
sensors

Article

Multispectral Fluorescence Imaging Technique for
On-Line Inspection of Fecal Residues on
Poultry Carcasses

Youngwook Seo 1, Hoonsoo Lee 2,* , Changyeun Mo 3, Moon S. Kim 4, Insuck Baek 4 ,
Jayoung Lee 5 and Byoung-Kwan Cho 5,*

1 Rural Development Administration, National Institute of Agricultural Sciences, 310 Nonsaengmyeong-ro,
Wansan-gu, Jeonju-si, Jeollabuk-do 54875, Korea

2 Department of Biosystems Engineering, College of Agriculture, Life & Environment Science,
Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea

3 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National
University, Chuncheon 24341, Korea

4 Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of
Agriculture, Powder Mill Rd. Bldg. 303, BARC-East, Beltsville, MD 20705, USA

5 Department of Biosystems Machinery Engineering, College of Agricultural and Life Science,
Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea

* Correspondence: hslee202@chungbuk.ac.kr (H.L.); chobk@cnu.ac.kr (B.-K.C.);
Tel.: +82-43-261-2585 (H.L.); +82-42-821-6715 (B.-K.C.)

Received: 13 June 2019; Accepted: 30 July 2019; Published: 9 August 2019
����������
�������

Abstract: Rapid and reliable inspection of food is essential to ensure food safety, particularly in mass
production and processing environments. Many studies have focused on spectral imaging for poultry
inspection; however, no research has explored the use of multispectral fluorescence imaging (MFI) for
on-line poultry inspection. In this study, the feasibility of MFI for on-line detection of fecal matter
from the ceca, colon, duodenum, and small intestine of poultry carcasses was investigated for the
first time. A multispectral line-scan fluorescence imaging system was integrated with a commercial
poultry conveying system, and the images of chicken carcasses with fecal contaminants were scanned
at processing line speeds of one, three, and five birds per second. To develop an optimal detection
and classification algorithm to distinguish upper and lower feces-contaminated parts from skin, the
principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were
first performed using the spectral data of the selected regions, and then applied in spatial domain to
visualize the feces-contaminated area based on binary images. Our results demonstrated that for the
spectral data analysis, both the PCA and PLS-DA can distinguish the high and low feces-contaminated
area from normal skin; however, the PCA analysis based on selected band ratio images (F630 nm/F600
nm) exhibited better visualization and discrimination of feces-contaminated area, compared with the
PLS-DA-based developed chemical images. A color image analysis using histogram equalization,
sharpening, median filter, and threshold value (1) demonstrated 78% accuracy. Thus, the MFI system
can be developed utilizing the two band ratios for on-line implementation for the effective detection
of fecal contamination on chicken carcasses.

Keywords: food safety; poultry inspection; online measurement; multispectral fluorescence imaging

1. Introduction

It is necessary to supplant the current manual inspection of fecal contamination on the surface of
chicken carcasses with autonomous fecal contamination inspection system because human inspection
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has limitations when it comes to detecting diluted fecal contaminations. The technologies predominantly
employed for the detection and isolation of contaminants from agricultural products are machine
vision and spectroscopy. Machine vision techniques based on image processing algorithms are used for
classifying and sorting agricultural products via surface inspection [1–6]. These techniques are useful for
detecting foreign matter on the surface of agricultural products based on visible wavelengths; however,
the internal quality and the molecular analysis of such substances cannot be assessed based on visible
wavelengths. In contrast, spectroscopic methods such as near-infrared spectroscopy (NIRS) provide
rapid evaluation of the internal qualities of agricultural products based on the vibrational motions
of organic molecules. Thus, spectroscopic techniques have been applied for the evaluation of the
internal quality of agricultural products such as species discrimination [7–10], nutrient analysis [11–13],
and internal defect detection [3,14–19].

The multispectral imaging technique possesses the characteristics of both machine vision and
spectroscopic techniques. In other words, it can obtain the spectral and spatial information of a sample.
Due to this unique property, it has been used in a range of applications to identify defects or biological
contaminants in a wide range of agricultural products [20–27].

