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Abstract

The advancements of high-throughput genomics have unveiled much about the human genome highlighting the impor-
tance of variations between individuals and their contribution to disease. Even though numerous software have been devel-
oped to make sense of large genomics datasets, a major short falling of these has been the inability to cope with repetitive
regions, specifically to validate structural variants and accordingly assess their role in disease. Here we describe our pro-
gram STEAK, a massively parallel software designed to detect chimeric reads in high-throughput sequencing data for a
broad number of applications such as identifying presence/absence, as well as discovery of transposable elements (TEs),
and retroviral integrations. We highlight the capabilities of STEAK by comparing its efficacy in locating HERV-K HML-2 in
clinical whole genome projects, target enrichment sequences, and in the 1000 Genomes CEU Trio to the performance of
other TE and virus detecting tools. We show that STEAK outperforms other software in terms of computational efficiency,
sensitivity, and specificity. We demonstrate that STEAK is a robust tool, which allows analysts to flexibly detect and evalu-
ate TE and retroviral integrations in a diverse range of sequencing projects for both research and clinical purposes.
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1. Background

High-throughput sequencing (HTS) has undoubtedly revolu-
tionised genome sequencing with technology that has seen a
50,000-fold cost drop and an increase in capacity since the
days of the Human Genome Project (Liu et al. 2012; Goodwin
et al. 2016). Several consortiums, like the Cancer Genome Atlas
(TCGA), have all made use of HTS providing both researchers
and clinicians with copious amounts of genomic data in the

last decade. Most health- and disease-related researches have
focused on exons, conventionally considered the ‘functional’
portions of the genome. This has promoted the widespread
use of HTS amongst disease consortiums where short-reads
constitute a lesser challenge for correct alignment and ge-
nome assembly. While short-read lengths remain useful and
informative for unique and complex areas of the genome (e.g.
the exome), repetitive, or low-complexity regions, suffer from
assembly ambiguities that arise due to HTS read length. Even
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with the recent advances in sequencing technology and with
advanced bioinformatics solutions, repetitive regions remain
a challenge—partially because of the nature of our current
technology (Treangen and Salzberg 2012) and partially because
of the strong focus on working with protein-coding parts of
the genome.

At least 55% of the human genome is composed of repeti-
tive elements (Lander et al. 2001), mostly transposable ele-
ments (TEs). A number of TEs, such as LINEs, SINEs, and SINE-
VNTR-Alu (SVAs), have been found to actively move around
the human genome with a potential pathological burden
(Ostertag et al. 2003; Mills et al. 2007; Solyom and Kazazian
2012; Evrony et al. 2015). HERV-K HML-2 (or HK2) is a thirty-
million year-old family of endogenous retroviruses that con-
tinued integrating in the human genome even after the hu-
man–chimp divergence. Some HK2 integrations remain
unfixed in the population (Marchi et al. 2014; Wildschutte
et al. 2016), moreover, every individual carries approximately
ten polymorphic HK2 integrations (Marchi et al. 2014). The in-
fluence that TEs and human endogenous retroviruses (HERVs)
have on altering genetic activity due to somatic rearrange-
ments also implies a potential role in the development of dis-
ease (Hohn et al. 2013) for example through insertional
mutagenesis (Djebali et al. 2012; Solyom et al. 2012; Shukla
et al. 2013; Criscione et al. 2014).

Many cohorts have made use of short-read technology, how-
ever, the limitations that HTS short-reads pose for studying
TEs with disease consortium data now presents an algorithmic
and theoretical challenge for mapping reads with repetitive
stretches in their original genomic location (Simola and Kim
2011; Li et al. 2012). Most of the available software make use of

paired-end read information or chimeric reads (i.e. reads which
are part host and part TE), to identify the genomic location of a
TE (Keane et al. 2013; Wu et al. 2014). There are several
approaches that use similar methods for discovery of TE inte-
grations in comparison to the reference genome (Lee et al. 2012;
Keane et al. 2013; Wu et al. 2014). Other algorithms include trim-
ming chimeric reads of the TE portion to then be remapped to
the host reference genome (Marchi et al. 2014). Alternatively,
some software search for structural variation differences be-
tween the reference and HTS data such as insertions, deletions,
inversions, inter-, and intra-chromosomal translocations (Chen
et al. 2009).

Here we present a broadly applicable approach to anno-
tate (i.e. mark presence or absence) known and characterise
unknown insertion sites for TEs in a variety of sequencing
projects. We use HK2 as a mobile element model to evaluate
the identification of polymorphic integrations because of its
standing as an endogenous retrovirus (Boeke and Stoye
1997).

