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Computational disease progression modeling can provide 
insights into cancer evolution
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The development of cancer from a single 
transformed cell to a biologically complex and 
potentially lethal disease proceeds through the 
expansion of divergent clonal lineages that establish 
distinct subpopulations [1]. This process can be viewed 
as a Darwinian, multistep evolutionary process at the 
cellular level driven by intrinsic cell characteristics, 
most notably the accumulation of genetic alterations, 
and selection pressures exerted by a co-evolving tumor 
microenvironment. An understanding of tumor evolution 
would provide valuable insights into tumor biology 
and establish a framework for the development of 
improved cancer taxonomies, prognostics and targeted 
therapeutics. Conceptual models of evolution have been 
inferred from the chronological ordering of mutations in 
single or related tumors, but established models derived 
from human tumor tissue data that describe cancer 
progression are lacking for most histotypes.

Time-series data are ideal for deriving models of 
dynamic progression, but this is impossible to collect in 
human cancer because of the need for timely treatment , 
which alters the natural history of the disease and exerts 
selection pressures that affect tumor evolution. Further, 
sampling itself may alter tumor biology, and small 
samples collected at a limited number of time points 
may provide incomplete or inaccurate representation 
of progression. In contrast, molecular profile data 
obtained from thousands of tumor tissues continues 
to accumulate, and computational methods to handle 
and interpret the high-dimensional and multi-platform 
data is keeping pace [2,3]. In order to leverage this data 
resource for potential cancer progression modeling, we 
devised a computational strategy [4] that derives pseudo 
time-series data from ‘static’ samples (single time-point 

tissue specimens). The design is based on the rationale 
that each sample provides a snapshot of the disease 
process, and analysis of a large number of samples can 
enable the development of a detailed model of disease 
progression that provides testable hypotheses. The 
computational approach, referred to as CancerMapp, 
was first applied to the analysis of transcriptome data 
from breast cancer consortium datasets [5,6].

Breast cancer is a heterogenous disease, composed 
of etiologically and clinically distinct subtypes: 
basal-like, luminal A, luminal B, and HER2+ [7]. 
Our modeling analysis revealed data structures that 
supported two distinct trajectories to aggressive 
phenotypes, either directly to the basal subtype, or 
through the luminal A and luminal B subtypes to 
the HER2+ subtype. The progression model was 
validated by the derivation of similar data structures in 
independent datasets, and by the mapping of additional 
genomic and clinical data on the gene expression model 
structure [4], revealing a clear trend of worsening 
survival function along the luminal progression 
trajectory. The unbiased computational approach 
supports the idea that breast cancer development follows 
limited, common progression paths, consistent with a 
two-component etiological model that depicts breast 
cancer arising from two main cell types of origin [8]. 
The interpretation from the bifurcating model is that 
the basal subtype is a distinct entity, and the luminal 
and HER2+ subtypes may be considered as different 
stages of the same disease process. Progression along 
the luminal trajectory likely includes elements of linear 
and branching evolution theory, but considering luminal 
A, Luminal B and HER2+ as a continuum of disease 
could have significant impacts on research design and 
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subsequently, on clinical management. Moreover, this 
model would pose limitations for relating etiological 
exposures to specific molecular subtypes for cancers 
that have evolved. 

As an example, we used the progression model 
as a framework to investigate the inter-relationships 
between paired primary and metastatic lesions [9]. 
We considered that primary and metastatic breast 
tumor tissue samples recovered from the same patient 
represent two time-points in a continuum of disease 
progression. The mapping of molecular profiles from 
these paired samples on to the progression model would 
enable the visualization of the evolutionary relationship 
between paired samples, and provide insight into 
disease progression. Analysis of gene expression data 
obtained from 246 matched primary and metastatic 
tumor samples [10] confirmed that basal lesions were 
distinct from luminal phenotypes, molecular phenotypes 
can shift within the same individual, and that the shift 
is unidirectional along a continuum of disease state 
towards malignancy, as postulated by the progression 
model [4]. As molecular analyses add to the growing 
wealth of descriptive molecular data related to cancer 
[11], modeling approaches such as CancerMapp will be 
needed to transform raw data into biological insights 
that have clinical relevance. Cancer progression models 
can overcome the constraints of mainstay prevalence-
based approaches, providing an opportunity to detect 
genetic events directly based on cancer evolution theory, 
and thereby to reveal possible roles in the context of a 
dynamic disease process.

Interactive progression models and cancer 
roadmaps that can incorporate multi-platform data will 
also inform a new range range of research directions. 
For example, current prognostic tests in breast cancer 
are of value only in a restricted set of patients, but 
if we can visualize the entire, ordered progressive 
disease process, the identification of specific molecular 
characteristics associated with a broader spectrum of 
cancer phenotypes becomes feasible. With increasing 
use of genomic sequencing in clinical management, 
approaches that can place molecular changes into 
an evolutionary context would greatly facilitate the 
goal of personalized medicine and treatment success. 
Specifically, discriminating cancers that are in dynamic 
evolution to more aggressive subtypes from those that 
are more stable has potential implications for initial 
treatment, surveillance and prognosis. Future studies, 
using higher-resolution genomic methods, such as 
single-cell sequencing and tissue microdissection, 
guided by a working model, can provide data for the 
refinement of cancer progression roadmaps.
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