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In this paper, we have proposed a two-phase procedure (combining discrete graphs and wavelets) for 

constructing true epidemic growth. In the first phase, a graph-theory-based approach was developed to 

update partial data available and in the second phase, we used this partial data to generate plausible 

complete data through wavelets. We have provided two numerical examples. This procedure is novel and 

implementable and adaptable to machine learning modeling framework. 
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. Basis, motivation and introduction 

In general, it is not easy to build a true epidemic growth curve

n a timely fashion for any newly emerging epidemic, and the

hances of building a true growth picture worsen with poor dis-

ase reporting. As we know, preparedness for the epidemic spread

s a primary public health concern for any health department. Epi-

emic reporting of a disease is a fundamental event in understand-

ng two key parameters in epidemiology, namely, epidemic diffu-

ion within a population and growth at a population level. Nor-

ally, for a real-time epidemic, the reporting of cases is rarely

omplete, especially if the epidemic is new or symptoms are un-

nown or are yet to be discovered. For viruses with shorter incuba-

ion periods without virus shedding during the incubation period,

ny delay in reporting or lack of reporting could lead to a severe

pidemic due to the absence of control measures. For example, for

he Ebola virus, the average incubation period is between 2 and 21

ays, and an individual diagnosed with the Ebola virus does not

pread the virus to others during this period. If some of these in-

ividuals with Ebola are not diagnosed (and hence not reported

o health care facilities) then after 21 days, these individuals will

unknowingly) spread the virus to others. There are other viruses

hose incubation period is short but they are contagious during
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his period, for example, influenza. Even for epidemics with estab-

ished symptoms, reporting could be nowhere close to complete.

he impact of reporting on epidemic surveillance can then be the-

retically measured ( Rao, 2012 ). 

Wavelet theory was developed fairly recently (about 35–40

ears ago), but applications of wave functions fitted to epidemic

ata were seen more than 60 years ago (for example, Soper,

929; Bartlett, 1956 , and Bartlett, 1957 ). The observations by

artlett (1957) on population size and the fraction of measles in-

ecting people over various time points provided a new basis for

sing stochastic models for understanding retrospectively the sea-

onality of epidemics. This study by Bartlett (1957) and other stud-

es (for example, see the summary in the book by Anderson and

ay, 1991 ) consider wave-like fitting of a time series data of epi-

emics. Bartlett, in his articles Bartlett (1956, 1957) considered

wo differential equations to investigate small oscillations around

he equilibrium. Earlier than this, a stochastic formulation of such

odels was seen by Soper in his paper Soper (1929) . 

Suppose i ( t ) and s ( t ) represent infected and susceptible num-

ers at time t . A simple ODE considered by Bartlett (which was im-

rovisation of the model by Soper (1929) ) to explain the dynamics

f i ( t ) and s ( t ) was as follows: 

1 

μ

di (t) 

dt 
= i (t)(s (t) − 1) , 

1 

μ

ds (t) 

dt 
= 

m 

n 

(1 − i (t ) s (t )) . (1.1) 

Here μ (infection related death rate), ν (immunization coeffi-

ient = m / n ), λ (infectivity coefficient = n / μ) and m = ν/μ are all

https://doi.org/10.1016/j.jtbi.2020.110243
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110243&domain=pdf
mailto:sk@math.wustl.edu
mailto:polyakov@uwyo.edu
mailto:arrao@augusta.edu
https://doi.org/10.1016/j.jtbi.2020.110243


2 S.G. Krantz, P. Polyakov and A.S.R.S. Rao / Journal of Theoretical Biology 494 (2020) 110243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

o  

t  

d  

a  

i

2

 

p  

f  

d  

d  

b  

i  

n  

a  

t  

e  

a

 

d  

r  

w

 

 

 

 

 

 

 

 

 

 

m  

l

positive constants. Bartlett considered i (t) = 1 + u (for u ≥ 0) and

s (t) = 1 + v ( ≥ 0) around the equilibrium values of i ( t ) and s ( t ) in

the model (1.1) to obtain a revised model as follows: 

1 

μ

du 

dt 
= v (1 + u ) , 

1 

μ

dv 
dt 

= −m 

n 

(u + v + u v ) . (1.2)

The solutions of the model (1.2) after ignoring higher order

term uv are, 

u = u 0 e 
− 1 t 

2 σ cos (θt) , 

v = u 

√ 

βe −
1 t 
2 σ cos (θt+ ψ) for 0 ≤ ψ ≤ π, 

where σ = 

μ
νλ

, β = 

1 
μσ , cos ψ = − 1 

2 

√ 

β and θ = 

√ 

μ
σ − 1 

4 σ 2 . Using

the solutions u and v above, Bartlett created an artificial epidemic

curve to demonstrate oscillatory behavior of infecteds. 

Some studies focused on understanding phase transitions and

analysis of angles generated at each time step within an epidemic

wave (for example, Anderson, Grenfell, May, 1984; Earn et al.,

1998; Grenfell et al., 1995 ). Fitting wave functions from time series

data on epidemics, the researchers also focused on constructing

specific wavelets as part of the epidemiology modeling, for exam-

ple, Morlet’ s wave functions ( Grenfell et al., 2001; Bauch and Earn,

2003; Bauch et al., 2003; Bauch, 2008; Cazelles et al., 2014 ). All

these epidemiology studies that adapted a wave function or wave

series have primarily focused on fitting a curve to epidemic data

and some of them conducted mathematical analysis of their mod-

els. Such kinds of studies provide us a great amount of information

on the utility of wave functions in epidemiology, as well as other

mathematical and qualitative properties of epidemic waves. 

In this study, we are trying to investigate a classical problem in

epidemic reporting within a novel framework using harmonic anal-

ysis principles. See the flow chart in Fig. 1.1 for an overview of the

proposed framework. This study develops methodologies of con-

structing complete data from partial data using wavelets (by par-

tial data here we mean incomplete data that typically arises un-

der an emerging epidemic, for example, in the novel coronavirus
Fig. 1.1. Flow chart describing verious key steps proposed in 
f 2019 or COVID-19). Our approach will be useful in deep learning

f very large data structures and creating complete data from par-

ial data. During most of the emerging epidemics, we will be han-

ling only partial data, corresponding full data would be seldom

vailable. The proposed ideas, hence, could be helpful in artificial

ntelligence (AI) based algorithms to create disease surveillance. 