We have generalised the algorithm previously described by
Marchi et al. (2014) to develop a program that will assist in
marking presence or absence of any given sequence element
within a reference genome as well as identify novel integrations
of that sequence element compared to the reference genome.
We benchmark the ability of our program Specific Transposable
Element Aligner (HERV-K) (STEAK) to discover novel TE and ex-
ogenous retrovirus insertions in addition to marking the pres-
ence/absence of TEs annotated in the reference genome. We
evaluate our method on simulated data as well as high-
coverage HTS projects, such as those used in clinical WGS, and
compare to competitive systems (Table 1).

Table 1. Software for detecting TEs and viruses in WGS data.

Software Detection
target

Detection method Detects in
reference?

Requires spe-
cific aligning?

Third party tools Parallelised? Implementation

RetroSeq
(Keane
et al. 2013)

Transposable
elements

Discordant reads, then
split reads

No No, but must
be in BAM

SAMtools (v0.9),
bcftools, exon-
erate, BEDtools

No Perl

Tangram (Wu
et al. 2014)

Transposable
elements

Split reads and discor-
dant reads
simultaneously

Yesa Yes, MOSAIK MOSAIK (2.0),
zlib, pthread
lib

Yes C, Cþþ

VirusSeq
(Chen et al.
2013)

Viruses Unmapped reads for
general detection;
Discordant and split-
reads for integration
site detection

No Yes, MOSAIK MOSAIK
(0.9.0891)

Yes Perl, C, Cþþ

MELT
(Sudmant
et al. 2015)

Transposable
elements

Discordant reads, then
split reads

Detects
deletions

No, but must
be in BAM

Bowtie2 No Java

VirusFusion-
Seq (VFS)
(Li et al.
2013)

Viruses Unmapped reads for
general detection;
Discordant and split-
reads for integration
site detection

Yesa Yes BWA, SAMtools,
BLAST,CAP3,
SSAKE

Partially
(BWA portion)

Pipeline (Perl)

Tlex2 (Fiston-
Lavier et al.
2015)

Transposable
elements

Looks at host and anno-
tated TE flanks.
Searches for split
reads

Only detects
in
reference

No MAQ, SHRIMP,
BLAT,
RepeatMasker,
Phrap

Partially (MAQ) Pipeline (Perl)

STEAK Transposable
elements
and
viruses

Split-reads, retrieves
mate for PE data

Yes No Aligner of choice,
BEDtools

Yes C, Cþþ

aCan detect in reference but was not designed to mark presence-absence of reference insertions.
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2. Results
2.1 STEAK algorithmic overview

Our program firstly detects reads from a HTS library that con-
tains fragments of a minimum similarity to a given short se-
quence (which can be the edge of a TE or a virus, hereafter
called chimeric reads) and subsequently removes this fragment
to produce a library with reads that only contain host reference
flank (hereafter called trimmed reads). If the HTS library con-
tains paired-end mates, then the respective paired-end mates
of the trimmed reads are retrieved (Fig. 1). Novel integrations
are often sufficiently random to produce unique chimeric reads
however, in scenarios where the chimeric reads are not unique,
these respective paired-end mates can be used to further sup-
port a novel integration. Users can then identify the location of
an integration either from previous mapping information or by
mapping trimmed reads to the host reference. Trimmed reads
can be mapped either as single-end reads or with their respec-
tive mates. The latter, where trimmed reads and their mates are
mapped as pairs, is referred to as guided detection and can be
used to increase the possibility for uniquely mapping the
trimmed read. For example, if the trimmed read comes from a
highly repetitive region the mapping of the trimmed read alone
will not be unique, but the combination of the mate and the
trimmed read could provide a unique mapping solution. The
outputs can then be used for custom downstream analyses
most importantly for the reconstruction of preintegration sites,
which is an excellent bioinformatics alternative to wet-lab veri-
fication of novel integrations. In silico verification is of para-
mount importance as full-genomes are becoming increasingly
available while their original DNA samples are either not acces-
sible or too valuable to be used for multiple PCR-guided
verifications.

