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Abstract. Cancer immunotherapy has become an important 
means of cancer treatment; however, the complex composition 
and heterogeneity of the colorectal cancer (CRC) microenvi‑
ronment pose a huge challenge to cancer immunotherapy. Using 
data downloaded from The Cancer Genome Atlas database, 
the differences in the microenvironment between cases with 
low and high immune scores were examined at the multiomics 
level using bioinformatics approaches. It was revealed that the 
samples with high immune scores had good cytolytic immune 
responses and relatively abundant stromal cells, as well as 
significant infiltration of 22 immune cell subsets and a high 
non‑synonymous mutation burden and neoantigen burden. 
All of these characteristics contribute to a good prognosis. 
To better understand the impact of immune‑related genes on 
prognosis, differentially expressed genes between the low 
and high immune score samples were identified and it was 
concluded that serpin family Emember 1 (SERPINE1) and 
ubiquitin C‑terminal hydrolase L1 (UCHL1) may be potential 
therapeutic targets. The relationship between the immune 
score and the infiltration of 22 immune cells and the differ‑
ence in SERPINE1 expression were verified by analyzing the 
GSE17536 and GSE21510 data sets downloaded from the Gene 
Expression Omnibus database.The present study analyzed the 

unique properties of immune cells in the CRC microenviron‑
ment, which are of great significance for understanding CRC 
immune mechanism and may also provide novel ideas for the 
targeted design of cancer immunotherapy.

Introduction

Colorectal cancer (CRC) has the second‑highest mortality 
rate among all cancers, and its associated mortality ranks 
fourth (9.0%) and third (9.5%) among all cancers in male and 
female patients with cancer, respectively (1). In clinical prac‑
tice, surgical resection is a common treatment for CRC (2). 
However, approximately 50‑60% of patients diagnosed with 
CRC have metastasis and 80‑90% of them are unresectable 
liver metastases (3,4). In recent years, cancer immunotherapy 
has become an important means of cancer treatment (5), 
and it is one of the hotspots in the field of cancer research. 
However, the complex components and heterogeneity of the 
tumor microenvironment pose a huge challenge to cancer 
immunotherapy.

The tumor microenvironment, which is composed of mole‑
cules such as immune cells and mesenchymal cells, is the cell 
environment in which the tumor is located (6). A pan‑immune 
immunogenomic analysis revealed that numerous tumor‑infil‑
trating lymphocytes associated with adaptive immunity are 
associated with a good prognosis, including activated CD8+ 
T cells, resting memory CD4+ T cells and effector memory 
CD4+ T cells (7). To achieve precise immunotherapy, studies 
have defined the tumor mutation burden (TMB) by the number 
of mutations per megabase of DNA, as a predictive biomarker 
for evaluation (8). The higher the TMB is associated with the 
likelihood of the tumor being sensitive to immunotherapies (9). 
Immune cells are the major non‑tumor component of a tumor 
microenvironment and have been indicated to be valuable 
for the diagnosis and prognostic assessment of patients with 
CRC (10). Recently, an algorithm called ESTIMATE, which 
calculates an immune score based on specific gene expres‑
sion characteristics of immune cells, was used to predict the 
infiltration of non‑tumor cells (11). Subsequent studies have 
demonstrated the effectiveness of this big data‑based algo‑
rithm (12‑14).
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Using the CRC cohort data from The Cancer Genome 
Atlas (TCGA) database and immune scores derived from the 
ESTIMATE algorithm, the present study investigated whether 
tumors with a higher mutation burden, neoantigen burden and 
a greater infiltration degree of 22 immune cell subsets are 
associated with higher immune scores.

Materials and methods

Data sources and preprocessing. All genomic, clinical and 
mutation annotation format (MAF) data were obtained from 
TCGA CRC cohorts in February 2019 according to the 
following specific parameters: The major site was the colon or 
rectum and the experimental strategy was RNA sequencing. 
First, the samples with survival times of <30 days were 
discarded and the samples without complete clinical informa‑
tion or MAF data were removed. Finally, the data of 432 tumor 
samples with 18 matched normal samples were retained.