. Fundamental questions 

We are raising here very fundamental questions in epidemic re-

orting. For example, does an epidemic case reported over time

ollow any pattern? Or, in any particular situation, does an epi-

emic reporting pattern have anything to do with the actual epi-

emic wave? Actual epidemic or a true epidemic wave is the num-

er of all cases (reported and not reported) as a function of time,

.e. it could be seen as a function obtained as discretely plotting the

umber of infected people reported against time points. Is there

ny strong or weak association between “epidemic reporting pat-

erns” and “epidemic waves” in general? Suppose we cannot gen-

ralize such an association for every epidemic, then will there be

ny such association for a particular epidemic? 

In any epidemic, we can hardly observe the actual (true) epi-

emic wave, and what we construct as a wave is mostly based on

eporting numbers of disease cases. The central questions in which

e are interested can be summarized as follows: 

(i) How far the reporting of an epidemic is helping us in accu-

rate prediction of an epidemic, especially if it is an emerging

epidemic? how far such an association is clarified (which it

is not otherwise) using methods of harmonic analysis? 

(ii) It is seldom that the cases generated in a population are

completely detected, so the question that remains unan-

swered most of the time in a newly emerging epidemic is:

Will there be any way to back-calculate and reproduce these

numbers lost in detection and, if so, to what extent can we

reconstruct accurately an epidemic growth (before control

measures are implemented)? 

There are other related questions but first we want to view

atters from the lens of wavelet/harmonic analysis because we be-

ieve there could be some useful light to be shed in this way. 
epidemic data restructuring and constructing wavelets. 
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Fig. 4.1. a) True epidemic wave and b) Fractional epidemic wave. The a i values are 

part of a i + b i values for each i . We have newly introduced the phrase fractional 

epidemic waves in this work. This fractional epidemic waves concept we are using 

with other ideas explained in this paper to develop new ideas related to fractional 

wavelets. In a sense, fractional wavelets represent fractions of an overall wavelet. 

This figure serves as a foundational concept to link the idea of fractional reporting 

waves with reporting errors. 
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It is always challenging to construct true epidemic waves be-

ause population vaccination and control policies depend on un-

erstanding the true ground level reality of disease cases. Before

e treat wavelets in this new context, we define the Fourier series

nd Fourier tranform of a function 

2 . 

. Wavelets 

In the past thirty-five years there has developed a new

ranch of harmonic analysis called wavelet theory —see Meyer and

yan (1993) , Meyer (1998) , Hernández and Weiss (1996) ,

alker (1997) , Strichartz (1993) , Krantz (1999, 2019) , Krantz

nd Labate et al. (2013) . Largely based on the ideas of Yves

eyer, wavelet theory replaces the traditional Fourier basis of sine

unctions and cosine functions with a more flexible and adaptable

asis of wavelets. The advantages of wavelets are these: 

(a) The wavelet expansion of a function can be localized both in

the time and the space variables; 

(b) The wavelet expansion can be customized to particular ap-

plications; 

(c) Because of (b), the wavelet expansion is more accurate than

the traditional Fourier expansion and also more rapidly con-

verging. 

Wavelet theory has revolutionized the study of image compres-

ion, the study of signal processing, and the study of partial differ-

ntial equations. It will be a powerful new tool in the study of epi-

emiology, particularly in the analysis of epidemic growth curves. 

. Theoretical strategy 

This study will develop methodologies of constructing complete

ata from partial data using wavelets. 

First, we propose to build a true wave of an epidemic (through

armonic analysis set-up and assumptions) that is otherwise un-

nown directly. Then, by assuming that a fraction of this con-

tructed wave was reported out of a true wave, we will determine

ow an observed wave appears. These fractions are variables, so

e will have several patterns of waves representing one true epi-

emic wave. We will draw conclusions as to which one of these

epresentations is an ideal candidate for building a true epidemic.

here will be some noise in our modeling of the epidemic curve so

e will use noise reduction techniques before finalizing a pattern. 

Suppose an epidemic wave was observed within a time inter-

al [ t 0 , t n ], where t n − t 0 could be in weeks, months, or years.

uppose that [ t 0 , t n ] is partitioned into a set S of sub-intervals

 [ t 0 , t 1 ] , ( t 1 , t 2 ] , · · · , ( t n −1 , t n ] } , where t i − t i −1 could be in days or

eeks depending upon the situation. Let a i and b i be the num-

er of cases reported and number of cases that occurred but

ere not reported, respectively, within the interval [ t i −1 , t i ] for

 = 1 , 2 , · · · , n. Let f be the function whose domain is the set

f time intervals { [ t i −1 , t i ] | ∀ i } and whose range is the set T =
 

a i + b i | i = 1 , 2 , . . . , n } (see Fig. 4.1 ). Here f need not be a one-
o-one function because two time intervals within S could have 

2 A Fourier series of a function f ( x ) defined either on [0, 2 π ) or on [0, π ) is written 

s, 

f (x ) = 

∞ ∑ 

n =0 

a n cos nx + 

∞ ∑ 

n =1 

b n cos nx, (2.1) 

here a n for = 0 , 1 , . . . , ∞ and b n for n = 1 , 2 , . . . , ∞ are coefficients of the series 

see Krantz, 1999 ). For any integrable function f ( x ) and for real ξ , we define the 

ourier transform 

ˆ f (ξ ) to be 

ˆ f (ξ ) = 

∫ ∞ 

−∞ 

f (x ) exp (−2 π ixξ ) dx. 