2.2 Input data

STEAK requires HTS data and a reference sequence that is ex-
pected to contain the edges of the mobile element (e.g. begin-
ning and end of an LTR in the case of HERVs). Input HTS data
can be either mapped (SAM) (Li et al. 2009) or raw (FASTQ).
Compressed SAM, also known as BAM files, can be input for
STEAK using tools such as SAMtools or biobambam2 (Tischler
and Leonard 2014). TE and retroviral reference files must be in
FASTA format. STEAK performs on both single-end (SE) and
paired-end (PE) libraries and on a variety of HTS sequencing
strategies. All input PE data should be collated by name for re-
spective mate retrieval.

2.3 Chimeric read detection and trimming

The chimeric read detection and trimming phase of STEAK is a
multistep process to identify and process reads, which contain
bits of the retroviral or TE reference. STEAK takes the edges of
the TE or retrovirus reference and creates reverse complements,
producing four baits of a given length. With these baits, it looks
for similarities by first aligning each read against the TE/virus
bait with the Smith–Waterman algorithm (Zhao et al. 2013).
Parameters can be modified to alter the length of minimum bait
match sought for in a read as well as the per cent identity be-
tween reference and chimeric read. For example, current de-
fault parameters are of a 15-bp length bait and a 95% identity
however, to search for HK2 integrations of five million years or
younger, we used we used a bait length of 20 bp and a per cent
identity of 90 to allow the detection of integrations which have
mutated over time.

If the HTS data provided is already mapped (BAM/SAM), fil-
tering based on the percentage of matches within a CIGAR value

Figure 1. Workflow of STEAK. Processing data: All reads are locally aligned using the Smith Waterman algorithm and allowing mismatches when mapping reads against

a TE reference (50- and 30-ends and respective reverse complements). Reads that match with the TE are trimmed of the matching portion. Information on the trimmed

reads and their mates, such as the original mapping positions, MAPQ, and sequence qualities, are kept in STEAK outputs. Detection Module: Trimmed reads can be

remapped to the human reference either as single-end (trimmed read detection) or paired-end reads (guided detection).
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is also an available option for detecting chimeric reads. Filtering
by CIGAR value is useful for non-reference TE discovery because
reads pertaining to novel integrations are expected to have less
than perfect mapping to the host. With this filtering, STEAK
searches for any reads matching less than perfect with the
original host reference (e.g. 94M7S for a 101-bp read or
6S280M15S for a 301-bp read), which can speed up processing
significantly.

To annotate reference TE integrations, no CIGAR filtering is
needed because reference integrations are expected to have
reads mapping with perfect matches. In this case, STEAK will
automatically search for chimeric reads that support integra-
tions both present and not present in the host reference.

2.4 TE and retrovirus detection module

While there are a number of transposable element discovery
pipelines (Ewing 2015), STEAK is capable of finding reads sup-
porting both reference and non-reference TE and retroviral inte-
grations. STEAK is a parallelised software that can function as a
standalone or coupled with other tools for custom downstream
analyses.

If the initially provided HTS data is already mapped, STEAK
is able to retrieve information of the original mapping for the
chimeric reads it detects. This on its own can often provide sup-
porting reads for integrations, which is already seen with sys-
tems like MELT (Sudmant et al. 2015) and RetroSeq (Keane et al.
2013) (Table 1). But, in addition to this, the STEAK algorithm
outputs trimmed reads which can be exploited to detect both
reference and non-reference integrations. The advantage of
trimming chimeric reads is that it allows for re-mapping of the
host flanks to the original host genome forming clusters. These
clusters of host-trimmed reads can then indicate the site of an
integration. Furthermore, by providing the mates of trimmed
reads, it is possible to perform guided detection (Fig. 1) where
the mate can further support the proper mapping of a trimmed
read.

The outputs from STEAK’s operations include (1) host
trimmed reads and respective mates in FASTQ format, (2) the
respective TE or retrovirus match in FASTQ format, and (3) a
tab-delimited file providing information on the chimeric reads
detected such as length of match, per cent identity, and previ-
ous mapping coordinates.

To detect these integration sites, we aligned host trimmed
reads using Novoalign (Hercus 2009). We chose Novoalign
like Marchi et al. (2014) because it is an accurate aligner
particularly when dealing with single-end reads as it uses
NeedlemanWunsch algorithm with affine gap penalties when
scoring mapping locations. Single-end mapping was performed
with default parameters. Paired-end alignment parameters
were specified as end-to-end mapping with no soft clipping.
Remappings were done using the host reference genomes origi-
nally used.