The gene expression data in fragments per kilobase of 
transcript per million mapped reads format were also retrieved 
from TCGA and converted to transcripts per million (TPM). 
The immune scores and stromal scores were calculated by 
using the ESTIMATE algorithm based on the expression 
values in TPM (11). By comparing the differences in overall 
survival (OS), the optimal threshold for immune score 
grouping was determined. When the patient's immune score 
was above this threshold, the sample was assigned to the high 
immune score (HIM) group and otherwise to the low immune 
score (LIM) group.

The data used for verification were downloaded from Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) and relevant datasets were identified using the following 
key words: (‘colorectal cancer’ OR ‘colon cancer’) AND 
(‘prognosis’ OR ‘prognostic’ OR ‘survival’) AND (‘Homo 
sapiens’). Datasets obtained by sequencing using the GPL570 
platform were selected and certain datasets were excluded. 
Duplicates and datasets with small sample sizes (n<50) 
were also excluded. The datasets GSE17536 and GSE21510 
associated with CRC were finally selected and merged into a 
combined dataset. Gene probe names were transformed into 
gene names based on platform annotation files. Subsequently, 
the gene expression data for each sample and the corresponding 
clinical information were organized for further analysis.

Functional analysis in silico. The immune cytolytic activity 
scores were obtained by the geometric mean of the Granzyme 
A (GZMA) and Perforin 1 (PRF1) expression values in 
TPM (15). The data regarding microsatellite stable (MSS) or 
microsatellite instability‑high (MSIH) status for 291 TCGA 
CRC samples were also obtained (16). The consensus molec‑
ular subtypes (CMSs) classification classifies CRC into four 
molecular subtypes (CMS1, CMS2, CMS3 and CMS4) with 
distinct biological characteristics. The samples in the HIM 
and LIM groups were classified according to the CMS system 
using the R package CMScaller (17).

The immune‑associated genes were downloaded from the 
immunology database and analysis portal (ImmPort; https://
immport.niaid.nih.gov) (18). These immune‑associated genes 
have a variety of roles in immune pathways. After filtering 
out the synonymous variants and variants in intergenic or 

noncoding regions, the maftools package (19) was used for 
mutation burden analyses and mutational spectral visualiza‑
tion. The neoantigens for each sample and neoantigen origin 
protein information were downloaded from The Cancer 
Immune Atlas (TCIA; https://tcia.at/home).

To evaluate tumor‑infiltrating immune cell (TIIC) compo‑
sition in CRC, the CIBERSORT deconvolution algorithm (20) 
was used to estimate the proportion of 22 immune cell types 
in HIM and LIM.

Differentially expressed mRNAs between samples from 
the HIM and LIM groups were screened using edgeR (21) 
with the criteria of |log2fold change| >1.5 and a false discovery 
rate (FDR) <0.01. The TIMER online database (22) was used 
to analyze and visualize the abundance of TIICs according 
to differentially expressed genes. Cytoscape software (23) 
(two plugins: ClueGO and CluePedia) was used for the Kyoto 
Encyclopedia of Genes and Genomes analyses and only path‑
ways with P<0.05 were considered. The GeneMANIA (24) 
plugin was also employed to investigate the functional associa‑
tion of the differentially expressed mRNAs between samples 
from the HIM and LIM groups.

Statistical analysis. All statistical analyses were performed 
using R software (version 3.5.0) and Bioconductor (https://
www.bioconductor.org/). An unpaired t‑test was used to 
compare differences in various parameters (including stromal 
scores, cytolytic activity scores, and MSS vs. MSIH status) 
between samples from the HIM and LIM groups, and to 
compare the non‑synonymous mutation burden in the HIM. 
A Wilcoxon rank sum test was used to examine differences 
in medians. Kaplan‑Meier curve analyses using the survival 
package version 3.2 (25) were performed to analyze the asso‑
ciation between the mRNA expression profiles and OS. P<0.05 
was considered to indicate statistical significance.