w

a  

a  

i  

a  

d  

f

he same number of epidemic cases. Let f 1 be the function defined

s f 1 : { [ t i −1 , t i ] | i = 1 , 2 , . . . , n } → A, where A = { a i | i = 1 , 2 , . . . , n }
see Fig. 4.2 ). We call f 1 a fractional function of f because it maps

ach time interval into a corresponding number of reported cases

n each of those intervals. The total fraction of reported cases

i a i / 
i (a i + b i ) ∈ [0 , 1] during [ t 0 , t n ] is distributed into n time in-

ervals. Note that 
 

i 

a i 
a i + b i 

= 

{ 

n if all disease cases are reported during [ t 0 , t n ] 
<n if any one interval in S there exists under-reporting of 

diseases cases 

Given that f 1 is known, the question will be whether we can

stimate (or speculate about) f . Once we are able to estimate some

orm of f , then how can we test for accuracy of the form(s) ob-

ained? We could define another fraction function as 

f 2 : { [ t i −1 , t i ] | i = 1 , 2 , . . . , n } → 

A 

T 

here 

A 

T 
= 

{ 

a i 
a i + b i 

| i = 1 , 2 , . . . , n 

} 

nd could attempt to develop techniques to estimate (or speculate

bout) f from f 2 . In Fig. 4.2 , the fractional epidemic wave pattern

s not fully describing a true epidemic wave pattern. Purely from

 fractional epidemic wave, it is not easy to speculate a true epi-

emic wave pattern. Additional information on b i values is needed

or better prospects in speculation of f . 
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Fig. 4.2. Functions of true and fractional epidemic waves based on reported and actual time series epidemic data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

p  

e  

t  

s  

c  

r  

t

 

t  

t  

s  

c  

t  

g  

t  

p  

s  

i  

r  

e  

i  

w  

c

 

s  

p  

w  

l  

s  

b  

c  

t  

c  

G  

d  

t  

b  

h  

t  

a  
This work is innovative because wavelets have never before

been used to build on partial epidemic information. The wavelets

thus built will be retrospectively updated. This will be a new tech-

nology to improve reported data and to re-construct epidemic dy-

namics. These methods, we anticipate, will be innovative for sev-

eral other medical science applications. 

4.1. Generating wavelets from sampled epidemic data: 

Let us consider the availability of data as per Fig. 4.1 on re-

ported cases. Suppose each point on the y-axis is considered as

a sampled point (out of many sets of plausible reported cases at

that point). We call it a sample point because we are not sure

that the point we obtain at any time intervals [ t 0 , t 1 ] and (t i −1 , t i ]

for i = 2 , 3 , . . . , n for the reported cases represents a true epidemic

curve, which is one of the main assumptions in this paper. The

total number of reported cases within a time interval is a combi-

nation of cases that were reported to the public health system (see

Fig. 4.4 ). When we know the total number of reported cases within

a time interval, then this number could be the result of one of the

several combinations of cases reported as shown in Fig. 4.4 . 

True number of cases occurring in a population is often un-

known, and what we know often is the number of reported cases.

Let a i be the number of reported cases in the i th time interval,

which is to say, the result of one of the several possible combi-

nations of actual cases in the population. 

Let T i be the number of total cases in i th time interval, and let

it be 

T i = { 1 i , 2 i , . . . , s i } , 
where, s i is the s th individual infected in the interval i . Then a i be

the sum of the cases, a number formed with one combination of

elements of T i . There could be several such combinations which

could lead to the same value a i . Hence a i can be treated as one

such sample combination out of many possible combinations. The

set of cases which led to form a i we call here the support of a i and

explain further in the following paragraphs. 

Within each interval, the combination of cases reported is un-

known but the total reported cases out of actual disease cases

within each interval is fixed (because we will take a single point

reference of total reported cases within each interval). These re-
orted cases are a i s in Fig. 4.1 . Given that there exists a sampled

oint within each of the time intervals, and with some support for

ach of the a i (say, supp( a i )), we will construct a wavelet for each

ime interval [ t 0 , t 1 ] and (t i −1 , t i ] for i = 2 , 3 , . . . , n . When we say a

ample point at a time interval we mean the final combination of

ases reported (out of actual cases) that were considered as a final

eporting number for that interval. We will use data that was used

o get the sample point a i . 

In Fig. 4.4 , for the interval [ t 0 , t 1 ], the arcs connecting each of

he black circles (vertices) within each square form a graph. Al-

hough the sizes of each of these graphs are the same, i.e. 7, their

hapes are different and the sampled point is 7. The sampled point

annot be easily used to represent the shape of the graph unless

he location of each node (in this case a physical address or geo-

raphical location of each node) is known. One way to construct

he support could be from the graph associated with each sam-

le point. Using pairs of information { a i , supp( a i )}, we will con-

truct wavelets as shown in Fig. 4.3 . Sampled points within each

nterval [ t 0 , t 1 ] and (t i −1 , t i ] for i = 2 , 3 , . . . , n gives the number of

eported cases and supports constructed from the graphs within

ach of these intervals. Within each square or rectangle in Fig. 4.4 ,

f the size of a graph increases to the maximum possible size (i.e.,

hen all cases are reported), then the information to construct the

orresponding support increases. 

Let G i be the graph (with n ( a i ) vertices and m ( a i ) edges) corre-

ponding to a sampled point a i for the interval (t i −1 , t i ] and sup-

ose that G 

c 
i 

is the graph (with n ( T i ) vertices and m ( T i ) edges,

here T i is the complete or total infected cases as defined ear-

ier) with all possible reported cases being reported, then, let us

ay, G i → G 

c 
i 

( G i converges to G 

c 
i 
) for all i . As the reported num-

er of cases increases and it approaches towards the number of

omplete/actual cases, then the graph G i would ideally expand (in

erms of vertices and edges) towards G 

c 
i 
. We refer here to this pro-

ess as convergence. That is, the structure of two graphs G i and

 

c 
i 

get closer. In G 

c 
i 

the number of vertices is the number of actual

isease cases and the edges are connected between the closest ver-

ices. In reality, G 

c 
i 

is not possible to draw because we would not

e able to observe all cases. It is challenging to understand before-

and what fraction of the size of G 

c 
i 

would be the size of G i , and

his guess could give the speed of convergence to G 

c 
i 

from G i . The

ctual time steps taken from G i to G 

c for each i is not constant. We

i 
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Fig. 4.3. Wavelets constructed from sampled reported data with supports. Black color points on wavelets represent sampled points (of total reported cases). Each wavelet 

is constructed with the pairs of information { a i , supp( a i )} available. One of the key technical features is that we are proposing through this figure is to construct wavelets 

within each interval to quantify the proportion of reporting cases out of actual cases. 

