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Abstract

Background: The threshold model represents one of the most significant advances

in the field of medical decision‐making, yet it often does not apply to the most com-

mon class of clinical problems, which include health outcomes as a part of definition

of disease. In addition, the original threshold model did not take a decision‐maker's

values and preferences explicitly into account.

Methods: We reformulated the threshold model by (1) applying it to those clinical

scenarios, which define disease according to outcomes that treatment is designed

to affect, (2) taking into account a decision‐maker's values.

Results: We showed that when outcomes (eg, morbidity) are integral part of defini-

tion of disease, the classic threshold model does not apply (as this leads to double

counting of outcomes in the probabilities and utilities branches of the model). To

avoid double counting, the model can be appropriately analysed by assuming diagno-

sis is certain (P = 1). This results in deriving a different threshold—the threshold for

outcome of disease (Mt) instead of threshold for probability of disease (Pt) above

which benefits of treatment outweigh its harms.

We found that Mt ≤ Pt, which may explain differences between normative models

and actual behaviour in practice. When a decision‐maker values outcomes related

to benefit and harms differently, the new threshold model generates decision thresh-

olds that could be descriptively more accurate.

Conclusions: Calculation of the threshold depends on careful disease versus utility

definitions and a decision‐maker's values and preferences.
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1 | INTRODUCTION

The development of threshold model1 is considered as one of the most

important advances in medical decision‐making.2 It is a normative deci-

sionmodel, originally applied to diagnosis that calculates the probability
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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of disease/diagnosis at which a decision‐maker should or ought to

choose a treatment when no further diagnostic information is avail-

able.1 However, the model has not been widely used in clinical practice

because, as originally described from the expected utility theory (EUT)

point of view, the probability of disease at which we should opt for
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treatment has typically been considered implausibly different from the

actual or descriptive decision‐making thresholds seen in practice.2

One possible reason for the difference between behaviour and the

threshold model guidance is that people often violate EUT that served as

a theoretical framework for derivation of the original threshold model.3,4

To address this discrepancy between normative and observed behaviour,

subsequent threshold models have been formulated from non‐EUT per-

spective such as regret, dual processing, and hybrid theoretical stances.2

Additional explanations for differences between normative and

descriptive estimates generated by the threshold models may, however,

exist: (1) descriptive inaccuracy may be a consequence of misapplication

of the original threshold model—originally described when diagnosis is

not certain when the patient was first seen—to clinical situations when

treatment is offered to patients with prior confirmed disease to prevent

subsequent events, or disease is defined by the very outcomes treatment

is designed to prevent; (2) the original threshold model and subsequent

reformulation of the threshold model may not have taken decision‐

makers' values and preferences (V&P) explicitly into account.5-8

In this paper, we revisit the EUT threshold model by taking into

account these new considerations to modify calculation of the treat-

ment action thresholds. We focus on clinical situation when no further

diagnostic tests are available to a decision‐maker to decrease diagnos-

tic uncertainty,1 although, as argued below, similar considerations can

be applied to clinical settings when such a diagnostic test is available.9

We also discuss some common pitfalls in the interpretation of the

threshold model aiming to provide needed clarifications for the wider‐

clinical applications of this simple but powerful model. In what follows,

the terms such as disease events, outcomes, (dis)‐utilities, and risks of

morbidity are often used interchangeably (see Appendix for definition).
2 | METHODS

2.1 | A brief overview of the threshold model

The threshold model (Figure 1) was originally developed to provide an

answer to the question: “At which probability of disease (P) are we indif-

ferent between expected utility (EU) of administering treatment versus
FIGURE 1 This shows the threshold model for the patients with probabi
independent of each other; B, probabilities and utilities are not independe
when treatment is given, and the patient has the disease. Similarly, U2 = U
has no disease, U3 = U[NoRx,D+] utility of health state when no treatment
state when treatment is not given and the patient has no disease; P= prob
not?1”: if P is above the threshold probability (Pt), a decision‐maker (phy-

sician or patient) should choose treatment (Rx), otherwise not (NoRx).

In the classic Pauker & Kassirer (P&K) model1 (Figure 1), the

expected utilities of each decision are given as follows:

EU Rx½ � ¼ p·U1 þ 1 − pð ÞU2

EU NoRx½ � ¼ p·U3 þ 1 − pð ÞU4;

Pauker and Kassirer1 defined the net benefit of treatment

as B = U1 − U3, ie, the difference in the utility of the outcomes if the

diseased patient were treated or were not treated and net harms

as H = U4 − U2, ie, the difference in the utility of the outcomes if a

patient without the disease were not treated versus treated. Solving

the tree, the threshold probability (Pt) above which we should treat

is calculated as follows:

Pt ¼ 1

1þ B
H
:

(1)

Equation 1 is based on generic definition of net benefits and

harms; specific version of the threshold equation depends on the units

for utilities (outcomes) used to derive net benefits and net harms6 as

further outlined below and in Appendix.