Results

Immune scores, sample grouping and demographic statis-
tics. The gene expression profiles and clinical information 
of all 432 patients with CRC from the TCGA database were 
retrieved. Based on the ESTIMATE algorithm, the immune 
scores were distributed between ‑899.56 and 2,999.28 
(Fig. 1A). The optimal threshold for dividing samples into 
the HIM and LIM groups was determined using the function 
surv_cutpoint of the survival package in R (cutoff=3.58). The 
detailed clinical and pathological characteristics of the study 
population in HIM and LIM, including age, sex, ethnicity, 
pathological stage, tumor (T) stage, nodal (N) stage and metas‑
tasis (M) stage, are summarized in Table I. The median age 
for all patients was 60 years (interquartile range, 31‑90 years). 
Of the total patients, the HIM group contained 171 (52.6%) 
male and 154 (47.4%) female and the LIM group contained 
24 (22.4%) male and 83 (77.6%) female.

Comparison of characteristics between the HIM and 
LIM groups. Immune scores represent the infiltration of 
immune cells in tumor tissues. It was indicated that MSIH 
tumors were associated with higher immune scores compared 
with MSS tumors (P<0.001; Fig. 1B). Furthermore, samples 
in the HIM group had higher stromal scores than those in 
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the LIM group (P<0.001; Fig. 1C), indicating a positive asso‑
ciation between immune and stromal scores. In addition, the 
association of the immune score and cytolytic activity score 
in CRC was examined. Of note, the distribution of cytolytic 
activity scores in the HIM and LIM groups was similar to that 
of the stromal scores, with a significantly higher score in the 
HIM group (P<0.001; Fig. 1D).

A Kaplan‑Meier survival curve analysis was also performed, 
indicating that OS in the HIM group was longer than that in the 
LIM group (P=0.0313 according to the log‑rank test; Fig. 1E). 
CMSs based on gene expression profiles provide a biological 
stratification framework with great potential for biomarker 

development. The distribution of CMS subtypes in the HIM 
and LIM groups is presented in Fig. 1F. In the LIM group, 
CMS2 accounted for almost half of the cases (48.6%), while 
in the HIM group, the other CMSs were comparatively more 
prevalent, particularly CMS4 (Fig. 1F).

Landscape of immune infiltration in HIM CRC. To further 
analyze the differences in immune cell invasion between the 
HIM and LIM groups, the CIBERSORT algorithm was used 
to investigate the differences in the proportion of 22 immune 
cell subsets between samples from the two groups. The differ‑
ences in the proportion of 22 immune cell types detected in all 

Figure 1. Characteristics of HIM and LIM samples. (A) Distribution of immune scores. CRC samples were divided into HIM and LIM samples based on 
their immune scores. (B) Immune scores in relation to MSS vs. MSIH status. (C) Distribution of stromal scores in HIM and LIM samples. (D) Distribution of 
cytolytic scores in the HIM and LIM samples. (E) Survival analysis of patients with CRC in the HIM and LIM groups. A vertical drop in the curves indicates 
an event. The dotted lines indicate the upper and lower limits of confidence. The area between the two broken lines represents the confidence interval. 
(F) Distribution of CMSs in HIM and LIM samples. CRC, colorectal cancer; HIM, high immune score; LIM, low immune score; MSS, microsatellite stability; 
MSIH, microsatellite instability‑high; CMS, consensus molecular subtype.
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LIM samples were not significant (P>0.05). Fig. 2A presents 
the immune cell distribution in the HIM samples. Of note, the 
analysis indicated that gamma delta T cells were not present in 
any of the samples.

Differences in the proportion of TIICs between the 
normal tissue samples and HIM samples were then analyzed. 
Compared with the normal tissues, there were significant 
changes in the proportion of 15 TIICs in the HIM samples 
(Fig. 2B). In the HIM samples, naïve B cells, memory B cells, 
plasma cells, activated natural killer (NK) cells, monocytes, 
M2 macrophages, resting mast cells and eosinophils decreased 
significantly, while activated memory CD4+, follicular helper 

T cells, regulatory T cells, resting NK cells, M0 macrophages, 
M1 macrophages and activated mast cells were significantly 
increased.

Prognostic value of immune infiltration in HIM. To determine 
the prognostic capacity of TIICs in CRC, a survival analysis 
was performed based on the proportion of immune cells in 
HIM samples. It was indicated that resting memory CD4+ 
T cells and regulatory T cell levels were associated with 
survival in patients with CRC (Fig. 2C). Of note, patients with 
CRC and low proportions of resting memory CD4+ T cells had 
significantly longer survival times than the patients with high 
proportions.