Our choice of downstream analyses consisted of using a
combination of BEDtools (Quinlan and Hall 2010) and command
line utilities, such as AWK and grep. To detect integration sites
within the host reference, we provided a TE annotation file
from RepeatMasker where the coordinates and the names of the
known TE integrations are supplied. For known non-reference
integrations, a TE annotation file compiled from the known lit-
erature is most appropriate. To mark presence or absence of
known integrations, we compiled a list (Supplementary Table
S3) made from RepeatMasker annotations of HK2, Subramanian
et al. (2011), Marchi et al. (2014), Lee et al. (2012), and

Wildschutte et al. (2016). For other transposable elements, users
can provide a BED file of known reference TE insertions or use
the RepeatMasker annotations (Tarailo-Graovac and Chen 2009).

Whereas for novel integrations, a list of both known refer-
ence and non-reference integrations should be used to ascertain
that it is in fact a novel integration. Additionally, we filtered out
other transposable elements that shared sequence similarity
with HK2 LTR, such as Sine/VNTR/Alu (SVAs). We excluded clus-
ters matching the non-HK2 LTR part of an SVA or which were in
close proximity, within 1,000 bp, of a known HK2 or SVA locus
(regions annotated in RepeatMasker). We considered a novel in-
tegration discovery when five reads or more were found clus-
tered within a range of 10 kb. For non-endogenised elements, no
annotation file is needed for integration discovery.

Detected candidate loci are output in two BED files: one for
novel integrations and another for detection of known integra-
tions. The BED files give coordinates of the region, the number
of trimmed reads found for that locus, and if within another re-
petitive element. For target site duplication (TSD) identification,
we used BreakAlign (Marchi et al. 2014) and Geneious (Kearse
et al. 2012) (Supplementary Fig. S1) was used for preintegration
reconstruction which is an in silico alternative of verifying an in-
tegration without wet-lab validation.

2.5 Software specifications and parallelisation

STEAK has been programmed in Cþþand been designed to be
massively parallel, meaning that it is not limited to a single
computer. This enables STEAK to run efficiently on large high-
performance computing clusters and to process quickly high-
coverage genomes (Fig. 2). The input file is split in different
parts that are each handled by a different process, using MPI
(Fig. 3A). The software is afflicted by very few concurrency is-
sues and, as a consequence, should scale well until the limits
arising from the file system are reached. Unfortunately, this
parallelisation strategy is not possible when we endeavour to
process a BAM file because, in that case, the data are accessed
sequentially, through a single point. This is because we are
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Figure 2. Parallelisation of STEAK processing. A 50� coverage simulation of chro-

mosome 1 was processed using our MPI-based software. The speedup as a func-

tion of the number of cores shows that the program scales well because few

concurrency issues affect it.
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processing the output of the decompression fed through a pipe,
i.e. the redirection of a standard output, and therefore, the
whole file is not accessible to be read from several distinct loca-
tions. To cater to that possibility, we have resorted to multi-
threading (Fig. 3B). A thread reads the input file and
accumulates the reads in a circular buffer while several other
threads process those reads in parallel. This leads to a notice-
able performance improvement on fast file systems.

2.6 Overview of features and comparison to other TE
and virus software

Our program works on re-sequencing projects and therefore ad-
ditional downstream analysis requires good quality, well-
annotated host reference genomes in addition to reference TE or
retrovirus sequences (i.e. the TE sequence expected to be at an in-
tegration site). It is dependent on existing mapping software; for
example, in order to identify potential retroviral integrations in a

human genome, we would need to provide the human reference
genome as well as the edges of the suspected retroviral LTRs.
While the HTS data need not be mapped initially, another
mapping program is required to detect integration sites (see
Availability and Requirements). We pinpoint four important fea-
tures of STEAK that to the best of our knowledge are combined in
a package for the first time: firstly, it allows for detection of the
TE (or viral) integration even if there has been deterioration of
the sequence through time; secondly, it locates the absence of TE
sequences that exist in the provided reference genome; thirdly, it
facilitates a vast number of downstream analyses (i.e. the recon-
struction of novel integrations); and fourthly, it successfully
works on a variety of sequencing projects including target enrich-
ment. Several other features of STEAK in comparison with other
existing software are provided in Table 1. While we are aware of
a number of other software that exist for transposable element
(Ewing 2015) and virus detection, we have chosen those which
have comparable features, popular usage, and are currently com-
petitive (see Supplementary Note S1 and Supplementary Table
S1).