2.2 | Assessing if the probabilities and outcomes
(utilities) in the threshold model are independent of
each other

Figure 1A shows that key structural ingredients of the threshold decision

model compose of the probability of disease (P) and consequences of our

decisions expressed via health outcomes or our values that we assign to

these outcomes (utilities).1,9 Each branch in the model is characterized by

its probability and outcome (utility, U) with which it is associated.1,9

Importantly, probabilities and utilities are assumed to be independent

of each other10; that is, the value of the utility U remains the same

regardless of which value P takes. For example, if diagnosis of cancer

relies on pathological findings and utilities are based on morbidities or

mortality, we can use Equation 1 to calculate the probability of diagnosis

of cancer at which treatment benefits outweigh its harms.
lity of diagnosis/disease denoted as P. A, Probabilities and utilities are
nt of each other. Abbreviations: U1 = U[Rx,D+] utility of health state
[Rx,D−] utility of health state when treatment is given and the patient
is given and the patient has disease,U4 = U[NoRx,D−] utility of health
ability of disease. See Appendix and text for details



188 DJULBEGOVIC ET AL.
However, consider a patient with an actual or presumed

condition—or diagnosis—(eg, prior deep venous thrombosis [DVT] or

underlying—though possibly as yet undetected—coronary artery disease)

that puts the patient at risk of a subsequent morbid or mortal event. The

clinician is considering offering an intervention that will decrease the

probability of this event occurring. One way of conceptualizing such a

situation is that patients do not have the condition of interest until they

have the event (eg, they have had a prior DVT, but they only have a

new diagnosis once they have a recurrence, and otherwise, they remain

“disease free”; patients with presumed or proven underlying coronary

artery disease only had a diagnosis when they suffer their subsequent

myocardial infarction and otherwise remain “disease free”). Note, these

are also clinical situations relating to the secondary prophylaxis, ie, physi-

cians face decision whether to offer treatment to prevent recurrent

event, which then defines the very disease that is being treated.

This conceptualization becomes particularly compelling when a

particular test result defines the diagnosis and a negative test rules

out the diagnosis. This is true for the entire field of thrombosis in which

the risk assessment of diagnosis of venous thromboembolism (VTE) is

based on detection of what one might conceptualize as “outcomes.”

For instance, the widely popular Wells' predictive model for diagnosis

of pulmonary embolism (PE) relies on clinical signs and symptoms to

establish the pretest probability of PE, which, in turn, is defined by test

result of imaging studies (ie, the diagnosis of PE on the test could be

conceptualized as the “outcome”).11 In cardiovascular field, myocardial

infarction is typically defined by a composite outcome that includes a

number of tests. Similarly, in oncology, clinicians use imaging or other

tests to detect relapse of cancer, metastasis, etc, which is often integral

part of definition of disease‐free outcomes. Note, in the case of PE and

myocardial infarction, treatment can be conceptualized as primary pro-

phylaxis, ie, it was designed to prevent the disease events before they

happened; in the case of prevention of cancer relapse, treatment repre-

sents secondary prophylaxis. In either case, disease is defined by events

or outcomes that treatment is designed to prevent.

This creates a problem of double counting and violates independence

requirement12: Morbidity outcomes or events are used both to define

probabilities of disease and utilities in the decision tree (Figure 1). For

example, if utility is defined as U = 1 – M (where M = morbidity) (see

Appendix), then morbidity changes if probability of disease changes. So,

P and U are no longer independent. This requires asking a different ques-

tion and calculation of a different threshold than the one based on the

classic model (where we assume that P and U remain independent).

One can express net benefits and harms in various units: as health

outcomes related to morbidity or mortality, survival, life expectancy,

quality‐adjusted life expectancy, costs, etc. In this paper, we will express

net benefits and harms through disutilities related tomorbidity ormortal-

ity associated with treating versus not treating patients whomay have or

may have not the disease of interest (in the prior conceptualization with

thrombosis and coronary examples, the disease of interest is present only

if the patient has a subsequent morbid event) (see also Appendix).

In this article, we refer back to the classical threshold model only

to draw comparison to the application of another threshold model that

is applicable to the clinical situations when one can conceptualize the

disease or condition of interest as being defined by outcomes that

treatments are designed to prevent.
2.3 | Two thresholds

The preceding discussion indicates that the threshold model can gen-

erate two thresholds answering two questions: (1) when the probabil-

ity of disease and probability of outcomes are independent of each

other (classic threshold model) and (2) when the probability of disease

and probability of outcomes are not independent of each other (an

alternative model presented in this paper).

The classic threshold equation1,9 (Equation 1) provides the answer

to “At which probability of diagnosis/disease should we administer a

treatment with given benefit and harms?” This equation should be used

when the probability of disease and probability of outcomes are inde-

pendent of each other (Figure 1A). The model Figure 1A (Equation 1)

provides the answer without taking test results into consideration.