In particular, previous studies on the multi/hyperspectral imaging system have demonstrated
the potential of reflectance imaging and fluorescence imaging techniques to detect contaminants on
poultry carcasses [24–27]. Reflectance imaging exhibited detection accuracy of 92.4% for the bodily
waste from the duodenum [24]. In comparison, fluorescence imaging achieved a detection accuracy of
100% using the band-ratio images of the fecal residues. Although the fluorescence imaging technique
has been used to detect organic poultry residues (i.e., chicken fat, blood, and feces) on stainless steel
plates, no attempt has been made to use it for fecal detection on chicken carcasses [25,26].

The main advantage of the fluorescence imaging technique is that its sensitivity to
fluorescence-active compounds allows detection of even low concentrations of contaminants [25].
Secondly, spectral imaging is usually affected by specular reflection from the glossy surface of samples;
thus, it sometimes misrepresents the sample representation. However, this effect is avoidable in
fluorescence imaging. Hence, fluorescence imaging has been used for quality safety analysis of a range
of products in the agro-food sector [28–30].

Due to this, the present research aims to develop a fecal contamination detection system for chicken
carcasses using real-time multispectral fluorescence imaging (MFI). A multivariate analysis technique
was implemented to detect and classify poultry fecal matters, and to differentiate fecal contamination
from the skin of the carcasses moving at three different speeds of conveyor line. Furthermore, image
processing using RGB image was employed to visualize fecal contaminants on chicken carcasses.
Optimal wavebands were proposed for contaminant detection, and the performance of the band ratio
images based on optimal wavebands.

2. Materials and Methods

2.1. Fecal Matters from Chicken Organs

The carcasses used in this study were of 30 chickens that were killed after being bred on soybean
protein feed through standard practices for seven weeks. The carcasses and intestinal tracts were
obtained from a poultry processing facility (Allen Foods Inc., Cordova, MD, USA). The chickens were
deprived of food and water for 10 h before slaughter. Bodily waste, such as the fecal matters, was
collected from their organs, specifically the ceca, colon, small intestine (SI), and duodenum (Figure 1).
Four small spots were made on the skin of the chicken carcasses with the extracted substances, each spot
comprising 50 µL drops. The mean dry matter contents of the ceca, SI, and duodenum, as measured by
an oven-drying method, were 180 ± 21, 161 ± 21, and 149 ± 18 µg/g, respectively. Note that the dry
matter content of the colon was not sufficient to be measured. In this study, intact feces were used to
investigate the feasibility of the LED-induced fluorescence imaging technique as a practical tool for
real-time poultry inspection. Color images were also acquired for the comparison using commercial
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digital camera (HCC-640NP, Honeywell Inc., Morris Plains, NJ, USA) and the light source system used
was 100 W halogen lamps (Osram, Munich, Germany) directed at the stationary chicken carcass.
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imaging. Two sample images, out of three, were selected as the calibration data for data analysis, and 
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Figure 1. Body substances extracted from the chicken organs such as ceca, colon, small intestine,
and duodenum.

2.2. Data Acquisition and Image Correction

The multispectral fluorescence imaging (MFI) data were collected using a real-time imaging system
for scanning fecal matters. The MFI system consisted of an electron multiplying charge-coupled device
(Luca, Andor Technology, Concord, CT, USA), imaging spectrograph (VNIR, Headwall Photonics,
Fitchburg, MA, USA) with a spectral wavelength range of 400–1000 nm, and two UV-A fluorescent
lamps (ML-3500S, Mxindustrial Inc., Ivyland, PA, USA) with a central peak of 365 nm. A 400 nm
long-pass filter (FEL0400, Thorlabs Inc., Newton, NJ, USA) was placed in front of objective lens
(Rainbow S6X11, International Space Optics, S.A., Irvine, CA, USA) to prevent transmission of light
lesser then approximately 400 nm and thus allowing only fluorescence signals to be collected while
eliminating the reflectance light to reach the detector. The multispectral image was acquired with a
line-scan method, also known as a push-broom method. The moving sample was scanned line-by-line
with a multispectral information for each pixel along the length of every spatial line. The imaging
data were displayed via a graphical user interface using Visual Basic (Ver. 6.0, Microsoft, Redmond,
WA, USA).

Figure 2 shows the schematic and photo of the MFI with an inspection facility which was built
in our laboratory that varies the speed of scan as 1 bird/s, 3 birds/s, and 5 birds/s. The fluorescence
images were obtained by scanning each chicken with four fecal spots on its skin surface in the range
410–690 nm, with approximately 11 nm resolution between the contiguous bands, over a total of
27 bands.