To further investigate whether TIICs are involved in the 
development and progression of CRC, the HIM samples were 
divided into several subgroups based on the pathological TNM 
stage (T3+T4 vs. T1+T2, N2+N3 vs. N0+N1, M1 vs. M0) and patho‑
logical stage (I‑II vs. III‑IV). Comparative analyses of the TIIC 
proportions indicated that plasma cells demonstrated a statis‑
tically significant association with the pathological T stage 
(P=0.037). Furthermore, M1 macrophages were significantly 
associated with multiple types of clinical stage (Fig. 2D).

Mutation burden in relation to immune scores. A high 
mutation burden is one of the characteristics of malignant 
tumors. To obtain the burden of non‑synonymous mutations 
in HIM and LIM samples, the somatic mutations detected by 
the mutect2 software in the two groups were analyzed. The 
median non‑synonymous mutation burden was 111.5 in HIM 
samples and 96 in LIM samples (Fig. S1). The mutational 
patterns of the highly mutated genes were distinct between 
HIM and LIM. As presented in Fig. 3A and B, APC regu‑
lator of WNT signaling pathway (APC), tumor protein p53 
(TP53), titin (TTN), KRAS proto‑oncogene (KRAS) and 
phosphatidylinositol‑4, 5‑bisphosphate 3‑kinase catalytic 
subunit α (PIK3CA) were among the top 10 mutated genes in 
HIM and LIM samples. It was further identified that most of 
the mutations were single base substitutions and the substi‑
tution of C‑>T was the most common type in all samples 
(Fig. 3C and D).

Neoantigen burden in association with immune scores. It was 
also investigated whether the mutational/neoantigen patterns 
were associated with the immune scores. The neoantigen counts 
and neoantigen origin protein counts for each CRC sample 
were obtained from the TCIA database. The LIM samples had 
a significantly lower neoantigen burden (Wilcoxon rank‑sum 
test P=0.0068; Fig. 3E) and neoantigen origin protein burden 
(P=0.0051; Fig. 3F) than the samples from the HIM group, 
which suggested that the HIM samples had a higher number of 
mutations accumulated in the tumor cell genome than the LIM 
samples, resulting in a corresponding increase in neoantigen 
burden and thereby activating more T cells and producing a 
stronger immune response.

Comparison of gene expression profiles with immune scores. 
To reveal the correlation between gene expression profiles 
and immune scores, a differential analysis of the count data 
of the genes in the samples from the HIM and LIM groups 
was performed. As indicated in the volcano plots in Fig. 4A, 

Table I. Clinicopathological features of the patients with 
colorectal cancer (n=432).

  HIM LIM
Subtype (n=325) (n=107)

Age (years)  
  >60 243 (74.8) 74 (69.2)
  ≥60   82 (25.2) 33 (30.8)
Sex  
  Male 171 (52.6) 24 (22.4)
  Female 154 (47.4) 83 (77.6)
Ethnicity  
  Caucasian 157 (48.3) 56 (52.3)
  Asian     9   (2.8)   4   (3.7)
  Black or African American   30   (9.2) 27 (25.2)
  Unknown 129 (39.7) 20 (18.7)
Pathologic stage  
  Stage I   63 (19.4) 14 (13.1)
  Stage II 127 (39.1) 38 (35.5)
  Stage III   85 (26.2) 31 (29.0)
  Stage IV   39 (12.0) 22 (20.6)
  Unknown   11   (3.4)   2   (1.9)
Pathologic T stage  
  T1     6   (1.8)   3   (2.8)
  T2   66 (20.3) 13 (12.1)
  T3 214 (65.8) 77 (72)
  T4   39 (12) 14 (13.1)
Pathologic M stage  
  M0 251 (77.2) 67 (62.6)
  M1   48 (14.8) 32 (29.9)
  MX   35 (10.8) 18 (16.8)
Pathologic N stage  
  N0 200 (61.5) 57 (53.3)
  N1   68 (20.9) 29 (27.1)
  N2   58 (17.8) 21 (19.6)
Survival status  
  Alive 279 (85.8) 75 (70.1)
  Dead   46 (14.2) 32 (29.9)