When the risk of disease and the risk of outcomes are not inde-

pendent, one way to avoid double counting is to simply set probability

of disease to 1. Thus, from modelling perspective, we assume that dis-

ease is certain. In the previous examples, prior DVT establishes a pre-

disposition to recurrence, and this predisposition constitutes the

“disease.” After a certain age, we all have some degree of coronary

artery disease, and are, thus, at risk of coronary events. This also

agrees with clinical and biological logic as the patient cannot develop

disease outcome unless he/she has diagnosis or a condition, which

causes given outcomes. At the same time, we can never be sure which

of the individual patients will have disease outcome or not13; that is,

the sole presence of the condition or predisposition—which one might

call the “disease”—does not indicate certainty that outcome will

occur13 (Figure 1B).

Thus, in the situations when probabilities and outcomes are not

independent, we can calculate the threshold that relates to the ques-

tion: “For which values of parameters of both probabilities and utilities

should we administer a treatment when we are certain in

diagnosis/disease?” This will occur under generic definitions of net

benefits and harms when B ≥ 0. Expressing it in specific terms, when

morbidity due to disease (M) is used to define disutilities, the solution

of the model shown in Figure 1B generates the following simple equa-

tion (see below and Appendix):

Mt ¼ Hrx

RRR
; (2)

where Mt is the threshold for morbidity (outcome or event) in the

absence of treatment and above which treatment should be given

and below which should not be given; Hrx—treatment‐related harms;

RRR—efficacy (relative risk reduction) of treatment. Note that the

model Figure 1B (Equation 2) assumes that the test that defines dis-

ease (the disease being a predisposition to subsequent morbid or mor-

tal events) has already been performed (see Clinical Application below).

Therefore, we can use a decision model shown in Figure 1 to gen-

erate two threshold models: (1) when the probability of disease and

probability of outcomes are independent of each other (and under

assumption that probability of diagnosis is uncertain [0 ≤ p ≤ 1]; this

yields calculation of Pt (Equation 1) and (2) when the probability of dis-

ease and probability of outcomes are not independent of each other

(when we assume that diagnosis, ie, P = 1, this yields calculation of

Mt (Equation 2).
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2.4 | Integration of a decision‐maker's preferences
into the threshold model

The models outlined above assume that a decision‐maker weighs

equally outcomes related to benefits and harms of treatments. Clini-

cally, this is often not true. In the Clinical Application section, we will

illustrate the calculation of the thresholds when a decision‐maker

(eg, patient) weighs benefits and harms of treatments equally and

differently.

To illustrate the role of patient's preference, we will express

generic net benefits and harms through disutilities related to morbidity

or mortality of treatment (M). We will also assume that most medical

interventions express constant (relative) effects over the range of

predicted absolute risk (often termed the “baseline risk”) and depend-

ing on the risk magnitude are conveniently modelled in decision anal-

yses as odds ratio, risk ratio (RR), or RRR = 1 − RR.14,15 This allows

intuitive interpretation of treatment effect: p · (1 − RRR); RRR = 1

means that the occurrence of outcome of interest is completely pre-

ventable (as P [ 1 – RRR] = 0), whereas RRR = 0 means that treatment

does not affect underlying risk (P · [1 – RRR] = P).14,15

We also introduce a variable RVH to represent patient's (or deci-

sion makers') preferences expressed as relative values of harm of

treatment with respect to the consequences of disease outcome M

(when outcomes are equally valued, this is set at 1). If we now solve

generic Equation 1 (applicable to the situations when probabilities

and utilities are independent), using these specific definitions of bene-

fits and harms (see Appendix for details), we obtain the following

equation under EUT for the patient's threshold:

Pt ¼ RVH·Hrx

RRR·M
: (3)

This equation gives the threshold for the probability of diagnosis

of disease at which the rational patient with preferences expressed

as RVH will be indifferent between accepting treatment versus not;

that is, the patient will use treatment if the estimated probability of

disease, P > Pt.

For decision when probabilities and outcomes are not indepen-

dent of each other, as in Equation 2, we substitute P = 1 in the expres-

sions above and solve for the parameter of interest. For example, we

should administer treatment if risk of mortality or morbidity (M) with-

out treatment is larger than the threshold:

Mt ¼ RVH·Hrx

RRR
: (4)

Note that it is also impossible to know the value of Hrx and RRR in

any individual patient as these events in each case will occur in the

future. Hence, a decision in individual patients has to be based on the

group (trial) data, ideally using multivariable risk prediction models.16

Note also that it is always the case that Mt ≤ Pt, which is likely

one of the reasons why actual decision‐making behavior has been

observed to differ from the postulated normative behaviour (see

Discussion).
3 | APPLICATIONS

We illustrate the application of a revised threshold model to a com-

mon medical problem: recurrent VTE (rVTE). That is, a disease of inter-

est is VTE, which is associated with substantial morbidity in terms of

recurrent rethromboembolic outcomes or events (thus, percentage of

the recurrent rethromboembolic outcomes are morbidities or disutil-

ities used in our model). Note, however, that diagnosis of rVTE is made

only after imaging shows the presence of new clot in deep veins or

lungs.17 Another way to express this is that the “disease” is the predis-

position to recurrent DVT that exists when a patient has experienced

a prior DVT. Thus, in this case (and in the vast class of diagnostic prob-

lems), if one considers diagnosis is equal to VTE event (rather than the

predisposition for having the event), the result would be double

counting. As previously discussed, to avoid it, we set P = 1 and calcu-

late threshold for rVTE outcome (see Equations 2 and 4).

