye 50 molecules is converted to J-aggregation
with higher photo-to-electron conversion efficiency.

3.3.4. Other Methods

Different from traditional co-sensitization, in which the co-adsorbents are all anchored to the
semiconductor surface via functional groups, Miyasaka and co-workers presented a concept of
co-sensitization of dye 44 (D149) with methylammonium lead bromide (MAPbBr3) perovskite in
ssDSSCs. Small amount of MAPbBr3 can mitigate dye aggregation and can improve the light harvesting
property of device. Also, the dye/perovskite co-sensitized device showed efficient charge transfer
between dye and TiO2 (Figure 11) [104].
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In addition to the above three methods (molecular engineering, the use of co-adsorbents, and the
change of sensitization conditions), some special methods have also been used to inhibit dye aggregation,
one of which is to add additives in the electrolyte. Chemical modification of a dye 51-adsorbed TiO2

photoelectrode is achieved by adding MPA in the electrolyte to replace the protons in the free anchoring
group of dye 51, forming an amide bond (Figure 12). This method significantly retarded dye aggregation
and resulted in enhanced Jsc (see Table 1) [95].

Molecules 2020, 25, x 14 of 31 

 
Figure 11. Schematic representation of proposed electron transport mechanism [104]. 

In addition to the above three methods (molecular engineering, the use of co-adsorbents, and 
the change of sensitization conditions), some special methods have also been used to inhibit dye 
aggregation, one of which is to add additives in the electrolyte. Chemical modification of a dye 51-
adsorbed TiO2 photoelectrode is achieved by adding MPA in the electrolyte to replace the protons in 
the free anchoring group of dye 51, forming an amide bond (Figure 12). This method significantly 
retarded dye aggregation and resulted in enhanced Jsc (see Table 1) [95]. 

 
Figure 12. Schematic diagram for deprotonation of dye N3 (i.e., dye 51) on TiO2 particles with MPA 
via an amide bond. Republished with permission of Royal Society of Chemistry from [95], permission 
conveyed through Copyright Clearance Center, Inc. 

Similar to the above ideas of dye modification, another dye-modification material is proposed. 
However, the latter does not directly change the dye structure through covalent bond. After 
sensitizing with dyes, the TiO2 electrode was dipped into a solution of Al(OC3H7)3, then hydrolyzed 
to Al2O3. Multi-layer DSSCs can be obtained by repeating the above steps. Also, this alternating 
assembly structure can increase the adsorption of dye sensitizer 51, while prohibiting the dye 
aggregation at the same time [159]. Such atomic layer deposition also has been reported by Son et al. 
to minimize dye interactions caused by aggregation (triphenylamine-based dye 14). It is more 
effective than the widely used aggregation-inhibiting co-adsorbent CDCA and engenders a 30+% 
increase in overall energy conversion efficiency (see Table 1) [77]. Bian and co-workers also reported 
insulating Al2O3 layers, which contribute to bring about improvements in the performance of p-type 
DSSCs, the peak shift of absorption spectra and fluorescence spectra showed its effectiveness in 
inhibiting dye aggregation. The difference is that they first prepare the Al2O3/NiO films and then 
sensitize dyes [160]. In addition, the atomic deposition helps to passivate defects in NiO solar 
photocathodes [161]. 

Dye aggregation is caused by intermolecular forces, which depends on the distance between the 
molecules. In the above three methods of this section, when the dyes are anchored on the 
semiconductor metal oxide surface, the distance between molecules cannot be changed, and the post-
treatment method is used by the researchers to suppress the dye aggregation, that is, adding a 
shielding layer between molecules. Changing the distance between the molecules to inhibit dye 
aggregation is a very effective and direct method, such as molecular engineering and the use of co-

Figure 12. Schematic diagram for deprotonation of dye N3 (i.e., dye 51) on TiO2 particles with MPA
via an amide bond. Republished with permission of Royal Society of Chemistry from [95], permission
conveyed through Copyright Clearance Center, Inc.