Values are expressed as n (%). HIM, high immune score; LIM, low 
immune score.
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80 genes were upregulated and 1,630 genes were down‑
regulated in the high score group compared with the low 
score group (|log2fold change|>1.5 and FDR<0.05). A total 
of 283 differentially expressed genes were identified from 
1,378 immune‑associated genes. To outline the potential 
function of the differentially expressed genes, functional 
enrichment (GO and KEGG) analysis of the 283 genes was 

performed (Figs. 4B and S2). The aforementioned genes were 
enriched in some immune‑related pathways, such as B cell 
receptor signaling pathway, Natural killer cell mediated cyto‑
toxicity and Fc gamma R‑mediated phagocytosis. Besides, 
they were also enriched in disease‑related pathways, such 
as transcriptional misregulation in cancer and inflammatory 
bowel disease (Figs. 4B and S2).

Figure 2. Landscape and prognostic analysis of immune infiltration in HIM. (A) Bar graph summarizing the immune cell subset proportions in the HIM 
samples. (B) Differences in the proportion of TIICs between the normal tissue samples and HIM samples. (C) Survival plots for certain immune cell types. 
The depicted P‑values are from the log‑rank tests. (D) TIICs in association with different stages of progression of colorectal cancer in HIM. NK, natural killer; 
HIM, high immune score; TIIC, tumor‑infiltrating immune cell.
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Potential function of dif ferentially expressed genes. 
Kaplan‑Meier curve analysis with the log‑rank test for each of 
the 283 genes provided 13 genes whose expression was signifi‑
cantly correlated with the survival of the patients with CRC. To 
investigate the functional association of the 13 genes, the genes 
were analyzed using the GeneMANIA plugin of Cytoscape to 
generate an interaction network (Fig. 4C). Most of the network 
interactions were coexpression. The Kaplan‑Meier survival 
curves that were significantly different for the 13 genes 
(high vs. low expression) are presented in Figs. 4D and S3. 
Further clinical analysis of these genes demonstrated that 

the SERPINE1 and UCHL1 were significantly associated 
with multiple types of clinical stage (Fig. 4E). The associa‑
tion between the expression profiles of these two genes and 
TIICs was also analyzed and it was revealed that their copy 
number variation was significantly associated with changes in 
the proportion of multiple types of TIIC, such as B cells, CD8+ 
T cells, neutrophils and dendritic cells (Fig. S4).

Comprehensive validation in GEO datasets. To examine the 
universality of the results from the TCGA cohort, the GSE17536 
and GSE21510 datasets were analyzed for validation. After 

Figure 3. Landscape of mutations in colorectal cancer and a comparison of neoantigens between HIM and LIM samples, including the top 10 most 
mutated genes for (A) LIM samples and (B) HIM samples. The right stacked bar graph of each figure displays the number of variant types. Substitution 
distribution for each (C) LIM sample and (D) HIM sample. (E) Plots of the number of neoantigen peptides. (F) Plots of the number of Neoantigen‑related 
proteins. Graph indicating a significant difference in neoantigen burden between HIM and LIM samples (P<0.05). HIM, high immune score; 
LIM, low immune score; Ins, insertion; Del, deletion; Num, number; APC, APC regulator of WNT signaling pathway; TP53, tumor protein p53; 
KRAS, KRAS proto‑oncogene, GTPase; TTN, titin; PIK3CA, phosphatidylinositol‑4, 5‑bisphosphate 3‑kinase catalytic subunit alpha; SYNE1, spectrin repeat 
containing nuclear envelope protein 1; MUC16, mucin 16, cell surface associated; OBSCN, obscurin, cytoskeletal calmodulin and titin‑interacting RhoGEF; 
RYR2, ryanodine receptor 2; FBXW7, F‑box and WD repeat domain containing 7; FAT4, FAT atypical cadherin 4; ZFHX4, zinc finger homeobox 4.
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batch correction (Fig. S5A), the same cutoff as that for the 
TCGA sample analysis was used to stratify all GEO samples 
into HIM and LIM groups. Due to the particularity of HIM 
samples, the CIBERSORT algorithm was used to assess the 

difference in the proportion of 22 immune cell subsets in these 
samples (Fig. S5B). It was revealed that the proportions of the 
immune cell subsets in the TCGA and GEO datasets were 
similar. In addition, differential analysis of gene count data in 