Fig. 4.4. Total reported cases within an interval of time could be formed from sample cases out of total cases. We drew graphs using black colored filled circles in this Figure 

to represent total reported cases in a few of the situations out of all possible diseases reporting patterns. The sample point of reported cases represents the total reported 

cases at each time interval. Hence the size of all graphs at each interval was kept the same. Similarly, the size of graphs between different time intervals is kept different 

for demonstration purposes only and actual reported cases between different time intervals could be constant or not. During the intervals [ t n −1 , t n ] , the number of vertices 

helped to form graph are constant within each time interval (7 in [ t 0 , t 1 ], 10 in ( t 1 , t 2 ] but actual structure of the network has changed between various graphs in each time 

interval. 
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Fig. 4.5. Convergence of graph at sample point to graph at complete reporting. From sampled point number of reported cases to the evolution of actual reported cases. This 

situation arises due to improved epidemic surveillance. 
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assume that there will be a finite number of time steps to reach

from G i to G 

c 
i 
. Usually c is not constant as well because the error

rates vary so we let c 0 correspond to complete reporting at t 0 , c 1 
at t 1 , and so on up to c n at t n . Let G 

t 0 
i 

be the graph at t 0 and G 

t 1 
i 

be

the graph at t 1 and so on. The corresponding sizes of graphs will

be 

∣∣∣E t j i 

∣∣∣ for i = 1 , 2 , . . . , n and j = 1 , 2 , . . . , c i , and 

∣∣E t 0 
i 

∣∣ < 

∣∣E t 1 
i 

∣∣ < . . . < 

∣∣∣E t c i i 

∣∣∣ for each i. (4.1)

But the inequality ∣∣∣E t j i 

∣∣∣ < 

∣∣∣E t j+1 

l 

∣∣∣ for some i 	 = l and l = 1 , 2 , . . . , n 

need not hold. The explanation for these inequalities is as follows:

graphs within each time interval could converge toward actual dis-

ease cases but the size of the graph across various time intervals

need not follow any monotonic property because degrees of error

in reported cases could vary over time. 

For simplicity, let G i be represented by ( V i , E i ) and G 

c 
i 

be

represented by (V c 
i 
, E c 

i 
) , where (V i , E i ) = ( n (a i ) , m (a i ) ) , (V 

c 
i 
, E c 

i 
) =

( n (T i ) , m (T i ) ) . As the reporting of diseases cases improves the val-

ues of ( V i , E i ) increases so that they become exactly (V c 
i 
, E c 

i 
) . We

denote here as G i → G 

c 
i 
. See Fig. 4.5 . 

We define max j | E t j i 
| for i = 1 , 2 , . . . , n as the local steady-state

values and max i (| E t j i 
| ) as global steady-state value. The maximum

value of reported cases within the interval i in (4.1) is referred

as the local steady-state for the i th interval. Then, there will be

no further improvement of reported cases in that interval. Sim-

ilarly, global steady-state refers to the maximum number of re-

ported cases for an epidemic across the intervals. 

Theorem 1. The size of each graph within [ t i −1 , t i ) could reach local

steady-state and the global steady-state is equal to one of the local

steady-states. 

Proof. Suppose the values | E t j 
i 
| for i = 1 , 2 , . . . , n are unique such

that ∣∣∣E t j 1 i 

∣∣∣ 	 = 

∣∣∣E t j 2 i 

∣∣∣ for j 1 	 = j 2 

∣∣∣E t j i 1 

∣∣∣ 	 = 

∣∣∣E t j i 2 

∣∣∣ for i 1 	 = i 2 . 

There will be only one value of | E t j 
i 
| for each i, and there will

be n such maximum values. One of the n maximum values is the

maximum reported cases in one of the n time intervals, so that

global steady-state is one of the local steady states. Alternatively,

let, ∣∣∣E t j 1 i 

∣∣∣ = 

∣∣∣E t j 2 i 

∣∣∣ for j 1 	 = j 2 , 

w  
ut | E t c i 
i 

| is unique for each i such that 

ax 
j 

∣∣∣E t j i 

∣∣∣ = 

∣∣∣E t c i i 

∣∣∣. 
In this situation also, there will be n maximum values and one

f the values 
 

∣∣∣E t c 1 1 

∣∣∣, ∣∣∣E t c 2 2 

∣∣∣, . . . , ∣∣E t c n n 

∣∣} 

s the global maximum. If 

E 
t c 1 
i 1 

∣∣∣ = 

∣∣∣E t c 2 i 2 

∣∣∣ for i 1 	 = i 2 , 

hen two local steady-states will be equal to the global steady-

tate. �

For each i , | E t 0 
i 
| and G i are associated with reported cases. For

ny i , when | E t 0 
i 
| = | E t c i 

i 
| then G i and G 

t c i 
i 

are identical, and this sit-

ation refers to complete reporting of disease cases. If | E t 0 
i 
| = | E t c i 

i 
|

or any i , then local steady-state for this i attained at t 0 . 

emark 2. If | E t 0 
i 
| = | E t c i 

i 
| for each i and max i (| E t j i 

| ) = | E t 0 
i 
| , then

he global steady-state also attains at t 0 . If | E t 0 
i 
| 	 = | E t c i 

i 
| for all i ,

hen the global stead-state attains at a time greater than t 0 . 

When | E t 0 
i 
| 	 = | E t c i 

i 
| for each i , then the global steady-state value

ould provide information on degree of reporting error to some ex-

ent. If | E t 0 
i 
| = | E t c i 

i 
| for some i , and by chance at this i , the global

teady-state occurs then that would not provide any information

n the degree of reporting errors, because at several other i values

e will have E 
t 0 
i 

< | E t c i 
i 

| and actual total epidemic cases are more

han sample epidemic cases. 

Above, statements in Proposition 1 and in the Remark 2 will al-

er when multiple reporting exists in one or more of the time in-

ervals considered. Multiple reporting of cases is usually defined as

eporting of a disease case more than once and treating it as more

han one event of disease occurrence. When multiple reporting ex-

sts at each i , then max i (| E t j i 
| ) 	 = | E t 0 

i 
| is not the global steady-state.

 mixed situation where multiple reporting and under-reporting

imultaneously exists within the longer time interval [ t 0 , t n ] is

reated separately. 

With this method, we will develop a series of wavelets. 