The images were measured in three speeds. Single online scanning with ten poultry images at
three scanning speeds: 1, 3, 5 birds/s; the samples were tagged {sample#1, sample#3, sample#5}. Three
replicas of each sample {sample#1A, sample#1B, sample#1C} were carried out. Each sample image,
for example, sample#1A, comprised ten chickens; thus, a total of 30 chickens were used for the MFI
imaging. Two sample images, out of three, were selected as the calibration data for data analysis,
and the other sample images were used for the validation of the developed algorithms.



Sensors 2019, 19, 3483 4 of 16

Sensors 2019, 19, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. Schematic of the multispectral fluorescence imaging system (a) and a real-time multispectral 
fluorescence imaging system for detecting fecal matters on chicken surface (b). 

2.3. Analysis of Fluorescence Spectra 

To develop an efficient classification model for fecal matters on chicken carcass, we used sample 
compositions with four spots of fecal contaminations on the chicken carcasses. Two spots on the 
upper part were tagged the “upper-ROI”, the other two spots on the bottom were tagged the “bottom-
ROI”; and the skin area between the two groups was tagged “skin-ROI”. Here, “ROI” refers to the 
region of interest within the rectangle (Figure 4 has five colored rectangles, each representing a ROI 
boundary). Fecal matters from four regions of the intestine were coated onto the skin; these were 
grouped into two ROIs: The upper-ROI, represented as a red square, contained fecal matter from the 
ceca and colon, while the bottom-ROI, the blue square, contained fecal matter from the small intestine 
and duodenum. The MFI spectra were extracted from three groups, and the selected number of pixels 
of each ROI ranged from 480–700 pixels.  

To reduce the data dimension and interpret the original dataset, the principal component 
analysis (PCA) was implemented [31–33]. The collected spectral data of all the three regions (upper 
and bottom-ROI, and skin-ROI) were saved in a matrix (X) to represent the data of the feces and skin 
from the chicken samples. The PCA, a representative and unsupervised linear dimensionality 
reduction algorithm, was applied to decompose the spectral data in matrix X into a loading matrix 
(L) and a score matrix (S). More specifically, X is assumed to be an N × K spectral data matrix, L is an 
N × A matrix of score vectors, and S is a K × A matrix of loading vectors; where N is the number of 
examined samples, K is the number of variables, and A is the number of principal components (PCs).  

Figure 2. Schematic of the multispectral fluorescence imaging system (a) and a real-time multispectral
fluorescence imaging system for detecting fecal matters on chicken surface (b).

2.3. Analysis of Fluorescence Spectra

To develop an efficient classification model for fecal matters on chicken carcass, we used sample
compositions with four spots of fecal contaminations on the chicken carcasses. Two spots on the upper
part were tagged the “upper-ROI”, the other two spots on the bottom were tagged the “bottom-ROI”;
and the skin area between the two groups was tagged “skin-ROI”. Here, “ROI” refers to the region of
interest within the rectangle (Figure 4 has five colored rectangles, each representing a ROI boundary).
Fecal matters from four regions of the intestine were coated onto the skin; these were grouped into two
ROIs: The upper-ROI, represented as a red square, contained fecal matter from the ceca and colon,
while the bottom-ROI, the blue square, contained fecal matter from the small intestine and duodenum.
The MFI spectra were extracted from three groups, and the selected number of pixels of each ROI
ranged from 480–700 pixels.

To reduce the data dimension and interpret the original dataset, the principal component analysis
(PCA) was implemented [31–33]. The collected spectral data of all the three regions (upper and
bottom-ROI, and skin-ROI) were saved in a matrix (X) to represent the data of the feces and skin from
the chicken samples. The PCA, a representative and unsupervised linear dimensionality reduction
algorithm, was applied to decompose the spectral data in matrix X into a loading matrix (L) and a
score matrix (S). More specifically, X is assumed to be an N × K spectral data matrix, L is an N × A
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matrix of score vectors, and S is a K × A matrix of loading vectors; where N is the number of examined
samples, K is the number of variables, and A is the number of principal components (PCs).