Similar to the above ideas of dye modification, another dye-modification material is proposed.
However, the latter does not directly change the dye structure through covalent bond. After sensitizing
with dyes, the TiO2 electrode was dipped into a solution of Al(OC3H7)3, then hydrolyzed to Al2O3.
Multi-layer DSSCs can be obtained by repeating the above steps. Also, this alternating assembly
structure can increase the adsorption of dye sensitizer 51, while prohibiting the dye aggregation at the
same time [159]. Such atomic layer deposition also has been reported by Son et al. to minimize dye
interactions caused by aggregation (triphenylamine-based dye 14). It is more effective than the widely
used aggregation-inhibiting co-adsorbent CDCA and engenders a 30+% increase in overall energy
conversion efficiency (see Table 1) [77]. Bian and co-workers also reported insulating Al2O3 layers,
which contribute to bring about improvements in the performance of p-type DSSCs, the peak shift of
absorption spectra and fluorescence spectra showed its effectiveness in inhibiting dye aggregation.
The difference is that they first prepare the Al2O3/NiO films and then sensitize dyes [160]. In addition,
the atomic deposition helps to passivate defects in NiO solar photocathodes [161].

Dye aggregation is caused by intermolecular forces, which depends on the distance between
the molecules. In the above three methods of this section, when the dyes are anchored on the
semiconductor metal oxide surface, the distance between molecules cannot be changed, and the
post-treatment method is used by the researchers to suppress the dye aggregation, that is, adding
a shielding layer between molecules. Changing the distance between the molecules to inhibit dye
aggregation is a very effective and direct method, such as molecular engineering and the use of
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co-adsorbents. In addition, the electrode pretreatment has also been reported, which is a useful
approach to reduce the number anchoring sites and, in turns, the dye aggregation. The electrode
pretreatment with acids was reported by Wang and co-workers [162]. The strong acids such as HCl,
HNO3 and H2SO4 increased the dye adsorption. However, HAc and H3PO4 decreased the dye amount
on TiO2. It depends on the strength of anchoring groups, between the acid anchoring group and
the dye anchoring group (-COO−). Tian et al. reported chemical and thermal methods to reduce
the amount of Ni3+ in the NiO film. Also, the p-DSSCs built with the reduced NiO film showed an
improvement in photovoltaic performance, especially in terms of photovoltage (see Table 1) [163].

The usual fabrication of DSSC devices is to prepare porous TiO2 thin films and then carry out
dye adsorption. In terms of more dye adsorption and less dye aggregation, a new methodology
of pretreated TiO2 with natural dye 52 was reported (Figure 13). Also, the modified colored TiO2

nanoparticles showed 47% improvement in efficiency (see Table 1) [96].
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3.4. Future Prospects for Utilizing Dye Aggregation

It is well-known that the dye aggregation is of paramount importance in determining the overall
PCE of DSSCs due to the optical and electronic properties that strongly depend on the aggregation
patterns. Above all, the vast majority of studies focus on suppressing dye aggregation because the
stronger intermolecular interactions within the compact dye layer leads to excited-state quenching,
which will be detrimental to the electron injection efficiency. But the following points are worth noting:
(1) The aggregation of dye molecules enables them to be arranged in order on the surface of TiO2,
which facilitates efficient charge injection from aggregates [114,164] and causes higher absorption
amount on TiO2 [165]; (2) Dye aggregation can effectively reduce the bare surface of TiO2, which will
help with blockading the redox mediator from infiltrating into the TiO2 surface, and thus reduce
electron recombination [166]; (3) Dye aggregation can broaden the absorption spectrum and enhance
the ability of light-harvesting [167–169], especially J aggregation [64]. Although there is a competitive
relationship between the advantages and disadvantages of dye aggregation, the prospect of using the
advantages of dye aggregation to improve the overall performance of DSSC is considerable. At present,
there are also a few relevant research reports.

The absorption spectra of the two dyes 53 and 54 as shown in Figure 14 containing thienothiophene
and thiophene segments on TiO2 film are broadened, and 53 produces a slight blue-shift due to the
formation of H-aggregate, 54 has a red-shift due to J-aggregation. Though 53 has a larger π-conjugation
system than 54, the 54 has a broader absorption spectrum due to J-aggregation, which is favorable for
harvesting solar light and leading to a large photocurrent [97]. Venkateswararao et al. also reported
that dye 55 (shown in Figure 14) containing carbazole as donor and π-linker has larger photocurrent,
which was attributed to the longer wavelength light harvesting ability arising from the J-aggregation
and the retardation of electron recombination with the electrolyte in comparison with dye 56 with
bulky tert-butyl groups [98].
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Lin et al. studies the effects of the presence of CDCA on the J-aggregated dye 57 (shown in
Figure 14) and found that there was no change of efficiency. Compared with the dyes without
aggregation, 57 has higher conversion efficiency when employed in DSSCs [99]. Hemavathi et al.
also conducted similar experiments for D-A-π-A carbazole dye 58 (shown in Figure 14) and found
that there was reduced efficiency after adding CDCA. The higher aggregation contributes to better
absorption, leading to a higher current coupled with more population of CB states thereby having
better Voc and improved performance (see Table 1) [100].