We will analyse two clinical problems:

1. At which threshold for the probability of VTE disease do benefits

of anticoagulation outweigh its bleeding risks to justify adminis-

tration of anticoagulant treatments (Rx) over no treatment (No

Rx)? This, as explained above, should be done only if the probabil-

ity of disease and probability of outcomes are independent of

each other.

2. At which threshold for the probability of recurrence for VTE does

benefits of anticoagulation outweigh its bleeding risks to justify

administration of anticoagulant treatments (Rx) over no treatment

(No Rx)? This, as detailed earlier, is applicable to a type of clinical

problems where probability disease and probability of outcomes

are not independent of each other—indeed, when the patient is

defined as already having the “disease” of interest and the issue

is whether the patient will suffer the adverse events associated

with the “disease.”

VTE, which consists of DVT and PE, is a common cause of morbidity

and mortality in the United States; annually, about one in 120 people

develops VTE.18 Once patients develop VTE disease, they are typically

treated with anticoagulants, drugs that are effective in preventing

complications of VTE such as PE and further VTE recurrence or

reembolization (morbidity, event, or outcome of interest). However,

anticoagulants are also associated with bleeding complications that

may result in major morbidities or even death.

There is a widespread consensus based on randomized trials that

have demonstrated a very high‐recurrence rate over 3 months in

untreated or minimally treated patients and a very high RRR with

treatment, that once patients develop VTE, barring obvious contrain-

dications such as overt bleeding, rational patients will always choose

treatment with anticoagulants for at least for 3 and perhaps

6 months.19 After 3 to 6 months, the probability of recurrence

decreases substantially, and thus, the continuation of treatment

beyond 3 months depends on the estimated risk of VTE recurrence

versus bleeding risk.

As explained, from the modelling perspective, we can ask two

questions: at which probability of VTE disease benefits of

anticoagulation therapy outweigh its risks of bleeding. This is a
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different question from the one asking at which risk of VTE recurrence

benefits of anticoagulation therapy outweigh its risks of bleeding. The

former question can be answered only if the probability of disease and

probability of outcomes are independent of each other (eg, probability

of VTE and utility defined through mortality), while the latter should

be used when outcome is a part of definition of disease, as in the case

of rVTE disease, which is defined by very outcomes treatment is

designed to prevent.17

Importantly, many practice guidelines and most authors consider

VTE recurrence risk (at 5 years) exceeding 30% as high risk, intermedi-

ate as VTE recurrence of 15%, and low risk at less than or equal to 3%

VTE.19-23 However, it is not clear (1) how these thresholds were calcu-

lated and (2) that considerations were given to the issues we discuss in

this paper. In addition, although these authors recommend consider-

ations of patients' V&P in determining when to prescribe anticoagu-

lant treatments, they do not specifically show how that can be

integrated into decision‐making at bedside.19-22 Other investigators

have developed decision aids that are extremely specific in demon-

strating how values and preference can be integrated in decision‐

making. One of our goals in this paper is to compare the calculated

thresholds with these (descriptive) thresholds commonly used in prac-

tice with and without taking V&P into account.24

3.1 | Data

The EINSTEIN investigators tested efficacy of rivaroxaban (drug that

belongs to class of direct oral anticoagulants [DOAC]) versus placebo

for secondary prevention of VTE.25 The decision regarding treatment

was made after patients who were eligible for the trial had objec-

tively confirmed, symptomatic DVT or PE using ultrasound, or lung

imaging25; that is, the patients with confirmed symptomatic DVT or

PE who had been treated for 6 or 12 months with a vitamin K antag-

onist or rivaroxaban were then randomly assigned to receive contin-

ued treatment with rivaroxaban or placebo.25 The primary efficacy

outcome was symptomatic, rVTE, defined as the composite of DVT

or nonfatal or fatal PE.25 We model the situation when no further

testing is possible and do not model clinical suspicion whether test

should be done—the latter is a purview of the classic threshold

model.1,9

The EINSTEIN investigators found that over 6 to 12 months treat-

ment duration, in the placebo group, the proportion of patients

experiencing VTE recurrence wasM ¼ 42
594

¼ 7:1%: In the group being

treated with rivaroxaban, the proportion of patients with VTE recur-

rence wasMrx ¼ 8
602

¼ 1:3%: Therefore,RRR ¼ M −Mrx

M
¼ 81:2% (this

translates into absolute risk reduction of
42
594

−
8

602
≈

0:071 − 0:013 ¼ 5:8%). However, rivaroxaban is also associated with

an increase risk of major bleeding Hrx = 4.8 %.