The data analysis of the spectral data was carried out using a multivariate analysis method,
the partial least square discriminant analysis (PLS-DA). The PLS-DA is based on the partial least
squares regression algorithm; it assigns artificial numbers according to class, for instance, skin as zero,
and fecal spots as one [33,34]. Using an efficient beta coefficient of PLS-DA which projects to unknown
single spectra of ROI, we can obtain a digit, and classify the result as skin or fecal spot, according to
the discriminant criteria (in this case, 0 as skin and 1 as fecal spots).

To develop an optimal preprocessing method, three pre-processing algorithms, multiplicative
scatter correction (MSC), and the first and second derivatives (D1 and D2) based on the Savitzky–Golay
algorithm are utilized and compared to results of the classification accuracy [35]. The overall
classification accuracy and Cohen’s kappa coefficient was used to describe the classification performance
of each model [36]. Accuracy can be determined as the mean value of the sensitivity and specificity
of each group, A and B, in a binary classification [0, 1], where sensitivity is defined as the ratio of
correctly predicted samples to the sum of the samples of group A, denoted as 0. Specificity is the
ratio of correctly predicted samples to the sum of the samples of group B, denoted as 1. The accuracy
and kappa coefficient range from 0 to 1; closer to 1 means better accuracy. Spectral analysis and
results visualization were conducted using R (ver. 3.3.2, Vienna, Austria), a software environment for
statistical computing and graphics.

2.4. Analysis of Multispectral Fluorescence Image

The schematic flow chart of the image acquisition and classification analysis process showing the
development of a classification algorithm based on spectral data is presented in Figure 3. CASE1 is
the multispectral fluorescence image acquisition and spectral analysis process based on multivariate
analysis methods. In the spectral analysis process, a mean plot, and score vectors according to PCA
were used.Sensors 2019, 19, x FOR PEER REVIEW 6 of 17 
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Figure 3. Schematic flowchart for multispectral fluorescence image acquisition and image classification.
CASE1 shows data acquisition and spectral classification using multivariate analysis and CASE2
shows image classification based on the optimal principal component (PC). CASE3 is for color
image classification.

CASE2 is the image classification algorithm based on the spectral analysis results that were
implemented on the fluorescence images. A histogram of the calibration data, using PCA, was applied
to segment the fecal spots from the background. The resultant PC images were enhanced with post
image processing methods, such as histogram equalization, median filter, and sharpening. CASE3
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is the image classification based on the RGB image. Image processing methods such as histogram
equalization and median filter were implemented to detect and isolate fecal spots on the chicken surface.

The threshold was calculated with multiple threshold algorithms based on ImageJ [37].
The simplest method for obtaining the threshold is constructing a histogram, which sums up all the
pixel values in a picture, and selecting an optimal value among the cumulated histogram. A supervised
manual method might achieve an optimal threshold for eliminating the background or distinguishing
the target.

Image correction and segmentation, spectral data extraction, and data analysis were performed
using MATLAB (ver. 2011, The MathWorks, Inc., Natick, MA, USA).

3. Results and Discussion

3.1. Spectral Characteristics

Three ROI groups were selected, and their spectral data were analyzed to investigate the spectral
characteristics of the fecal spots. Figure 4 visualizes a mean plot with 27 wavebands of the three spots
with three colored lines, red, green dashed line, and blue dotted line, representing the upper-ROI,
bottom-ROI, and skin, respectively, with wavelength ranging from 430 nm to 700 nm.
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In the range of 490 to 515 nm, the three groups show similar pattern such as signal valley at around
490 nm and slope ascension at approximately 515 nm; however, the fluorescence intensities vary.
The upper-ROI peaks around 620 to 640 nm. Furthermore, the bottom-ROI has a comparatively small
peak near 630 nm. In comparison, the skin-ROI exhibits no significant peak through 500 to 680 nm.
The fluorescence values close to 630 nm can be a criterion threshold value for detecting fecal materials
from chicken skin. This result shows that an emission peak at 635 nm, with excitation at 411 nm, can be
observed from the various parts of the digestive tract, including the ceca, colon, duodenum, and small
intestine, as reported in previous study [24]. The poultry fecal matter extracted from the digestive
organs possibly contains blood substances, such that both the upper and bottom-ROI may reveal their
fluorescence peaks around 630 nm. Although the spectral absorbance bands of pure myoglobin such as
oxymyoglobin, deoxymyoglobin, and metmyoglobin are similar but apparent, it has high absorption
optical density at ~555, ~578, and ~628 nm in the range of 500–700 nm, respectively [38]. It was
reported that myoglobin is one of the iron ions; thus, it carries oxygen and gives meat color, using a
protein of meat, protoporphyrin IX (PPIX) [39]. They demonstrated that the PPIX solutions extracted
from chicken meat had fluorescence emission at 631 nm, with excitation at 405 nm. Another report
indicates that strong emission peak is observed at around 635 nm, with excitation peak at 405 nm,
which can be due to the PPIX in the chicken meat [40]. The result is similar to the excitation spectra
measured at emission maxima in the previous study [24]. The excitation wavelength influencing on
635 nm peak spreads in between 360 and 430 nm as shown in the fluorescence emission–excitation
matrices in the other study [41]. The results indicate that UV-A light with the center wavelength of
365 nm used in this study can produce an emission peak of the fecal matters at around 635 nm even
though the intensity is relatively lower than that with 410 nm excitation. Thus, it is a reasonable
assumption that the upper-ROI and bottom-ROI have the features of fluorescence of PPIX.