According to absorption spectrum studies, different dye molecules have different concentrations
of aggregation. The orderly arrangement of dyes on TiO2 surface is conducive to electron injection,
and J-aggregation can increase the absorption of the long wavelength region [170].

For a series of squaraine dyes (3–8) (shown in Figure 3), although different alkyl chains were
introduced to inhibit aggregation, the IPCE responses of the devices fabricated with six dyes were
broad, which indicated that both the monomer and aggregated structures contributed to the charge
injection process. Also, higher contributions to the IPCE response were observed from the aggregates
rather than the monomeric form of the sensitizer [73].

Konno and co-workers showed that the photocurrent action spectrum of the TiO2/Indoline dye
44/CuI is broad and commensurate with the adsorption spectrum of TiO2/Indoline dye 44 indicating
that the J-aggregated dye effectively injects electrons to TiO2. An efficiency of 4.2% (see Table 1)
indicating that organic dyes adsorbing strongly onto TiO2 and forming non-quenching aggregates
are more suited for application in ssDSSCs [171]. The self-assembly of dye on TiO2 also can be
used as a dense blocking layer between hole conductor and TiO2, which effectively avoids charge
recombination [172,173].

4. Application of Quantum Computation in the Study of Dye Aggregation

Computational Chemistry is becoming an important tool to help understand the effects of dye
aggregation on the absorption of solar energies and the subsequent electron transport in DSSCs.
Here we focus on discussing the use of DFT calculations to obtain the properties, such as relative
energy levels, and the quantities for describing charge transport processes in DSSCs [174]. Quantum
Chemistry studies of DSSCs beyond DFTs can be found in the recent reviews [175–177].

4.1. Computational Methodologies

In the study of aggregation of dyes on a TiO2 surface, either a cluster model [178] or a slab
model [179] is used to describe the TiO2 surface. The adsorption of dye molecules on the model TiO2

surface is then studied. DFT calculations of the adsorption of dye molecules to TiO2 or other oxides,
such as Sn, Zn, Ni, and Cu oxides have often been carried out using DFT+U methods to accurately
calculate absorption energies and band gaps [180–182]. For instance, using a (7 × 8) TiO2 cluster to
represent the TiO2 surface, Feng et al. characterized multiple phenothiazine-based dyes (59, 60, 61,
and 62 shown in Figure 15) containing 4 separate auxiliary chromophore donor groups on a TiO2

cluster. Utilizing the widely popularized B3LYP functional with the 6-31G(d,p) basis set to optimize
the dyes, and subsequently using the MPW1K hybrid density functional with the same basis set for
TD-DFT to generate a simulated absorption spectra. While their monomer calculations were relatively
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consistent with the experimental data in terms of absorption energy and electron injection energy
(calculated with CAM-B3LYP), more importantly, utilizing DFTB optimized ground state absorbed
structures, they employed MD simulations to probe the aggregation of the aforementioned dies on the
TiO2 cluster surface. They were able to gauge the effect of donor units on the interaction energy of
each species during aggregation. In addition, they calculated the intermolecular electronic coupling of
the stacked dyes over the same period. They further used non-adiabitc marcus theory to calculate the
reorganization energy of each species, as well as calculate the charge transfer rate between the stacked
dimers [178].
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Studies have shown that B3LYP is relatively inadequate at characterizing the interaction energy
between stacked dimers unbonded to the surface, whereas ωB97xD has comparable results to
CCSD(t)/CBS energies. Multiple methods of intermolecular interactions have been tried and are in
relative agreement, including the “energy splitting in dimer” method as well as a direct approach.
When studying the excitation energy of dimers, it has been found that the B3YLP-D method performs
better than eitherωB97xD or CAM-B3LYP, with the exception of systems where there is a prominent
charge transfer character. Lastly, MPW1K is a viable option when trying to perform accurate TD-DFT
calculations on dimeric systems [111,168,183–185]. The slab model is usually optimized by the
commonly used PBE functional, whereas the optimization of the dyes themselves once absorbed
to the surface is usually done with a dispersion-dependent functional, often a Grimme’s D2 or D3
correction [179,185–189].