Given the information to construct Fig. 4.5 (a), and the rapidity

t which this graph evolves from the Fig. 4.5 (a) to the Fig. 4.5 (d)

which we might refer to above as support ) to attain the Fig. 4.5 (d)

s known, then, combined with the information stored in Fig. 4.6 ,

e can then construct Fig. 4.3 . Within each of the intervals [ t 0 , t 1 ]

nd (t i −1 , t i ] for i = 2 , 3 , . . . , n, the information of the Figs. 4.5 –4.6 ,

ill be used to construct a series of wavelets. 

In the next few paragraphs, we will describe the philosophy of

avelets and Meyer wavelets. Why Meyer wavelets? Because they



S.G. Krantz, P. Polyakov and A.S.R.S. Rao / Journal of Theoretical Biology 494 (2020) 110243 7 

Fig. 4.6. Evolution of reporting of epidemic cases (a) to (e), and returning to disease recovered stage (f) to (h). 
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re orthogonal, smooth, and rapidly vanishing. Thus they are more

table. 

Suppose two functions �( t ) and �( t ) together describe the epi-

emic wave of a true epidemic, and if pairs of functions{( � i ( t ),

i ( t ))} for i = 1 , 2 , . . . , n represent the epidemic wave of those rep-

esenting fractions of this true epidemic. Then one of our cen-

ral ideas is in determining which of these fractional waves (as

escribed in section 4) is closest to the true epidemic. Usually

ata/information to construct a couple of such fractional wavelets

ould be observed in an emerging epidemic, say ( �a ( t ), �a ( t ))}

nd ( �b ( t ), �b ( t )), so the first step is to construct these pairs of

avelets. These fractional wavelets are constructed on partial data

partial in the sense that observed data on disease cases in an

merging epidemic is not complete). The question we are attempt-

ng is: can we predict ( �( t ), �( t )) from either one of or from both

f the fractional wavelets? [Note: There is no terminology of “frac-

ional wavelet” in the literature, but we are calling ( �a ( t ), �a ( t ))

nd ( �b ( t ), �b ( t )) the fractional wavelets]. For this, let us define

eyer wavelets which are readily available and could be a good

rst step to start with to explain our epidemic situation. We de-

ne the Meyer wavelet and briefly describe them below: 

The Meyer wavelet is an orthogonal wavelet created by Yves

eyer. It is a continuous wavelet, and has been applied to the

tudy of adaptive filters, random fields, and multi-fault classifica-

ion. 

efinition 3. The Meyer wavelet is an infinitely differentiable

unction that is defined in the frequency domain in terms of a

unction ν as follows: 

(ω) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 √ 

2 π
sin 

(
π

2 
ν

(
3 | ω | 
2 π

− 1 

))
e jω/ 2 

1 √ 

2 π
cos 

(
π

2 
ν

(
3 | ω | 
2 π

− 1 

))
e jω/ 2 

0 

if 

if 

if 

2 π/ 3 < | ω | < 4 π/ 3

4 π/ 3 < | ω | < 8 π/ 3

otherwise. 

Here 

(x ) = 

{ 

0 

x 
1 

if 
if 
if 

x < 0 

0 < x < 1 

x > 1 . 

There are other possible choices for ν . 
The Meyer scaling function is given by 

(ω) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 √ 

2 π

1 √ 

2 π
cos 

(
π

2 

ν

(
3 | ω | 
2 π

− 1 

))
0 

if 
if 
if 

| ω | < 2 π/ 3 

2 π/ 3 < | ω | < 4 π/

otherwise. 

Of course it holds, as usual, that 

k 

∣∣∣ ̂ �( ω + 2 πk ) 

∣∣∣2 

= 

1 

2 π

nd 

̂ (ω) = m 0 (ω/ 2) ̂ �(ω/ 2) 

or some 2 π−periodic m 0 ( ω/2). Finally, 

(ω) = e iω/ 2 m 0 (ω/ 2 + π) ̂  �(ω/ 2) 

= e iω/ 2 
∑ 

k 

ˆ �( ω + 2 π(2 k + 1) ) ̂  �(ω/ 2) 

= e iω/ 2 
(

ˆ �( ω + 2 π) + 

ˆ �( ω − 2 π) 
)

ˆ �(ω/ 2) . 

It turns out that the wavelets 

j,k (x ) = 2 

j/ 2 �(2 

j x − k ) 

orm an orthonormal basis for the square integrable functions on

he real line. 

One proposition that could be formed is “if a wavelet is con-

tructed on the partial data of a particular series of events in a

opulation, then this wavelet can not be fully compared with a

avelet constructed from the full data series of all events in the

ame population.” Building a measure associated with these two

avelets is interesting, and there could be several such measures

ased on the level of completeness in the data. Because we are

ealing with true versus reported disease cases, this measure (a

et of points each representing a distance between true and ob-

erved cases) could be termed the error in the reporting of disease

ases. These kinds of measures will be very helpful (such measures

fter further filtration can be useful for practical epidemiologists).

nstead of constructing wavelets for the overall epidemic duration,

e will construct wavelets within intervals [ t 0 , t 1 ] and (t i −1 , t i ] for

 = 2 , 3 , . . . , n described as in Fig. 4.3 . As the reported cases within



8 S.G. Krantz, P. Polyakov and A.S.R.S. Rao / Journal of Theoretical Biology 494 (2020) 110243 

Fig. 4.7. Distribution of reported cases into present time interval and to past time intervals. Reported cases found in a time interval in the column are distributed into 

respective bins of a time interval as shown through arrows. 

Fig. 4.8. Meyer wavelets of order 3 for various situations for equally spaced interval of (a) [-4,4], (b) [0,6], (c) [-20,20,], (d) [0,3], (e) with order 10 for [-2.5, 2.5]. 
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an interval improve, described as in Fig. 4.5 , the wavelet configu-

ration improves. Each of the fractional wavelets obtained from par-

tial data will be updated using the information shown in Fig. 4.7 .

Meyer wavelets for various equally spaced intervals are demon-

strated in Fig. 4.8 . 