3.2. Spectral Data Analysis

3.2.1. Spectral Analysis Using PCA

PCA was carried out to find the optimal threshold for the detection and isolation of the fecal spots
from the skin fluorescence spectra. Figure 5a–c illustrates the score vectors of the PCA in 2D space
using the spectral data. PC2 and PC3 illustrate three groups that are distinguishable from each other
(Figure 5c). In the score plot, the red asterisk signifies the samples of spectral data from the upper-ROI,
the blue ones signify the bottom-ROI, and the green ones signify the skin-ROI. The spectral domain
shows that the three groups are highly separable.
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3.2.2. Spectral Classification Using PLS-DA

Table 1 shows the multivariate analysis results based on spectral data using PLS-DA, in accordance
with preprocessing methods. To eliminate environmental noise, and find the optimal preprocessing
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method, three preprocessing methods and a method without preprocessing, noted as X, are compared.
Without preprocessing, the PLS-DA has an accuracy of 97.6% and a kappa coefficient of 0.96 (Table 1).
The first and second derivatives (D1 and D2) demonstrate similar accuracy results, 92.3% and 92.8%,
respectively. The MSC exhibits reasonable separation result; in particular, skin-ROI is isolated from
fecal matters. Others show distinguishable skin-ROI detection results with more than 96% accuracy.
The mean spectrum exhibited a characteristic spectrum curve near 635 nm for both fecal matters and
skin-ROIs (Figure 4). The spectral characters may be obtained from the classification results because
the PLS-DA can handle multiple dependent categorical variables based on the maximization of the
covariance between the independent variables (spectral data of three ROIs) and the dependent variables
(i.e., classes) [42]. Overfitting or producing an over-optimistic model is common issue in PLS-DA.
Usually, cross-validation is used to avoid overfitting and preprocessing for reducing noise from dataset.
In this study, leave one out (LOO) cross-validation is used to avoid overfitting. Furthermore, we applied
three preprocessing methods; however, the X method (non-preprocessing method) demonstrated the
best accuracy. MSC uses the mean centered spectrum as an artificial baseline for scaling, thereby
reducing scattering effects [43]. The first and second derivative methods have potential effects for
reducing baseline influence according to derivative gap [44]. However, the preprocessing method does
not always improve the classification performance in the case of a consistent dataset not influenced by
the environment or hardware changes during measurement.

Table 1. Classification result using multivariate analysis method according to pre-processing methods.

Pre-Processing Bottom-ROI Upper-ROI Skin-ROI Accuracy Kappa

PLS-DA

X* 92.4% 97.8% 99.8% 97.6% 0.96
MSC 81.0% 86.7% 99.7% 90.1% 0.84
D1 80.5% 96.8% 96.0% 92.3% 0.88
D2 79.7% 98.2% 96.3% 92.8% 0.89

X*: Without pre-processing, MSC: multiplicative signal correction, D1: 1st derivative, D2: 2nd derivative.