1. Calculation of the probability of VTE disease/diagnosis at which

we should administer rivaroxaban:

We will first assume that a decision‐maker (eg, patient) may value

consequences of bleeding equally to consequences of VTE. To

simplify calculations, we express these preferences as relative
values toward bleeding outcomes with respect to VTE outcomes,

which we set at 1.

Assuming that the probability of diagnosis of VTE and recurrence

of VTE are independent of each other, we could calculate that the

threshold probability for diagnosis of VTE (TdxVTE ) at which we are

indifferent between giving rivaroxaban versus placebo is given by

the Equation 3 above as follows:

TdxVTE ¼
RVH·Hrx

RRR·M
¼ 1·0:048

0:812·0:071
¼ 83%:

These, however, implausibly high thresholds are not observed in

practice and are not recommended by guidelines panels. For the rea-

sons discussed in this paper, this answer is also not normatively cor-

rect12 because “disease” was defined as the outcome of VTE rather

than as the predisposition to rVTE created by the first VTE.25 Norma-

tively accurate answer could be obtained if we considered the out-

come of mortality rather than rVTE. For example, the EINSTEIN

investigators reported death due to VTE and bleeding of 1/602

(0.2%) and 0/602 (0%), respectively.25 Using these values to calculate

the threshold probability for diagnosis of VTE (TdxVTE ) above which we

should give rivaroxaban (vs placebo), we obtain the following:

TdxVTE ¼
RVH·Hrx

RRR·M
¼ 1·0

0:812·0:002
¼ 0%;

which is normatively but not descriptively correct (as no patients would

choose to use rivaroxaban to prevent death when the probability of

dyingwithout rivaroxaban over the relevant time periodwas zero).19-22

2. Calculation of the probability of recurrence of VTE (M) at which

we should administer rivaroxaban:

If there is dependence between probability and outcomes indicat-

ing that we are certain in diagnosis/disease (ie, we define

diagnosis/disease as the predisposition to recurrence created by

the first event), the threshold for the value of morbidity or mor-

tality is given by formula (4) above.

MVTE ¼ RVH·Hrx

RRR
¼ 1·0:048

0:812
¼ 5:9%

In other words, if we use the disease definition above, we should

administer rivaroxaban only if the probability of recurrence of VTE

(without treatment) is above 5.9%.Note that in this case, utility thresh-

old falls within a range that could be descriptively correct. Thus, differ-

ences between threshold based on comparison of the VTE recurrence

with the threshold based on the probability of VTE disease can explain

the differences between what is observed in practice and what origi-

nal threshold model prescribed. Figure 2 illustrates Mt as a function

of bleeding risk.

3.2 | Integration of patients' values and preferences

Empirical data indicated that most patients value bleeding event about

three fourth as bad as VTE event,26 which is to say that most patients

value avoiding a clot 1.3 (=1/0.75) times more than avoiding bleeding.



FIGURE 2 When to give novel anticoagulant (direct oral anticoagulants) for prevention of venous thromboembolism versus no treatment? The
direct oral anticoagulants should be given if the probability of recurrent venous thromboembolism event (outcome) is above the calculated
threshold line for given bleeding risk (Brx) (shown on x‐axis) (NB the calculation assumes that a decision‐maker considers avoiding venous
thromboembolism and bleeding equally important)
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However, the range of values dramatically vary from tolerating no

excess of bleed to prevent a clot to accepting 22 times excess of

bleeds to avoid a clot (RVH = 0.045) to valuing them equally.27 For

our baseline analysis, if we set RVH = 0.75, the threshold for the prob-

ability of VTE recurrence is MVTE ¼ RVH·Hrx

RRR
¼

:

0:75·0:048
0:812

¼ 4:4%:

If we vary values for bleeding outcome from RVH = 0.045 (VTE is

22 times worse than bleeding) to RVH = 1 (VTE is equally weighted as

bleeding), the threshold for the probability of VTE recurrence ranges

from MVTE = 0.3% to MVTE = 5.9 % , which does encompass the ranges

recommended by practice guidelines (Figure 3).19-22
4 | DISCUSSION

The threshold model is probably one of the most important advances

in the field of medical decision‐making,1,9 which links evidence (which

exists on the continuum of credibility) with decision‐making (which is a

categorical exercise—we decide to act or not to act).2 The model is not,
FIGURE 3 Sensitivity analysis displaying calculations of the decision th
patient's preferences with respect to consequences of bleeding versus ven
thromboembolism are equally weighted), 0.75, 0.5, 0.25, 0.05 (avoiding ve
avoiding major bleeding, respectively. The direct oral anticoagulants treatm
thromboembolism event (outcome) is above the calculated threshold line f
however, widely used by clinicians at bedside even though it addresses