Figure 4. Gene expression spectrum. (A) Volcano plot of differentially expressed genes between HIM and LIM samples. The three colored dots represent different 
types of mRNAs, among which green represents a significant downregulation, red represents a significant upregulation and black represents no significant differ‑
ential expression. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis of 283 differentially expressed genes. (C) GeneMANIA network of 13 genes 
significantly correlated with the survival of patients with colorectal cancer. The query genes are red and their interacting genes are blue. (D) Survival analysis 
for SERPINE1 and UCHL1. The red lines denote high expression of the gene and the blue lines denote low expression. (E) SERPINE1 and UCHL1 are related 
to the progression of CRC. SERPINE1, serpin family Emember 1; UCHL1, ubiquitin C‑terminal hydrolase L1; LEP, leptin; PLCG2, phospholipase C gamma 2; 
NLRP1, NLR family pyrin domain containing 1; SELE, selectin E; SERPINE1, serpin family E member 1; NFATC1, nuclear factor of activated T cells 1; 
SLAMF9, SLAM family member 9; UCHL1, ubiquitin C‑terminal hydrolase L1; NCF2, neutrophil cytosolic factor 2; SPHK1, sphingosine kinase 1; LGALS2, 
galectin 2; C5AR1, complement C5a receptor 1; FCGR1A, Fc fragment of IgG receptor Ia; PCDHB11, protocadherin beta 11; CD52, CD52 molecule; SPIB, Spi‑B 
transcription factor; RNASE6, ribonuclease A family member k6; TNFAIP2, TNF alpha induced protein 2; PTAFR, platelet activating factor receptor; MNDA, 
myeloid cell nuclear differentiation antigen; IL15RA, nterleukin 15 receptor subunit alpha; AOAH, acyloxyacyl hydrolase; CD14, CD14 molecule; BST1, bone 
marrow stromal cell antigen 1; C3AR1, complement C3a receptor 1; CCR1, C‑C motif chemokine receptor 1; CD300C, CD300c molecule; GK, glycerol kinase.
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samples with HIM and LIM revealed that SERPINE1 was still 
significantly differentially expressed (|log2fold change|>1.5, 
P=0.00142). However, the difference in UCHL1 expression 
was not significant.

Discussion

The present study sought to identify tumor microenviron‑
ment‑associated factors that contribute to the OS of patients 
with CRC with HIM or LIM. The results indicated that MSIH 
tumors rather than MSS tumors were significantly associated 
with high immune scores. A previous study indicated that in 
CRC, MSIH tumors have 10s of times more somatic mutations 
than MSS tumors (26). Under these conditions, lymphocyte 
infiltration is prominent due to increased neoantigen burdens 
and more stroma cells are present in tumor tissues (27). In 
addition, the cytolytic activity of tumor cells is positively 
correlated with the neoantigen burden (15). In line with this, 
the present results suggested that the HIM samples were char‑
acterized by higher cytolytic activity and stromal scores than 
LIM samples. This means that the samples in the HIM group 
had a good cytolytic immune response and relatively abundant 
stromal cells due to the higher levels of TIICs. In addition, 
a previous study indicated that cytolytic activity was associ‑
ated with immune responses and improved prognoses (28). 
The present study also indicated significantly improved OS in 
patients with HIM vs. LIM.

Using CIBERSORT, the proportional changes of the 
22 immune cell subsets in the HIM and LIM samples were 
analyzed. The TIIC proportions of the samples in LIM did not 
meet the criterion of P<0.05, which was due to their compara‑
tively lower immune score. It is worth noting that the P‑value 
obtained with CIBERSORT only reflects one part of a sample 
that contains immune cells and non‑immune cells. Therefore, 
P>0.05 does not mean that TIICs do not exist in LIM samples. 
However, the present results indicated that the proportion 
of TIICs was not significant in samples with lower immune 
scores. Tumor‑associated microenvironments, which include 
immune cells, are able to inhibit malignant cells. Numerous 
studies have indicated that the degree of infiltration of immune 
cells, tissue localization and cell type are significantly asso‑
ciated with CRC progression and survival. For instance, the 
5‑year OS values for stage III CRC patients with lower levels 
of TIICs were determined to be significantly lower than those 
for stage III CRC patients with high levels of TIICs (29).The 
present study also indicated that HIM samples have significant 
changes in the proportion of TIIC and the survival time of 
patients with CRC with high immune scores was significantly 
improved. In addition, the present results provided details on 
the infiltration of the 22 TIIC subsets in CRC. The proportions 
of resting memory CD4+ T cells and macrophages were the 
highest, while gamma delta T cells were not present in any of 
the samples. The present study also indicated that resting CD4+ 
memory T cells were significantly associated with the survival 
of patients with CRC. Resting CD4+ memory T cells may help 
CD8+ T cells inhibit tumors and block CD8+ T‑cell activation 
and NK cell activity (30). The present study also confirmed 
that they have a key role in the development of CRC.