3.3. Image Data Analysis

3.3.1. Color Image Classification

Image processing methods were used to detect and isolate fecal spots from a chicken carcass.
To obtain the optimal threshold value, the blue image was selected among the RGB components,
and several image processing methods, such as histogram equalization (saturated pixels: 0.3%) and
sharpening and median filter (radius = 2.0), were employed. Figure 6 shows the classification results
according to the threshold value. Pertaining to the auto threshold method [45], of the 16 algorithms,
the Shanbhag algorithm [46] yielded reasonable result (threshold value = 17), and its pseudo colored
(Figure 6i) and black/white image (Figure 6j) were demonstrated. As shown in Figure 6i–j), four spots
were detected with 100% accuracy; however, redundant false positive pixels were a challenge. To reduce
false positive pixels, we revised the threshold value from 17 to 1 and employed the revised threshold
value to the image (Figure 6k,l). Using the developed algorithm and the threshold value, an accuracy
of 78% was achieved with 29 samples (data not shown). Thus, the revised threshold value (1) was
optimal for reducing false positive pixels from chicken images.
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Figure 6. Result of color image classification. A RGB color image (a) was split into 8-bit RGB component
as red (b), green (c), and blue (d) image. Blue image was selected as a reference image to find the optimal
threshold. Image processing methods were applied such as histogram equalization (e), sharpening
(f), and median filter (g) (radius = 2.0). The result of auto threshold method and Shanbhag algorithm
(threshold = 17) were the most acceptable result (h–j). The revised threshold value (threshold = 1) was
employed and its pseudo colored and black/white result image (k,l).

3.3.2. Image Classification Using Band Ratio

Figure 7 illustrates the calculation result of the band ratio between two wavelengths for group
classification. Figure 7a,b shows the results of band ratio such as 620/600 nm and 512/492 nm for the
classification of the upper-ROI and bottom-ROI, respectively, and Figure 7c illustrates the ratio between
630 and 600 nm for the three groups. The band ratio of 630/600 nm shows the potential for fecal-spots
identification. The density plot (Figure 7d) visualizes the histogram of each group’s data for more
detailed explanation on the band ratio of 630/600 (Figure 7c). In Figure 7d, the red line represents the
histogram of the upper-ROI; the blue line is the bottom-ROI, and the green line is the skin-ROI. The red
and green lines are clearly distinct from each other, whereas, the blue line lies between two lines,
making it indistinguishable from the former groups. In other words, although ratio 630 and 600 nm
can easily isolate the upper-ROI and skin-ROI, identification of the bottom-ROI (blue line) might be
affected by the other groups. Figure 7e shows the binary black and white threshold image of band ratio
630/600 nm, and its projection onto the sample images is shown in Figure 7f. The upper-ROI spots are
distinctive from skin, while the bottom-ROI is not as clearly distinct from skin; thus, more efficient and
improved image classification methods are necessary.
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Figure 7. Band ratios for discrimination of upper-ROI (UR), skin-ROI (SR), and bottom-ROI (BR) with
the fluorescence intensity of 620 and 600 nm (a), 512 and 492 nm (b), and 630 and 600 nm (c). Density
plot (d) of the kernel density of band ratio 630/600 (c). Black and white image of the band ratio 630/600
nm (e) and its projection onto the sample images (f).

3.3.3. Image Classification Using PLS-DA

Based on the results of the PLS-DA in spectral analysis, the beta coefficient of the PLS-DA is
applied to the entire spectra of the integrated multispectral fluorescence image and its binary black
and white image (Figure 8a,c) is obtained. Figure 8b shows the pseudo colored image projected onto
the integrated fluorescence image. Four spots are detected with 75% accuracy, whereas the image
result shows redundant pixels around the four spots. The PLS-DA demonstrated remarkably good
accuracy that may provide a good interpretation of the relationship between the two fecal spot groups
and skin. However, the projected images showed some errors in the bottom-ROI because latent
variables may not represent the linear combinations between the original wavelengths (MFI data)
and response variables (three groups) [47]. In addition, an advantage of developing the prediction
model using the PLS-DA with a low number of variables is its prediction accuracy, compared to other
approaches [41]. The PLS-DA demonstrated more accurate detection of fecal spots on the chicken
carcass surface (accuracy: 92.5%) compared to the band ratio method (accuracy 75%), as illustrated
in Figure 7f.
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3.3.4. Image Classification Using PCA