4.1.1. Computation 

Suppose a sample point is obtained as explained in the

Section 4.1 for an interval (t i −1 , t i ] . An improvement of reported

cases is ascertained from the data obtained in the subsequent

time intervals. One way to update this is from future epidemic

cases that were infected and/or diagnosed for the period (t i −1 , t i ]

but made available during any of the intervals (t i , t i +1 ] for i =
2 , 3 , . . . , n − 1 . That is, the sum of the epidemic cases that were re-

ported during (t i −1 , t i ] and those reported during each of the future

time intervals (t i , t i +1 ] for i = 2 , 3 , . . . , n − 1 and that belong to the

interval (t i −1 , t i ] will be treated as an improved number of reported

cases for the interval (t i −1 , t i ] . We will update the reported number

of cases in a previous interval from the future available reported

cases that were associated with the previous time interval. Hence
he evolution of the data for the interval (t i −1 , t i ] can be used to

onstruct graphs as shown in Fig. 4.5 . Since this evolution is as-

umed to be observed for a long period, it is also assumed that G i 

ill be approximately convergent to G 

c 
i 
. As an epidemic progresses,

e will update the intervals (t i −1 , t i ] with newly available infor-

ation during (t i , t i +1 ] and as i approaches n then those intervals

earby to n will have less of a chance of evolution or less chance of

p-gradation (due to a truncation effect). Once the reported num-

ers are complete, we will similarly study the recovery stage of

n epidemic and hence collect the data to compute Fig. 4.6 . Ac-

umulation of old cases in new intervals distributed back to the

espective time intervals is schematically described in Fig. 4.7 . This

rocedure will update the reported cases in the past as long as at

east one reported case observed in the present time interval be-

ongs to one of the past time intervals. Based on the location of

he reported cases the graphs constructed will be updated as well.

ence for each present time interval that we observe a reported

ase that belongs to one of the past time intervals, the fractional

avelets will become graphically closer to the complete (or true)

avelet for that time interval. 
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Table 1 

Numerical values of a i for i = 1 , 2 , . . . , 12 . 

a 1 = 83 , a 2 = 64 , a 3 = 87 , a 4 = 85 , a 5 = 90 , a 6 = 60 , a 7 = 62 , a 8 = 55 , a 9 = 40 , a 10 = 20 , a 11 = 45 , a 12 = 31 

Table 2 

φ values (set 1). 

φ22 = 0 . 73 , φ21 = 0 . 27 

φ33 = 0 . 72 , φ31 = 0 . 26 , φ32 = 0 . 02 

φ44 = 0 . 94 , φ41 = 0 . 05 , φ43 = 0 , φ41 = 0 . 01 

φ55 = 0 . 92 , φ51 = 0 , φ52 = 0 . 07 , φ53 = 0 , φ54 = 0 . 01 

φ66 = 0 . 88 , φ61 = 0 . 04 , φ62 = 0 . 07 , φ63 = 0 . 01 , φ64 = 0 , φ65 = 0 

φ77 = 0 . 77 , φ71 = 0 . 05 , φ72 = 0 . 14 , φ73 = 0 . 04 , φ74 = 0 , φ75 = 0 , 

φ76 = 0 

φ88 = 0 . 63 , φ81 = 0 . 18 , φ82 = 0 . 04 , φ83 = 0 . 14 , φ84 = 0 . 01 , φ85 = 0 , 

φ86 = 0 , φ87 = 0 

φ99 = 0 . 83 , φ91 = 0 . 12 , φ92 = 0 . 01 , φ93 = 0 . 02 , φ94 = 0 , φ95 = 0 , 

φ96 = 0 , φ97 = 0 , φ98 = 0 . 01 

φ(10)(10) = 0 . 79 , φ(10)1 = 0 . 08 , φ(10)2 = 0 . 04 , φ(10)3 = 0 . 01 , φ(10)4 = 0 . 04 , φ(10)5 = 0 , 

φ(10)6 = 0 . 02 , φ(10)7 = 0 , φ(10)8 = 0 . 01 , φ(10)9 = 0 . 01 

φ(11)(11) = 0 . 70 , φ(11)1 = 0 . 18 , φ(11)2 = 0 . 06 , φ(11)3 = 0 , φ(11)4 = 0 . 05 , φ(11)5 = 0 , 

φ(11)6 = 0 , φ(11)7 = 0 . 01 , φ(11)8 = 0 , φ(11)9 = 0 , φ(11)(10) = 0 

φ(12)(12) = 0 . 91 , φ(12)1 = 0 . 04 , φ(12)2 = 0 . 01 , φ(12)3 = 0 . 02 , φ(12)4 = 0 , φ(12)5 = 0 . 02 , 

φ(12)6 = 0 , φ(12)7 = 0 , φ(12)8 = 0 , φ(12)9 = 0 , φ(12)(10) = 0 , φ(12)(11) = 0 

5
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the spread. 
. Numerical examples 

To demonstrate our method, we have constructed two numeri-

al toy examples. We have generated non-uniform random positive

ntegers of a i values for i = 1 , 2 , . . . , 12 . The a i values generated are

n Table 1 . 

A fraction of a i for i > 1 was assumed to have occurred prior to

he i th time interval but are reported in the i th time interval, and

e have adjusted excess values of a i as per the formula below: 

 i = a ∗i + a ∗1 + a ∗2 + · · · + a ∗i −1 , (5.1)

here a ∗
i 

is the number of reported cases in the i th time interval

hich belonged to the i th time interval and a ∗
j 

for j < i is the re-

orted cases in the i th time interval which belonged to one or more

f the j th time interval for j = 1 , 2 , . . . , i − 1 . Using the below for-

ula (5.1) , we will retrospectively adjust a 2 , a 3 , . . . , a 12 values by

sing below equations: 

a 2 = a ∗2 + a ∗1 
a 3 = a ∗3 + a ∗2 + a ∗1 
. . . 

. . . 
 12 = a ∗12 + a ∗1 + a ∗2 + · · · a ∗11 . 

(5.2) 

The values of reported cases in the expression in (5.2) in the i th 

ime interval are numerically computed using the set of equations

n (5.3) ( Table 2 ) 

 2 = a 2 φ22 + a 1 φ21 

 3 = a 3 φ33 + a 1 φ31 + a 2 φ32 

. . . 
. . . 

a i = a i φii + a 1 φi 1 + a 2 φi 2 + · · · a 1 −1 φi (i −1) . 