The difference between B3LYP, and its Grimme’s D3 dispersion corrected analog were compared
and it was shown that the interaction energy of B3LYP for two indoline base dyes 63 and 44 was nearly
entirely repulsive (−0.1 kcal/mol and 1.42 kcal/mol for 63 and 44 respectively). However, with the
application of the D3 dispersion correction, the interaction energy resembled the MP2 calculated
interaction energy relatively well. The interaction energy for 63 and 44 for MP2 was −14.08 kcal/mol
and −8.04 kcal/mol respectively whereas for B3LYP-D3 the interaction energy was −16.27 kcal/mol and
−10.02 kcal/mol respectively [38]. Other studies have also corroborated the inefficiency of B3LYP in
this regard [186]. It has also been displayed that it is possible to simulate the effect of electron injection
of one dye onto the adjacent structure in the aggregate. By modeling the dye adjacent as a cation and
coupling with TDDFT calculations a Stark’s shift consistent with the experimental data was seen in the
absorption spectrum [38].

Multilayer aggregation models can also be readily tested as has already been completed with
p-methyl red [178]. Here, not only is it shown that the relative changes in absorption spectra can be
gauged due to differences in surface loading, but also changes to the adsorption energies between the
dye and the surface due to increased intermolecular interaction with neighboring particles as well as a
deeper understanding of the intermolecular interactions occurring within the aggregate. In the study of
multilayer aggregation of p-methyl red the UV-vis absorption spectra was shifted 200 nm (something
also seen in calculation of the monolayer) most likely due to deficiencies in the PBE functional as it
neglects Hartree Fock exact exchange as well as severely underestimates the band gap.

Other studies have examined the loading on the surface and similarly examined the resultant
changes in optical properties, binding energies, and the charge transfer properties due to different
conformational arrangements and loading. Expectedly, as dye loading increases, so does the absorption
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intensity of the maximum absorption as well as a consistent red-shift that corresponds with increased
loading of the TiO2 surface. However, upon introduction of a fifth species not bound to the surface,
but rather held in place between the bound site by attractive dispersion forces, a blue-shift occurs and a
decrease in absorption in relation to the tetramer bonded species. This blue-shift is consistent with the
aforementioned shift seen in the multilayer model, which also has a second layer of dye loading held
purely by weak forces. The decrease in peak intensity differs and is possibly due to the calculation
accounting for dispersion-based interactions utilizing the Tkatchenko-Scheffler (TS) DFT-D scheme.
Increasing the loading on the surface not only reduced the adsorption energy, but introduction of
the weak force bound p-methyl red species between the four chemisorbed species also decreases the
adsorption energy.

Aggregative structures have also been examied, using just the optimized monomer structure to
do single point energy calculations varying the distance between each monomer on its z-axis to find
the optimal distance between each monomer before rotating the molecule and sliding it along in either
the x or y direction to find the most stable input configuration. Once this is done, the structure can
be optimized at a lower computational cost. This has been done with various streptocyanines with
theωB97XD functional and the cc-pVDZ basis set, and the conductor polarizable continuum model
(CPCM). Symmetry-adapted-cluster/configuration interaction (SAC-CI) calculations were performed to
find the vertical excitation energies [190]. The accuracy of this type of calculation is highly dependent
on the ability of optimizing functional used, to properly characterize the non-bonding forces between
dimers. As such, the accuracy and relevance of this methodology is intimately tied to the development
of accurate dispersion corrected functionals.

4.2. Functional Development to Accurately Describe Aggregations

The efficacy of DFT method in the study of dye aggregates [178,179,186,191] is reliant on the
current computational methodologies’ ability to characterize the forces which differentiate aggregates
from their molecular state, namely van der Waals (vdW) forces, but more specifically in the case
of organic dyes, dispersion or hydrogen bonding [29,38]. Developing computational means to
accurately characterize vdW interactions has been a pressing concern within the computational
community, as most have found both ab initio and Density Functional Theory (DFT) methods
lacking [192,193]. Through development of an accurate computational methodology it may be possible
to calculate the changing absorption properties, in the case of sensitizers, of the species of interest upon
aggregation [194,195]. This characterization may also be a boon to our understanding of the changing
exciton mobilities in aggregated species as well, specifically modeling the changes in electronic structure
that have been reported to cause electron mobility changes by three orders of magnitude in some
cases [196,197].