According to Figure 5, the PCA assumed that a potential multivariate analysis method was
used for the classification of the three groups. The PCA is a well-known data-dimension reduction
technique; the benefits of PCA to image processing include reduction of processing time and memory
maximization. PCA is applied to the multispectral fluorescent images. Figure 9 shows four PC
images (a–d) and its boxplot (e–h). Among them, the PC2 image (Figure 9b) shows four spots clearly
distinguishable from the chicken skin surface. The PC4 image (Figure 9d) presents the upper-ROI
clearly; however, the bottom-ROI is not as distinct. To verify the human analysis results, simple
statistical measures, such as mean and standard deviation, were deployed to compare the spectral
intensities of the four PC images. Figure 8e–h shows the results of the comparison of the group pixels,
with the red, green, and blue rectangles illustrating the group area. To select the optimal PC image for
fecal spot isolation from the four PCs, spectral information was extracted from the four fecal spots
red rectangle (Figure 9a) as upper-ROI, blue rectangle (Figure 9a) as bottom-ROI, and green rectangle
(Figure 9a) as skin-ROI, and used to calculate the mean and standard deviation, as shown in the boxplot
in Figure 9e–h.
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Using the PC2 image, the threshold value (155) was set based on the Huang’s fuzzy thresholding
method according to auto threshold technique [48]. Figure 10b,c shows the threshold value applied to
the image and its binary image, respectively.
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Figure 10. Threshold algorithms with PC2 image using ImageJ. PC2 image (a) was applied to determine
the threshold value (155) using the Huang method. The threshold employed to the PC2 image (b) and
its binary image (c).

Evaluation was carried out using a sample mosaic picture that consisted of three sample plates
(Figure 11a); half of the data was used for the calibration of the classification methods (Figure 11b) and
the other half for validation (Figure 11c). The PC2 image shows the representative characteristics of the
fecal spots, demonstrating that the PCA has potential for fecal spot detection and image classification.
Furthermore, the PCA is a representative dimension-reduction method and grouping method that
does not require a prior knowledge of samples in the original dataset [40]. Therefore, only the few
variables that can describe the correlation between samples are deployed in the classification.

Figure 12 shows the PCA-implemented images of the online multispectral fluorescence images
of the three replicas obtained at the rate of 1 bird/s, 3 birds/s, and 5 birds/s. With the same threshold,
fecal spot detection was successfully performed on the three online samples, and 39 out of 40 fecal spots
were isolated (accuracy: 97.5%) using the PC2 criteria. This indicates that fecal spots can be detected and
isolated from poultry skin on a real-time conveying system using multispectral fluorescence imaging.
PCA results may vary depends on the measurement environment because it is an unsupervised
classification method. Hence, the sorting machine used in the processing facility should be always
calibrated before using, which is the thumb of rule in the real field application. The classification model
shown in this study may need a fine tuning to be used in a difference environment.
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Figure 12. Evaluation of principal component analysis (PCA) for fecal contamination detection
on chicken carcasses moving at three different speeds of conveyor line: (a) 1 bird/s, (b) 3 birds/s,
and (c) 5 birds/s. PCA detection and isolation accuracy for fecal spots on chicken carcasses is 97.5%.
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4. Conclusions

In this study, a fecal contaminant detection technique for poultry carcasses using online
multispectral fluorescence images based on multivariate analysis technique and image processing
algorithms was investigated. Four small spots were made on the chicken skin using poultry bodily
wastes extracted from the digestive system, specifically, the ceca, colon, duodenum, and small intestine.

Our results indicate that multispectral fluorescence imaging (MFI) has good potential for the
detection of feces on poultry carcasses, and it could be an alternative to the current manual inspection
method in automated poultry processing plants. Further, PCA is effective for isolating fecal matter
from the chicken carcass, as it decreases the calculation time by reducing the dimensions of the data.
Color image processing also exhibited a potential for detecting and isolating four residuals from
stationary chicken carcasses. However, the revised threshold value (17 → 1) revealed a trade-off

between the enhancement of detection accuracy (false positive reduction) and the reduction of the
selected pixels of the upper-ROI (less accuracy). To evaluate the performance of the developed
fecal contaminant detection algorithm with regards to chicken carcasses on motion, further study is
necessary. Furthermore, to develop a robust fluorescence based inspection system for the detection of
various types and levels of diluted fecal contaminants, additional research with poultry carcasses fed
on different feedstuff is necessary.
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