(5.3) 

xample 4. In (5.3) , φ22 + φ21 = 1 and φ22 is a random fraction

n [0.6,0.95], i.e. among the reported cases in the 2 nd time inter-

al 60 % to 95 % belong to the same time interval and (1 − φ22 )

raction belong to the 1 st time interval. The interval [0.6,0.95] is

rbitrary and it can be changed to a different range of fractions.

gain, assume φ33 + φ31 + φ32 = 1 and φ33 is picked randomly to

ake a value within the interval [0.6,0.95]. Once φ33 is fixed, φ31 is

ssumed to take a value that is picked randomly from the interval

0 , (1 − φ )] . The number φ is obtained as 1 − φ − φ . 
33 32 33 31 
In a similar way, φii + φi 1 + · · · + φi (i −1) is assumed to be 1 and

ii is picked randomly to take a value within the interval [0.6,0.95].

nce φii is fixed, φi 1 is assumed to take a value that is picked

andomly from the interval [0 , (1 − φii )] , φi 2 is assumed to take a

alue that is picked randomly from the interval [0 , (1 − φii − φi 1 )] ,

nd so on φi (i −2) is assumed to take a value that is picked ran-

omly from the interval 

0 , (1 − φii − φi 1 − · · · − φi (i −3) )] . 

inally, φi (i −1) is obtained as 1 − φii − φi 1 − · · · − φi (i −2) . All the

andom values picked are expanded to two decimal places. In case

ue to rounding of numbers to nearest integer causes a situation

uch that a i < 

∑ i 
k =1 a i φik , then the excess value is discounted from

he value already computed for a i φii to make a i = 

∑ i 
k =1 a i φik . If the

lready-computed value for a i φii = 0 , then the discount is done

rom a i φi 1 , and if a i φi 1 = 0 , then discounting will be done from

 i φi 2 , and it will be repeated until the discounting of excess value

s done ( Fig. 5.1 ). 

Using the φ values and expressions in (5.3) , we partition re-

orted values in each interval into cases: those belong to the same

nterval and those belong to previous intervals. See Table 3 . 

xample 5. We have constructed our second toy example by con-

idering a different interval [0.5,0.8] in which to pick φii values

or i = 1 , 2 , . . . , 12 . We have repeated the procedure explained in

xample 4 to obtain the φ value table, partition values of a i , and

djusted values of a i . The results are shown in Table 4 . 

Meyer wavelet of various order were computed based on the

umber of cases reported as a proportion of the total adjusted

ases in Example 2, Table 4 . These are in Fig. 5.2 . Mayer wavelets

re smooth and rapidly decreasing. The basis made up of Meyer

avelets is unconditional. The wavelets act robustly in our situa-

ion and hence the pictorial differences between the three wavelets

f Fig. 5.2 are minimal. Yet the differences in patterns is definitely

resent because of the order of the various wavelets. The a i val-

es are taken from each of the numerical examples or a real epi-

emic data collected. They can be combined with the network of

eople who are connected with each of the disease cases to con-

truct graphs for the interval i for i = 1 , 2 , 3 , . . . , 12 . We are propos-

ng that such graphs will help in assisting measures of controlling
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Fig. 5.1. Reported cases and adjusted cases for the first five time intervals. Example 1 and Example 2 are drawn from the reported data in the Table 1 and in the Table 4 . 

Table 3 

Partitioning of a i values due to adjustment of reported cases retrospectively (set 1). 

Cases belonged to t i below means the time interval beginning from [ t i , t i +1 ) . 

Reported cases t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 

in i th interval 

a 1 = 83 83 

a 2 = 64 17 47 

a 3 = 87 23 1 63 

a 4 = 85 4 0 1 80 

a 5 = 90 0 6 0 1 83 

a 6 = 60 2 4 1 0 0 53 

a 7 = 62 3 9 2 0 0 0 48 

a 8 = 55 10 2 8 0 0 0 0 35 

a 9 = 40 5 0 1 0 0 0 0 1 33 

a 10 = 20 2 1 0 1 0 0 0 0 0 16 

a 11 = 45 8 3 0 2 0 0 0 0 0 0 32 

a 12 = 31 1 0 0 0 0 0 0 0 0 0 2 28 

Table 4 

Adjusted a i values retrospectively from the prospective data obtained in Example 4 and in Example 5 . 

Example 1 data 

a 1 = 158 , a 2 = 73 , a 3 = 76 , a 4 = 85 , a 5 = 83 , a 6 = 53 , a 7 = 48 , a 8 = 36 , a 9 = 33 , 

a 10 = 16 , a 11 = 34 , a 12 = 28 

Example 2 data 

a 1 = 227 , a 2 = 86 , a 3 = 77 , a 4 = 74 , a 5 = 60 , a 6 = 41 , a 7 = 32 , a 8 = 44 , a 9 = 24 , 

a 10 = 12 , a 11 = 29 , a 12 = 18 
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Fig. 5.2. Meyer wavelets constructed on reported and adjusted disease cases. (a) by treating adjusted value of reported cases in Example 2 as 100% reported (order 100), (b) 

by treating 90% of the disease are reported (order 90), (c) by treating 40% of the original (adjusted) values are reported (order 40). 
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Table 5 

φ values (set 2). 

φ22 = 0 . 71 , φ21 = 0 . 29 

φ33 = 0 . 57 , φ31 = 0 . 23 , φ32 = 0 . 20 

φ44 = 0 . 62 , φ41 = 0 . 28 , φ43 = 0 . 07 , φ41 = 0 . 03 

φ55 = 0 . 66 , φ51 = 0 . 04 , φ52 = 0 . 01 , φ53 = 0 . 11 , φ54 = 0 . 18 

φ66 = 0 . 67 , φ61 = 0 . 28 , φ62 = 0 . 03 , φ63 = 0 . 02 , φ64 = 0 , φ65 = 0 

φ77 = 0 . 5 , φ71 = 0 . 46 , φ72 = 0 . 01 , φ73 = 0 , φ74 = 0 . 01 , φ75 = 0 . 01 , 