extremely common classes of the medical problems and despite the

fact that nomograms to facilitate its use were published more than

two decades ago.28 The model has also not attracted deserved atten-

tion even if it is likely that physicians act according to their different

thresholds, which, at least in part, can probably explain the tremendous

variation observed in today's practice of medicine.2,29

One of the common explanations provided for the lack of popu-

larity of the threshold models among practitioners is that the original

models were based on EUT, which is known to be widely violated both

by lay people and physicians2,3,5; that is, physicians do not act at the

EUT prescribed thresholds, but rather below or above it,5,30-32

depending on the context and theoretical approach, which can better

explain the observed behaviour.3,4 This has prompted reformulation of

the threshold model using different theoretical frameworks such as

regret and dual‐processing theory model.2,3,5,30,33,34 Indeed, some

empirical evidence shows that thresholds at which physicians act are

more consistent with regret and dual‐processing theory model than

with the EUT model.5,35
resholds as a function of given bleeding risk (Brx) for five values of
ous thromboembolism: RVB: 1 (bleeding and venous
nous thromboembolism is 1.3, 2, 4, and 20 more times important than
ent should be given if the probability of recurrent venous
or given Brx (shown on x‐axis)
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However, in this paper, we provide a considerably more compel-

ling explanation of why normative recommendations based on the

EUT threshold model may differ from the actual decisions seen in

practice. First, considerable confusion regarding definitions of “dis-

ease” have existed: In considering issues of prevention, patients and

physicians are considering the “disease”—or perhaps more appropri-

ately the condition—as a biological predisposition to subsequent mor-

bid or mortal events. Another way to state this is that calculation of

the threshold probability of diagnosis is normatively correct only when

health outcomes are not part of definition of disease. Otherwise, the

calculations are not correct because of value‐induced bias12—violation

of the requirement that probabilities and utilities are independent of

each other.

When disease is defined as present at the time of decision‐

making, ie, clinicians are considering patients as having a biological

predisposition to subsequent adverse events—in the original threshold

model, they have a 100% probability of being “diseased” or, to put it

another way, when health outcomes that treatment are designed to

affect are part of disease definition, we showed that the proper way

to use threshold model is to calculate the threshold for utilities, ie,

the threshold for the probability of outcome or risk of event (and

not diagnosis) at which we should administer treatment.

Differentiating between situations in which the issue is whether

disease is present and adverse outcomes will only occur if it is, from

one in which all patients are at risk of adverse outcomes, has also

important implications for recommendations about use of diagnostic

tests. The second classic threshold model9 recommends calculating

two thresholds: the testing and the test‐treatment thresholds by tak-

ing test sensitivity and specificity into consideration. The role of a test

is to increase diagnostic certainty, but when diagnosis—the predisposi-

tion to adverse events—is certain, calculation of probability of diagno-

sis is nonsensical. Thus, when probability of disease and probability of

outcomes are not independent of each other, diagnostic test charac-

teristics such as sensitivity and specificity should not be taken into

consideration, but instead, recommendations should be based on cal-

culations of Mt as illustrated in this paper.

Our second explanation of differences between normative and

descriptive findings is that the original threshold model did not take a
FIGURE 4 An illustration of the differences in calculation of the thres
Threshold as a function of generic net benefits and harms as originally pro
function of evidence‐based treatment metrics (Pt=NNT/NNH) originally p
utilities are independent of each other; see Figure 1A and text for details)
decision‐maker's V&P explicitly into account.6 However, when the