In Kasha’s model, the alignment of the transition dipoles determines whether coupling is positive
or negative. However, it has been noted by Spano that the Kasha model is purely limited to Coulomb
coupling and, as such, does not factor vibronic coupling or wavefunction overlap. It also should
be noted that not only is ground state geometry and energy affected by vdW interactions (lowering
of ground state energy), but the subsequent vdW interactions between the excited and unexcited
molecule also change the excitation energy in addition to the exciton splitting term. Equations (4)
and (5) depict the ground and excited state energy respectively, where 1 and 2 refer to the individual
monomers. The third term in the ground state energy equation is the vdW interaction energy and V12

is the intermolecular perturbation potential. The excited state energy is affected by an additional term
called the exciton splitting term (Esplit) [63,198–200]. As such, in order to properly model and quantify
dimer and aggregate transitions, it is necessary to properly quantify vdW interactions.

EGround = E1 + E2 +
x

ϕ1ϕ2(V12)ϕ1ϕ2dτ1dτ2 (4)

EExcited = E1 + E2 +
x

ϕ1
∗ϕ2(V12)ϕ1

∗ϕ2dτ1dτ2 ±
x

ϕ1
∗ϕ2(V12)ϕ1ϕ2

∗dτ1dτ2 (5)
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As for charge transportation, the relative organization within the aggregate material can have
significant effects on the carrier mobility including influencing the formation of trap states either
through deformations, affectations to the packing structure, or through the HOMO and LUMO energy
levels [201]. The effective changes to these frontier orbital energies affect the energy cascades and either
enhance or hinder charge separation, carrier generation, and subsequent transport properties [202,203].
In addition, the sensitivity of the charge transfer characteristics in relation to geometry has a relevant
effect on the excitonic coupling between neighboring molecules and the charge transfer of the system,
as well as the formation of charge separated states [204]. This dissociation of electron from hole,
and subsequent carrier generation is affected by the formation of J, H, and hybrid aggregates (JH etc.),
each having its own unique properties. In lieu of this information, the importance of accurate geometries
with which we can examine these non-bonded vdW dominant systems is all the more apparent.

From the readily apparent importance of having vdW sensitive calculation methods, it is no
surprise to find that the development and refinement of accurate dispersion-based calculation methods
have been an ongoing process, especially since the turn of the century. Particularly with the use of
DFT, which we will focus on here as its effectiveness and scalability makes it a good candidate for
aggregation calculations, there are a multitude of options from which to choose.

The development of dispersion specific functionals stems from the inability of older DFT
methodologies to capture the behavior of dispersion dominant systems. These DFT methods fail to
characterize non-covalent interactions due to their approximation of the exchange-correlation (XC)
functional [205–207]. The resultant exchange correlation energy of Kohn Sham DFT can be calculated
either using a local density approximation (LDA) in which the XC energy is calculated using the
density of a uniform electron gas, generalized gradient approximations (GGAs) in which the gradient
of the electron density is taken into account in addition to the density, meta-GGAs that additionally
utilize the Kohn-Sham kinetic energy, hybrid functionals which utilize a fraction of the Hartree Fock
exact-exchange using Kohn Sham orbitals, or range separated functionals in which electron-electron
interactions are distance partitioned to prevent self-interaction between electrons [208–213]. In systems
where—stacking and by extension dispersion is the dominant stabilizing force, GGAs, meta-GGAs,
and hybrids all show the force to be solely repulsive, whereas LDAs are relatively accurate. LDAs,
however, have been shown to be overly attractive in other purely dispersion-based systems, such as
inert gas dimers [214–216].