2.7 Evaluation of STEAK

For our benchmarking, we firstly tested the ability of STEAK to
identify HK2 integrations in human full-genome re-sequencing
HTS projects. We set bait length parameters to be 20 bp of the
beginning and end of the LTR (both strands) for mining out chi-
meric reads (K113, Accession Number: NC_022518.1). A match
between this 20-bp bait and each read was searched by means
of the Smith–Waterman algorithm (Zhao et al. 2013) which al-
lows for indels and substitutions between the TE/virus refer-
ence and the read. This local alignment filtering only permitted
reads through a certain threshold, allowing a limited number of
mutations between the LTR reference and a read when search-
ing for a 20-bp match (e.g. 90% similarity¼up to two mis-
matches). Reads that passed filtering were trimmed of the LTR
matching sequence (Fig. 1). We only kept trimmed reads with a
minimum length of 20 bp. Trimmed read length and TE match
lengths are adjustable parameters in STEAK.

We initially tested STEAK on seventy WGS from The Cancer
Genome Atlas (Supplementary Table S2) to find presence and ab-
sence of already characterised HK2 integrations. We compiled a
list of HK2 proviruses and solo LTRs that are five million years
old or younger and can therefore be polymorphic in the human
population (Supplementary Table S3). From this list of 183 HK2
integrations, we used the 133 known fixed HK2 integrations to
observe the depth of reads for present HK2 integrations amongst
the 70 samples. Based on the cluster of trimmed reads found for
these known integrations, we determined an appropriate thresh-
old to consider a potential novel integration (Fig. 4).

Our screening showed that some known fixed HK2 inte-
grations were more difficult to recover than others. For exam-
ple, integrations that are within other repetitive elements
were less likely to be picked up by our program, 1.3% of integra-
tions within repetitive elements were unrecovered (Fig. 4).
Integrations with flanking repetitive regions may require lower-
ing the tolerance below the 90% identity threshold we used or
multi-location mapping can potentially resolve ambiguous
trimmed read mappings. To account for these difficult regions
and to increase our sensitivity, we only considered clusters with
a minimum of five reads as potential novel candidates.
However, for already known and characterised HK2 integrations
in the literature (both reference and non-reference), we ac-
cepted single reads as evidence of presence. In spite of the
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difficulty that TEs within repetitive regions may pose, only one
of the seventy-seven HK2 integrations within a repetitive ele-
ment was unrecovered by STEAK, all the other 132 integrations
were recovered. Other regions that pose difficulties in recover-
ing integrations include pseudogenes or genes with multiple
copies in the genome (Supplementary Note S2 and
Supplementary Fig. S1).

2.8 Performance evaluation on simulated data

We evaluated STEAK’s ability to detect both TEs and retrovi-
ruses with a series of computational experiments. The first sets
of experiments were done using Tangram’s original Alu simula-
tions into chromosome 20 and another custom simulation
where HK2 integrations were inserted into chromosome 20 for
benchmarking purposes (Supplementary Table S4). This pro-
vided insight into the positive predictive value (PPV), or the
probability that a suggested integration was true, for STEAK,
Tangram, and RetroSeq. When using only single-end trimmed
read mapping, STEAK performed less sensitively but with
higher PPV than the two other software (Supplementary Fig.
S2A and B).

For further evaluation of STEAK’s ability to detect integra-
tions, in particular retroviruses, we created a simulation based
on hg19 chromosome 1 with 20 full-length HIV integrations
(Fig. 5) and with simulated reads that match realistic Illumina
sequencing errors (Methods). With this simulation, we evalu-
ated the different forms of detection that STEAK has to offer:

using original alignment information, using trimmed read de-
tection, and using guided detection. Guided detection performs
the most sensitively in its ability to recover all simulated inte-
grations with the most amount of supporting reads per integra-
tion within a 100-bp window from the original simulated
insertion site (Table 2). These results suggest that while
trimmed reads can provide specific integration detection, if
mapped alone they lose out on the sensitivity that being paired
offers in mapping. Similarly, VFS was also able to detect all sim-
ulated integrations by making use of both chimeric reads and
discordant pairs although with a substantially slower pipeline
(Supplementary Note S1).

2.9 Performance on whole genome and target
enrichment data

We screened samples of whole genome sequence datasets pro-
vided by The Cancer Genomes Atlas Project (TCGA), the 1000
Genomes Project, and a target-enrichment project. The CEU
pedigree, four patient genomes, and the target enrichment sam-
ple are listed in Table 3. These samples were chosen for their
high coverage and representativeness of different projects that
are publically available (e.g. 1000 Genomes Project) as well as
clinical (e.g. TCGA). The CEU pedigree was chosen because it is
one of the best-sequenced pedigrees, which is also publically
available making it ideal for benchmarking purposes.