effect of V&P is incorporated in the threshold model, it actually can

be descriptively correct (Figure 3). The previous criticism of the classic

threshold model revolved about descriptively unrealistic low thresh-

olds prompting reformulation of the threshold equations from non‐

EUT theoretical frameworks.2,31,34,35 However, we found thatMt ≤ pt,

ie, even lower than the thresholds based on the original threshold

model. Yet, in the context of our VTE example, taking V&P into

account align the threshold model quite well with the current practice

guidelines, which recommend administration of treatment when the

VTE recurrence risk (at 5 years) exceeds 30%, 15%, and 3% for high,

intermediate, and low risk of VTE recurrence, respectively.19-22 This

makes descriptive sense because when physicians and patients per-

ceive that diagnosis is certain, they are more inclined to act than when

diagnosis is not certain. As clear as these recommendations about the

threshold are, typically guidelines panels have not actually explicitly

taken patients' V&P into calculations of the thresholds—although there

is at least one notable exception, the ninth iteration of the American

College of Chest Physicians Antithrombotic Guidelines (which con-

ducted a systematic review of V&P for antithrombotic therapy36 and

specified an equal importance to serious bleeding rVTE).37 Neverthe-

less, despite typically neglecting to show how thresholds are calcu-

lated, guidelines panels do routinely make such recommendations.19-22

Thus, under some considerations, EUT appears to be descriptively

realistic. In this context, Felder and Mayrhofer38 argued the descriptive

power of EUT can be further augmented if treatment effects are

modelled directly on the probability of disease14,15 not in utilities as in

the original threshold model.1,9 In a separate (forthcoming) paper, we

showed that regardless how the effect of treatment is modelled, the

model yields identical results under EUT but not under regret the-

ory.30-32 However, we also consider the questionwhich decision theory

(EUT vs non‐EUT) is more descriptively accurate an empirical question.5

We have recently proposed that “one size does not fit all,” ie, there can-

not be one theory of rationality that can meet all our needs in all con-

texts.4 Hence, we should abandon debate if the EUT is superior to the

non‐EUT or vice versa; rather, we should define the circumstances

when application of one theory is more suitable to use than the other.
hold probability as a function of definition of treatment effects: A,
posed by Pauker and Kassirer,1 see equation (1) B, threshold as a
roposed in other study6 (the model assumes that probabilities and
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Finally, many consider inadequate decision‐making as one of the

major culprits for today's suboptimal patient outcomes39-42 to the

point that some decision scientists have suggested that personal deci-

sions are the leading cause of death.43 Promoting the threshold model,

which was introduced more than 40 years ago1 and which offered a

simple but powerful yet neglected tool, may considerably improve

inadequate decision‐making often seen in todays' practice.43 As illus-

trated in this paper, however, clinicians and guideline developers have

to ensure they appropriately apply the threshold model.

The problems we discussed in this paper have arisen from misun-

derstanding one of the key aspects of P&K1 model to which we draw

attention in this article: The threshold calculation depends on the def-

inition of disease.6 We demonstrate here that the key to proper appli-

cation of the threshold model is to understand if the condition (or

disease) of interest is the predisposition to subsequent adverse

events—or to put it another way, if outcomes that are part of the def-

initions of treatment benefits and harms are also integral aspect of the

definition of disease that we wish to model—or if it is not. In addition,

use of generic definitions of treatment benefits and harms as per orig-

inal model1 as opposed to widely accepted EBM clinical measures of

treatment effects6 has created misunderstanding about true values

of the threshold at which treatment should be administered.

Figure 4, which shows how threshold probability of diagnosis dramat-

ically differs when it is expressed as generic net benefits and harms

versus popular evidence‐based measures of treatment effects (number

of patients needs to be treated in order for one patient to benefit)/

(number of patients who need to be exposed to treatment in order

for one patient to be harmed) (NNT/NNH), illustrates this distinction.6

Obviously, calculation of the threshold depends on the accuracy of the

parameters that are used to populate the model. Ideally, the data for

calculation of the threshold should be based on a well‐done system-

atic reviews/meta‐analyses; this is where decision analysis meets

evidence‐based medicine.6 Here, it is important to note that even

though our model is meant to help individualize treatment decisions,

ultimately data to populate the model are based on average, group

estimates. Indeed, risk is a group phenomenon and is knowable and

accurately measured as a population‐based measure.13,44 We can

never say with perfect certainty which individual patient will develop

the outcome of interest13,44; that is, risk in any individual patient

remains ultimately unknowable.44 However, we simply do not have

better way to individualize our treatments but to rely on the risk infor-

mation from the groups.13,44,45 In fact, one can argue that the entire

goal of personalized and precision medicine is to reliably reduce the

population to smaller groups, in which risk can still be assessed with

high accuracy that may be better applicable to individuals.44

From the perspective of this paper, more systematic assessment

of application of the threshold models in clinical practice would be

desirable. In particular, alignment of recommendations by the guide-

lines panels with the threshold model calculations would improve

clinical practice guidelines. Wider application of the one of most

significant development in history of decision‐making may go long

way to help practitioners and patients improve their decisions.
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APPENDIX A

Modelling treatment effect: Treatment versus no
treatment

In the classic P&K model1 (Figure 1), the expected utilities of each

decision are given as follows:

EU Rx½ � ¼ p·U1 þ 1 − pð ÞU2 EU NoRx½ � ¼ p·U3 þ 1 − pð ÞU4:

Following Pauker and Kassirer,1 we define the net benefit of

treatment as B = U1 − U3, ie, the difference in the utility of the out-

comes if the diseased patient was treated or was not treated and

net harms as H = U4 − U2, ie, the difference in the utility of the out-

comes if a patient without the disease was not treated versus treated.

Solving the tree, the threshold probability (Pt) above which we should

treat is calculated as follows:

Pt ¼ 1

1þ B
H
:

(1)

Equation 1 shows a generic version of the threshold equation

based on generic definitions of net benefits and harms as per above.

To obtain, specific version of the threshold equation, we substitute

net benefits and harms through disutilities related to morbidity or

mortality (M) associated with treating versus not treating (or using

one treatment vs another). We distinguish M—morbidity or mortality

that occur in the absence of treatment—and Mrx (morbidity/mortality

that occur while on the treatment); we also define Hrx as harms that

occur due to treatment.