The neoantigen burden is an effective biomarker in cancer 
immunotherapy and neoantigens may be the focus of the 

development of novel therapeutic approaches to modify T‑cell 
reactivity against this class of antigens (31). The probability 
of the presence of CD8+ T cells in cancer lesions is higher 
in tumors with high mutation burdens than in those with low 
mutation burdens (32). T‑cell reactivity against neoantigens is 
common in melanoma (33). In CRC, the present study indi‑
cated that the neoantigen peptide burden of HIM samples was 
significantly higher than that of LIM samples. More than one 
neoantigen peptide may be derived from a protein. In the HIM 
sample, the proportions of infiltration of activated memory 
CD4+ T cells were significantly increased. One reason is that 
the HIM samples have a high neoantigen burden and studies 
have also indicated that most of the new antigen‑specific T‑cell 
responses in melanoma are against neoantigens (34).

The present study indicated that certain genes were 
highly mutated in both HIM and LIM samples. The tumor 
suppressor gene TP53 exhibited a discontinuous mutation 
distribution in the two groups. TP53 has a regulatory role in 
cell proliferation and apoptosis (35). The loss of TP53 may 
lead to CRC development and progression through a multi‑
step process (36). An association between TP53 mutations 
and worse outcome in stage III CRC has been reported (37). 
The present study indicated that 68 (64%) LIM samples had 
TP53 gene mutations. The number of correspondingly mutated 
HIM samples was 169 (52%). Of note, the APC gene had the 
highest mutation frequency in HIM and LIM samples, at 84 
and 70%, respectively. In addition, the CRC proto‑oncogene 
KRAS was mutated in 39 and 53% of HIM and LIM samples, 
respectively, and its mutations cause the RAS/RAF/MAPK 
pathways to remain active with loss of normal regulation of 
cell growth (38).

By comparing the gene expression profiles in HIM and 
LIM samples and screening immune‑associated genes, 
283 tumor microenvironment‑related genes were identified in 
the present study. Functional enrichment analyses indicated 
that these genes mainly participated in the immune response 
and cell adhesion. The study further focused on SERPINE1 
and UCHL1, which are immune‑associated genes that were 
significantly differentially expressed between HIM and LIM 
samples, and their expression was significantly associated 
with OS and multiple types of clinical stage in patients with 
CRC. In addition, the present analysis revealed that their copy 
number variation led to significant changes in infiltration of the 
multiple immune cell subsets. Previous studies have indicated 
that SERPINE1 overexpression occurs in primary tumors 
caused by KRAS mutations in CRC (39) and UCHL1 is asso‑
ciated with lymph node metastasis in CRC (40). Therefore, 
it was concluded that SERPINE1 and UCHL1 may be addi‑
tional biomarkers for CRC. The difference in expression of 
SERPINE1 was also verified in the GEO dataset, however, 
the difference in UCHL1 expression was not significant. How 
they affect tumor progression in tumor microenvironments 
requires further investigation. However, the present study had 
certain limitations, as all of the results were obtained in silico. 
Further in vivo or clinical studies will contribute to the further 
elucidation of the relationship between immune scores and 
microenvironmental changes in CRC.

In conclusion, in CRC samples that had high immune 
scores, a good cytolytic immune response and relatively 
abundant stromal cells, significant infiltration of 22 immune 
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cell subsets and a high non‑synonymous mutation burden and 
neoantigen burden was identified, and a set of genes associated 
with the tumor microenvironment was extracted. The present 
study revealed that a tumor microenvironment of CRC with a 
high immune score is associated with favorable survival.
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