The devised solutions to the miscalculation of the XC functional that we will address include:
Grimme’s DFT-D3 correction (an ad-hoc correction), highly parameterized functionals trained
upon large sets of data (Minnesota functionals), APFD, and XDM. The XDM model, standing
for Exchange-Hole Dipole Moment, is based around the idea that dispersion energies arise from
the interaction between electrons and their corresponding ‘exchange holes’. XDM has shown to be
relatively accurate in predicting the binding energy of the dimers in the S12L and L7 data sets as well
as properly identifying the majority of crystal structures with the lowest energy [217]. Grimme’s D3
dispersion correction was developed in succession to D2 and the original D functional, and has a
similar structure involving a scaling factor, a damping function and a heteroatomic coefficient based
on the interaction between two atoms. The differences between D3 and D2 lie in an additional C8
term, a slightly different dampening function based on those by Chai and Head-Gordon, as well as
the lack of a scaling factor for the first term. The D3 correction has had varying results, some of
which say its improvement is non-differentiable from D2 with functionals such as PBE or B3LYP,
and others stating that these functionals are not among the best used for thermochemical calculations
using Grimme’s D3 [218–220]. The Minnesota Functionals, which are highly parameterized and
trained on large subsets of data, have a variety of recommendations on what is considered ‘state of
the art’, based on what data set is being tested and for what value is being tested for. M06-HF for
instance being recommended for the electronic structure community and for time-dependent density
functional theory (TDDFT) calculations as it was designed to be accurate for charge transfer excitation
energies [221–223]. APFD is based off a spherical atom model which is applied to the APF functional
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which is designed to be dispersionless, the result of which is a seemingly larger dispersion correction
than either Grimme’s D3 or M06-2X. APFD itself is comparable to CCSD(T)/aug-cc-pvTZ for noble gas
dimers and is comparable to other dispersion corrections concerning hydrogen bonding complexes.
It has been noted that the computational cost of APFD in comparison to some D3 methods and CCSD(T)
is reduced significantly. However, certain small hydrocarbons such as benzene can have their binding
energies overestimated [209]. While the relative energy changes for different systems vary from none
impact to significant for the purpose of rational design of new materials, good DFT methods that can
describe accurately the vdW interactions are needed [113,224].

Interestingly, or perhaps expectedly as many of the dispersion corrected methods were not
necessarily designed with this as their first intention, utilizing these functionals to estimate the frontier
orbital energies of aggregates is a mixed bag. For small organic hydrocarbons M06-2X is wildly
inaccurate, Grimme’s D3 sees no change in the HOMO-LUMO gap (H-L Gap) although the HOMO
and LUMO values both differ (both increase), and APFD does see a decrease in the HOMO-LUMO gap
from its calculation of monomer systems, but the calculated H-L gap values (at least for small organics)
seems to be similar to that of B3LYP-D3 or B3LYP. The frontier orbitals for these small hydrocarbons
do show non-degenerate values corresponding to the HOMO and LUMO of each molecule, but all
the values show these orbitals to be of higher energy. This lends credence to the dubious nature of
the accuracy of these calculations. Perhaps M06-HF would fare better in this regard. Accepting this,
it becomes readily apparent that the current dispersion-based methods are not adequately equipped
to help accurately predict many of the spectral curiosities seen through aggregation, although they
still may be useful in identifying conformational behavior in regard to aggregative organic materials.
Current methods, utilizing DFT to examine the single molecule structure and not the aggregative bulk,
still provide enough supplemental insight and are computationally cheap enough to be considered the
‘best’ option.

In summary, the DFT methods for describing the properties of organic aggregates are still at
the assessment stage and witnessing growing efforts towards this direction it becomes apparent
that the importance of having accurately described vdW interactions is tantamount. Optimizing
our methodologies and modes of modeling will not only serve to enlighten our understanding of
aggregates in regard to optoelectronic devices, but also other systems including biological systems,
chemistry of condensed phases, and surface chemistry; vdW interactions are particularly important in
examining systems such as aggregates where weak interactions are relevant.

5. Conclusions

The purpose of this review was to summarize the current progress of dye aggregation in DSSCs.
The interaction between dye molecules can lead to the formation of H-aggregates and J-aggregates,
which are associated with hypsochromic and bathochromic of the light absorption spectra, respectively.
The disadvantage of aggregation in quenching the excited state of dye molecules makes researchers
focus on inhibiting aggregation, including molecular engineering, the use of co-adsorption agents
or adjust of sensitization conditions. However, it is worth noting that the broadening of absorption
spectrum, which is one of the focuses of many DSSCs studies, is the inherent advantage of dye
aggregation, especially J aggregation.

In the current study, only a very small amount of dye aggregation can improve the performance
of DSSCs, which is due to the competitive relationship between the advantages and disadvantages of
dye aggregation. So far, it is different to formulate general molecular design rules to categorize good
or bad attributes of dye aggregation for DSSCs. Also, because there are many factors that affect dye
aggregation, there is no universal law to predict the pattern of dye aggregation. Theoretical calculation
will be a powerful tool to predict the pattern of dye aggregation on the TiO2 surface. In conclusion, it is
a potential approach to improve device performance by using dye aggregation, and the combination of
theoretical calculation and aggregation regulation is helpful to achieve this goal.
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