We also assumed that most medical interventions have constant

(relative) effects over the range of predicted absolute risk and are con-

veniently modelled in decision analyses as RR or RRR = 1 − RR.14,15 This

allows intuitive interpretation of treatment effect: P · (1 − RRR); RRR = 1

means that the occurrence of outcome of interest is completely pre-

ventable (as P [ 1 – RRR] = 0), whereas RRR = 0 means that treatment

does not affect underlying risk (P · [1 – RRR] = P).14,15 We also intro-

duce a variable RVH to represent patient's (or decision makers') prefer-

ences expressed as relative value of avoiding harms of treatment, Hrx

with respect to avoiding disease outcome, M.

Thus, we express (dis)utilities in the following way:

U1 = U(Rx,D+) = 1 − Mrx − RVH · Hrx = 1 − M · (1 − RRR) − RVH · Hrx
*

[Patients with disease on Rx]

U2 = U(Rx,D−) = 1 − RVH · Hrx [Patients without disease on Rx:

overtreatment]

U3 = U(NoRx,D+) = 1 − M [Patients with disease not on Rx:

undertreatment]

U4 = U(NoRx,D−) = 1 [Healthy patients, no disease, no treatment]

https://doi.org/10.1111/jep.12895
https://doi.org/10.1111/jep.12895
https://doi.org/10.1111/jep.13091
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(Disutility represents undesirability, or strength of preferences

that individuals or societies have against a particular outcome such

as loss of length of life, mortality or morbidity rates [the latter often

calculated by counting event or outcome of interest such as VTE

recurrence etc], presence of pain, cost, etc, a complement of utility,

typically expressed as 1—utility (desirability or strength of preferences

that individuals or societies have for a particular outcome such as

length of life, morbidity or mortality rates, absence of pain, cost, etc.])

Substituting these values into the definition of net benefit

B = U1 − U3 =M · RRR − RVH · Hrx and net harms H = U4 − U2 = RVH · Hrx,

and assuming that the patient values avoiding treatment harms equally

to avoiding effect of disease (ie, RVH=1), we obtain the following:

Pt ¼ Hrx

RRR·M
:

This equation is valid if utilities of outcomes (expressed via M) are

not used for definition of disease, ie, it assumes that the probability of

disease and utilities are independent of each other (Figure 1a).*

If this condition stated in the equation above is not satisfied, as

explained in the text, we modify the model by assuming P = 1

(Figure 1B). In that case, the expected values of Rx and NoRx are equal

if the morbidity due to disease event is

Mt ¼ Hrx

RRR
:

If we assume a decision‐maker's values of avoiding harms of

treatment, Hrx with respect to avoiding disease outcome, M is

different (RVH), then the two formulas above are

Pt ¼ RVH·Hrx

RRR·M
and Mt ¼ RVH·Hrx

RRR
:

*Mathematically a more correct representation of this utility has the following

form:

U1 ¼ U Rx;Dþ½ � ¼ 1 −Mrx − RVH·Hrx þ Mrx·Hrx½ �;

but we assumed that simultaneous occurring of effect of disease and harms of

treatment is clinically rare occurrence and is also mathematically negligible,

which is the reason we did not include this product in the definition.
Treatment1 versus treatment2

If we want to calculate the threshold at which we want to select one

treatment over another, we define utilities somewhat differently6:

U1 ¼ U Rx1;Dþð Þ ¼ 1 −Mrx1 − RVH·Hrx1 ¼ 1 −M· 1 − RRR1ð Þ − RVH·Hrx1

U2 ¼ U Rx1;D −ð Þ ¼ 1 − RVH·Hrx1

U3 ¼ U Rx2;Dþð Þ ¼ 1 −Mrx2 − RVH·Hrx2 ¼ 1 −M· 1 − RRR2ð Þ − RVH·Hrx2

U4 ¼ U Rx2;D −ð Þ ¼ 1 − RVH·Hrx2

:

Note that we assume that the patient will value harms of treat-

ment relative to morbidity of disease (RVH) in the same way regardless

if it was caused by treatment 1 versus treatment 2 (it is, of course,

possible to assume different RVH, but we consider this outside of a

scope of this paper).

Solving these equations for the threshold Pt (ie, assuming that the

probability of disease and utilities are independent), we get

Pt ¼ RVH* Hrx1 − Hrx2ð Þ
Mrx2 −Mrx1

¼ RVH* Hrx1 − Hrx2ð Þ
M* RRR1 − RRR2ð Þ:

If the assumption of independence between utilities and probabil-

ities is violated, similar to above, we obtain

Mt ¼ RVH· Hrx1 − Hrx2ð Þ
RRR1 − RRR2ð Þ :

If we want to model effects of the multiple harms, we can write

Hrx1 ¼ RVH*Hrx11 þ RVH*Hrx12 þ…þ RVH*Hrx1m

Hrx2 ¼ RVH*Hrx21 þ RVH*Hrx22 þ…þ RVH*Hrx2n
:

Then, simply replacing Hrx1 and Hrx2 in the equations above, we

can calculate the thresholds based on considerations of multiple

harms.