With STEAK, we are able to mark the presence and absence
of both reference and non-reference integrations. For
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comparison purposes, we benchmarked RetroSeq and MELT us-
ing non-reference integrations. For benchmarking presence and
absence of reference integrations, we compared our results to
MELT.

We observed that RetroSeq and STEAK often exceeds the sensi-
tivity of MELT for non-reference integrations (Fig. 6A) and that
STEAK performs more sensitively than MELT in detecting known
polymorphic HK2 integrations regardless of whether they are ref-
erence or non-reference (Fig. 6B). We also intended to compare
our reference integration results to tlex2 results but, tlex2 is un-
able to handle high-coverage genomes (Supplementary Note S1).

Crucially, STEAK clearly demonstrates its ability to handle
long fragment-sized libraries, such as target-enrichment data,
and significantly outperforms MELT and RetroSeq in detecting
polymorphic integrations both in and not in the reference ge-
nome (Fig. 7). In the case of MELT’s deletion genotyping module,
it marks 137 reference integrations, of which a great majority
tend to be fixed within the population, as absent in the target
enrichment data.

3. Discussion

The driving motive behind developing STEAK was to detect
polymorphic endogenous retrovirus integrations in HTS data
with high coverage. The overarching difference of STEAK, com-
pared to previous algorithms that we have published (Marchi
et al. 2014), was that it allowed for the potential evolution of the
transposable element or virus by tolerating for a controllable
number of mutations to be present in the reference sequence.
This latter part is computationally intensive, thus we acceler-
ated the process by massively parallelising our software.

STEAK has been designed to include functionality features
that are largely missing from other similar available software.
RetroSeq, MELT, and TEA, rely on paired-end data and work on
discordant or unmapped mates (Li et al. 2009). Those algorithms
cannot work with single-end reads, longer-read libraries where
pairs partially overlap, and do not provide outputs for users to
continue their own downstream analysis. While MELT, RetroSeq,
and TEA provide the coordinates for TSD breakpoint intervals,
they do not provide outputs for reconstructing pre-integration
sites or to further characterise the novel integrations found, all
of which can be particularly useful when processing whole ge-
nome sequences without access to original DNA samples. This
is highlighted in clinical datasets, like TCGA, which often in-
clude data from individuals that have been sequenced with-
>30� coverage but have restricted access to samples. In such
cases, the ability to recover supporting chimeric reads for TEs or
retroviral integrations in high-coverage genomes is valuable.
One example would be using WGS to observe the changes in the
TE profile of an individual, such as an abundance of a TE in tu-
mour tissue when compared to the germline (Criscione et al.
2014). On the other hand, screening deep sequencing target en-
richment experiments can be equally as crucial for clinical re-
search: for example, target enrichment is a cheaper alternative
to WGS, particularly if there is a need to sequence multiple sam-
ples to observe a specific active retrotransposon or retrovirus. In
this regard, STEAK was the only software capable of sensitively
retrieving integrations from both WGS and target enrichment
sequencing projects (Figs 6 and 7).

Our program will efficiently process both mapped (SAM/BAM)
and unmapped (FASTQ) HTS data, paired and single-end se-
quencing projects, and whole genome sequencing as well as tar-
get enrichment strategies. STEAK is also the only program that
has an integrated approach for users to detect reads that support
TE and retroviral integrations: using original mapping informa-
tion, trimmed read mapping and guided detection. Moreover, it is
the only software flexible enough to provide users with outputs
to move forward with custom downstream analysis.

Figure 5. Distribution of twenty simulated HIV integrations within human refer-

ence (hg19) in chromosome 1. Respective genomic coordinates can be found in

Table 2.
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How does STEAK compare with other similar software with
respect to performance? We compared STEAK with MELT,
RetroSeq, and Tangram on paired-end datasets (which in princi-
ple can be handled by all of them). RetroSeq and Tangram fared
well in sensitively detecting TEs within low-coverage genomes
(Rishishwar et al. 2016), but we observed an increase of false-
positives when used for discovery in deep-coverage WGS
(Supplementary Fig. S2A and B). Such programs can be used
with low-coverage WGS but the verification of the breakpoint
would need to go through a wet-lab approach. STEAK performs
better than other TE discovery software when recovering spe-
cific integrations with high confidence, which is the case with
individual deep-coverage genomes. It is a program that can
both specifically and sensitively mark presence or absence of
reference and non-reference TEs with its adjustable parameters.
We observed that certain HK2 proviruses were more difficult to
recover by STEAK when integrated within other mobile ele-
ments. When such proviruses within repetitive elements are al-
ready described (i.e. no verification is required) we can increase
the sensitivity of our downstream analyses by accepting the