φ76 = 0 . 01 

φ88 = 0 . 79 , φ81 = 0 , φ82 = 0 . 11 , φ83 = 0 . 08 , φ84 = 0 . 02 , φ85 = 0 , 

φ86 = 0 , φ87 = 0 

φ99 = 0 . 6 , φ91 = 0 . 31 , φ92 = 0 . 06 , φ93 = 0 . 02 , φ94 = 0 . 01 , φ95 = 0 , 

φ96 = 0 , φ97 = 0 , φ98 = 0 

φ(10)(10) = 0 . 65 , φ(10)1 = 0 . 14 , φ(10)2 = 0 . 08 , φ(10)3 = 0 . 13 , φ(10)4 = 0 , φ(10)5 = 0 , 

φ(10)6 = 0 , φ(10)7 = 0 , φ(10)8 = 0 , φ(10)9 = 0 

φ(11)(11) = 0 . 62 , φ(11)1 = 0 . 30 , φ(11)2 = 0 . 02 , φ(11)3 = 0 , φ(11)4 = 0 . 04 , φ(11)5 = 0 . 01 , 

φ(11)6 = 0 . 01 , φ(11)7 = 0 , φ(11)8 = 0 , φ(11)9 = 0 , φ(11)(10) = 0 

φ(12)(12) = 0 . 59 , φ(12)1 = 0 . 08 , φ(12)2 = 0 . 09 , φ(12)3 = 0 . 2 , φ(12)4 = 0 . 03 , φ(12)5 = 0 , 

φ(12)6 = 0 , φ(12)7 = 0 , φ(12)8 = 0 , φ(12)9 = 0 , φ(12)(10) = 0 , φ(12)(11) = 0 . 01 

Table 6 

Partitioning of a i values due to adjustment of reported cases retrospectively (set 2). 

Cases belonged to t i below means the time interval beginning from [ t i , t i +1 ) . 

Reported cases t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 

in hi th interval 

a 1 = 83 83 

a 2 = 64 19 45 

a 3 = 87 22 17 50 

a 4 = 85 24 6 2 53 

a 5 = 90 4 1 10 16 59 

a 6 = 60 17 2 1 0 0 40 

a 7 = 62 29 1 0 1 1 1 31 

a 8 = 55 0 6 4 1 0 0 1 43 

a 9 = 40 12 2 1 0 0 0 0 1 24 

a 10 = 20 3 2 3 0 0 0 0 0 0 12 

a 11 = 45 14 1 0 2 0 0 0 0 0 0 28 

a 12 = 31 2 3 6 1 0 0 0 0 0 0 1 18 
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6. Discussion 

We provide a group of epidemic growth scenarios inspired by

the harmonic analysis set-up. A couple of scenarios from this could

represent true epidemic growth curves. With this, we will be in a

position to assess the level of under-reporting in a particular epi-

demic. So the strategy we are proposing could be beneficial in not

only building a true epidemic but also assessing the level of re-

porting error in an epidemic. We provide the true epidemic with

noise to illustrate our claim ( Table 5 ). 

In addition to the gain in construction of a true epidemic, we

also propose new methods that blend harmonic analysis with dy-

namical systems and sampling strategy. In this way, harmonic anal-

ysis is used to bridge the gap between unknown and known in-

formation in disease epidemiology. Suppose we determine one of

the fractional wavelets, say ( �a ( t ), �a ( t )), is closest to the true

wavelet (conceptually based on actual disease cases in the popu-

lation) ; then finding a measure which is the difference of plots

between two wavelets ( �a ( t ), �a ( t )) and ( �( t ), �( t )) will com-

plete the mapping of the epidemic at time t . However determining

which one of the fractions ( � i ( t ), �i ( t )) is closest to the true one

is not so easy. But if there are no significant multiple reporting of

disease cases then the largest fractional wavelet could be assumed

to be the one with shortest measure ( Table 6 ). 

We have argued how various combinations of partial data can

be used for discrete constructions which in turn form a piece of

supporting information to construct wavelets. These two aspects

make our proposed work very innovative. In summary, what we

are trying to develop through this paper is, given that we have

partial data of an event (here we mean event of reporting of dis-

ease cases), we will construct the complete event data. Wavelets,
n this work, are occupying a key role in the processing of built-

p or accumulated data to build complete event data. The event

ere is the reported number of cases in a time interval and these

eported cases represent only a partial number of actual epidemic

ases. Through this paper, we demonstrated a method of improv-

ng partial data to be close to data that could be complete. How

e plan to update our data reported in an interval and bring it

loser to the actual number of disease cases is described in this

aper. 

This exploration will assist in better visualization of any emerg-

ng epidemic spread in a more realistic sense. We also believe

hat our methods could provide additional tools for those epidemic

odelers who frequently use modeling tools such as ODE and PDE,

o begin with. We are not only looking for academic development

hrough this project but, also a clear non-trivial body of techniques

or applications of harmonic analysis that has never been seen be-

ore in terms of developing epidemic analysis. We plan to come up

ith some interesting insights on how to construct wavelets for

edical applications. The bottom line is that we will be able to

elp public health planners for better management and courses of

ction during emerging epidemics. The kind of analysis we present

ere to fill missing pieces of epidemic reporting information can

e applied to other areas, for example, constructing total rhythm

f a heartbeat from partial information, etc. 

We have identified a gap in the methods of understanding true

pidemic growth and spread and tried to address this lacuna by

roposing a novel method. We are proposing through this study

hat wavelets could offer a road map closer to finding a practi-

al solution (we are aware that a perfect solution is impossible by

ny method because some of the disease cases in any situation

re never reported). Technical aspects of the storyline depending
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n the construction of discrete graphs and fractional wavelets . Frac-

ional wavelets are newly introduced to the literature through this

tudy. A solution through wavelets is also not trivial because there

s no ready-made set of wavelets available which will offer a timely

oad-map. So we have introduced a novel strategy. Hence we argue

hat our approach will help us to come closer to our aims of un-

erstanding epidemics in a more accurate and timely fashion. As

 bi-product, we can develop techniques for data scientists to ana-

yze disease surveillance. 

. Questions still remain 

Within what period we can generate a true epidemic from its

mergence using the harmonic analysis set-up? Can we predict the

ull picture of an epidemic from only partial data? Can we mea-

ure the validity and the accuracy of an epidemic growth curve?

an we conduct a timely analysis of the preliminary data using the

roposed techniques ? 
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