presence of the provirus even with a single chimeric read span-
ning the known junction. As demonstrated in the simulation
(Table 2), the guided detection that STEAK facilitates allows res-
cuing of integrations where host trimmed reads do not map
uniquely. However, when these proviruses are not catalogued
an approach like RetroSeq would be more likely to recover them
as potential candidates (Fig. 6A); although these candidate inte-
grations are likely to need wet-lab verification, as the PPV of
RetroSeq remains low (Supplementary Fig. S2B).

STEAK stands out in its ability to identify more integrations
within other forms of sequencing strategies, such as target-
enrichment data, in comparison to already existing systems
(Fig. 7). Numerous sequencing platforms are making efforts to
output longer reads which will inevitably provide longer reads
flanking the integration junctions. STEAK was designed with
this in mind and already proves to handle such sequencing
strategies without any difficulties.

The limitations of STEAK in comparison to other software,
like MELT and RetroSeq, lie in that it does not mark zygosity of
an integration and that it does not calculate the exact

Table 2. Twenty simulated HIV integrations into human chromosome 1.

Human reference (hg19) Original mapping Post-trimming

Chromosome Position Supporting reads Guided detection Trimmed read detection

1 4179520 35 100 64
1 10331435 34 113 70
1 16830086 30 96 57
1 18869777 31 112 67
1 20389049 36 76 45
1 54327146 34 93 63
1 57730318 34 101 70
1 99180019 24 92 53
1 116586277 31 85 54
1 144993094 16 18a 0a

1 149062299 36 99 63
1 165127302 43 109 71
1 170764099 15 69 44
1 188462855 43 121 85
1 191791184 25 80 53
1 197518001 34 88 55
1 213559631 26 90 52
1 219498833 37 97 63
1 223662699 38 95 61
1 231971371 26 78 44

aWhere trimmed reads alone could not detect the integration.

Table 3. The sequencing samples analysed in benchmarking.

Sample Dataset Coverage

TCGA-A6-2681-10A-01D-2188-10 (COAD) TCGA: Colon adenocarcinoma 50�
TCGA-HC-7233-10A-01D-2115-08 (PRAD) TCGA: Prostate adenocarcinoma 50�
TCGA-NJ-A4YQ-10A-01D-A46J-10 (LUAD) TCGA: Lung adenocarcinoma 50�
TCGA-BW-A5NQ-10A-01D-A27I-10 (LIHC) TCGA: Liver hepatocellular carcinoma 45�
NA12878 1K Genomes: CEU pedigree (Offspring) 50�
NA12891 1K Genomes: CEU pedigree (Father) 50�
NA12892 1K Genomes: CEU pedigree (Mother) 50�
HK2_Enrich01 NA 500�
HK2_Enrich02 NA 500�

All TCGA samples were DNA derived from peripheral blood and were sequenced with Illumina platform for whole genome sequencing. CEU pedigree samples derived

from immortalised cell lines maintained by 1000 Genomes Project and were sequenced with Illumina platform for whole genome sequencing. Target enrichment sam-

ples were germline derived and sequenced as described in the methods section.
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breakpoint interval. In our analyses of non-reference HK2 inte-
grations, STEAK provides flexible outputs to easily recur to soft-
ware such as BreakAlign (Marchi et al. 2014) and Geneious (Kearse
et al. 2012) for TSD detection and pre-integration site recon-
struction (Supplementary Fig. S1).

We show that STEAK performs as well as or better than com-
petitive systems available when detecting non-reference inte-
grations (Fig. 6B). As an algorithm and software, it is remarkable
in its flexibility to accept a variety of HTS data and process
high-coverage genomes in a parallelised manner where other
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systems struggle or even fail (Supplementary Note S1). The pur-
pose of STEAK is to fill a gap that exists in regards to detecting
mobile elements (either virus or transposable elements) while
also providing adjustability in its detection strategies and as-
sisting users in their custom downstream analyses.

4. Conclusions

STEAK is a tool that detects integrations of any sort in HTS data-
sets with higher sensitivity and specificity than existing soft-
ware, and can be applied to a broad range of research interests
and clinical uses such as population genetic studies and detect-
ing polymorphic integrations.

5. Methods

5.1 General benchmarking parameters

We ran RetroSeq and Tangram under the instructions provided
on their respective Github sites. For VirusSeq, we benchmarked
using the instructions from the User Manual (Chen et al. 2013).
We ran STEAK using the parameters provided in the supple-
mentary data. This along with the command lines for the soft-
ware we benchmarked against can be found in Supplementary
Note S4.

5.2 WGS from the Cancer Genome Atlas

We analysed four normal blood derived samples (‘germlines’)
from patients that were available at an average range of 45� to
50� coverage. These paired-end WGS (2� 100 bp) were all se-
quenced using Illumina Genome Analyzer platform technology

(Table 3). All whole genomes downloaded from TCGA database
were pre-aligned to the human reference, version hg19.

5.3 WGS of CEU (Utah Residents with Northern and
Western European Ancestry) pedigree from the 1000
Genomes Project

We analysed the Illumina platinum genomes for the NA12878/
NA12891/NA12892 pedigree. These samples were WGS se-
quenced at a 50� coverage with both paired-end (2� 100 bp) and
single-end libraries with Illumina HiSeq 2000 system. All whole
genomes were downloaded from 1000 Genomes Project data
portal.

5.4 Simulated datasets and benchmarking

For the TE-simulated dataset, we tested on a simulated human
chromosome 20 of 5� coverage and a read length of 76 bp cre-
ated by Wu et al. (2014) in the release of Tangram. We compared
VirusSeq (Chen et al. 2013), RetroSeq (Keane et al. 2013), Tangram
(Wu et al. 2014), and STEAK on the detection sensitivity of AluY
non-reference insertions in this simulated chromosome 20
data. The second simulated genome we benchmarked was one
we produced from manually inserting ten HK2 LTRs into chro-
mosome 20 across the genome (Supplementary Table S4). Using
the MASON read simulator, we created an Illumina paired-end
WGS dataset with 50� coverage and reads of 101-bp length. We
mapped these reads to the hg19 reference using BWA. The re-
sulting genome was benchmarked with RetroSeq, VirusSeq, and
STEAK. Tangram runs on MOSAIK aligned genomes and did not
accept any of our BAMs produced by other aligners in spite of a
program that was released to add the necessary ZA tags
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(tangram_bam). Furthermore, Tangram is currently unmain-
tained and unsupported.

RetroSeq, Tangram, VirusSeq, and STEAK were all run with
matching parameters to compare sensitivity and specificity on
a simulated chromosome 20 with artificial HK2 insertions.

For the HIV-simulated dataset, we based it on the human ge-
nome reference (hg19) chromosome 1. Twenty full-length HIV
integrations were randomly introduced into chromosome 1 us-
ing VirusFusionSeq viral insertion simulator (Li et al. 2013). The
full-length HIV insertion was taken from the HIV1/LAV refer-
ence (Accession number: K03455.1). We created simulated
Illumina paired-end reads with the ART next generation se-
quencing read simulator (Huang et al. 2012) with default error
model and indicating 50� coverage and 100-bp reads. The reads
were then aligned to hg19 using BWA MEM.

5.5 Target-enrichment dataset

We also tested STEAK on a sample that was prepared through
targeted enrichment of the ends of HK2 LTR. Briefly, DNA
was extracted from control NovagenTM human genomic DNA.
Genomic regions of interest were selected using a biotin-
streptavidine-based bead capture with DNA bait probes. In this
case, target-specific baits used came from the beginning and
end of HK2 LTR (K113)— �360 bp from each end. Five overlap-
ping probes were used for each end; each probe was 120 bp in
length. Single-stranded oligonucleotides with a common linker
flanked by target-specific sequences anneal to the sequences of
interest and capture them (Gnirke et al. 2009; Mamanova et al.
2010). After target enrichment hybridisation, the sample was se-
quenced using the Illumina MiSeq platform producing PE 300-
bp paired-end reads.

5.6 Availability and requirements

STEAK relies on boost-libraries, OpenMP, gcc, python, and
BEDtools. SAMtools or biobambam2 can be used to decompress
BAM files. It has purposely been designed to use as little depen-
dencies as possible for negligible installation hassle. Trimmed
reads can be processed with an aligner of choice—we recom-
mend a sensitive mapper such as Novoalign (Hercus 2009), BWA
MEM (Li and Durbin 2010) or Stampy (Lunter and Goodson 2011).
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