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Abstract: The construction of simple cellular models has attracted much attention as a way to
explore the origin of life or elucidate the mechanisms of cell division. In the absence of complex
regulatory systems, some bacteria spontaneously divide through thermostatistically elucidated
mechanisms, and incorporating these simple physical principles could help to construct primitive
or artificial cells. Because thermodynamic interactions play an essential role in such mechanisms,
this review discusses the thermodynamic aspects of spontaneous division models of vesicles that
contain a high density of inclusions, with their membrane serving as a boundary. Vesicles with
highly dense inclusions are deformed according to the volume-to-area ratio. The phase separation of
beads at specific intermediate volume fractions and the associated polyhedral deformation of the
membrane are considered in relation to the Alder transition. Current advances in the development
of a membrane-growth vesicular model are summarized. The thermostatistical understanding of
these mechanisms could become a cornerstone for the construction of vesicular models that display
spontaneous cell division.

Keywords: vesicle; division; beads; membrane elastic energy; depletion interaction; osmotic pressure;
Alder transition

1. Introduction

The cell—the smallest unit of life—is full of organelles [1–4] that are involved in various
complex dynamics such as cell division [5] and even in prokaryotic cells, cell division is
handled by specialized proteins such as FtsZ [6]. In contrast, L-form bacteria, which have
membranes but no cell walls or cytoskeleton, divide in a disorganized manner [7] and
their division is often regarded as a model for early life. The principles of simple modes
of cell division have been extensively investigated in fields related to the origin of life
and artificial cells. Primitive cells might have been compartmentalized by deformable
boundaries without definite cell walls or cytoskeletons [8–10]. As primitive cell models,
lipid membrane compartments such as micelles [10,11], emulsions [10], and vesicles [12]
are often used and generally have a small membrane elastic modulus. In systems where
rigid inclusions such as coiled polymers or hard spherical particles are confined within
deformable compartments, the elastic energy of the microemulsion membrane together with
the translational entropy of the internal materials results in membrane deformation [13]. In
the exploration of a vesicle system, Dinsmore et al. found that when nanometer-scale beads
of two different sizes are highly confined, the membrane curvature changes [14]. These data
suggest that membrane deformation is caused by depletion interaction, a local osmotic effect
between inclusions [14,15]. Natsume et al. used centrifugation to swell thin phospholipid
films with bead dispersion or oil-in-water emulsion to create vesicles that encapsulated
a high density of beads in a confined area [16–18] and they observed dynamic vesicle
deformations such as division into multispheres and angular shapes [16,19,20]. These data
suggest that even if the internal beads are all of one type, the depletion interaction between
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them and the vesicle membrane can cause vesicle deformation [16,19]. A theoretical study
that used the Monte Carlo simulations of the interactions between encapsulated beads
described the relationship between the various deformations of the boundary membrane
and bead localization [21].

One can imagine that the entropic or thermostatistical effects of inclusions have also
contributed to the deformation and division of primitive cells. The division of L-form
bacteria is due to membrane growth and subsequent instability, which suggests it is caused
by a thermostatistical effect [7]. Vesicles encapsulating polymers also divide, presumably
because of a decrease in osmotic pressure with a consequent increase in the entropy of the
internal polymer [22] and such a vesicle division system without a specific mechanism could
be a model to understand the division of L-form bacteria [23,24] and the self-reproduction
of primitive cells [25]. Even in division models with functional proteins such as FtsZ, it is
essential to reduce the osmotic pressure of the inclusions [26,27]. Therefore, considering
the mechanical effects of the inclusions is important [28–30].

This review summarizes the spontaneous cell division models based on vesicles
with confined materials from the viewpoint of thermostatistical mechanics, focusing on
the author’s work as a member of the Imai group [16] and the Toyota group [19,20], as
well as some unpublished work. The following topics are discussed: the total energy
of vesicles that contain inclusions (Section 2); the cooperative action between the elastic
energy of the membrane and the free energy of inclusions (Section 3); the division of vesicles
containing highly confined microspheres (Section 4); and the polyhedral deformation of
vesicles containing microspheres at specific volume fractions (Section 5). Section 6 is a
summary, and Section 7 describes vesicle systems that mimic L-form bacteria as a direction
for future research.

2. Total Energy of Vesicles

In classical studies, empty vesicles were deformed by external factors such as osmotic
pressure [31,32], changes in temperature [33,34], and the fusion of multiple vesicles [35],
and the elastic energy of the membrane has only been considered [36,37]. In systems with
inclusions, the total energy needs to be estimated and would be the sum of the elastic
energy of the compartment and the free energy of the inclusions.

The following parameters are used to describe the elastic energy of the vesicular
membrane: its elastic modulus, its area, and the vesicle curvature. The shape of the vesicle
is affected by the membrane elastic energy and the area-to-volume ratio (ξ, dimensionless)

as indices [37]: ξ= Rs/Rv − 1; Rs = (A/4π)
1
2 , where Rs is the radius of a hypothetical sphere

whose area is A; Rv = (3V/4π)
1
3 , where Rv is the radius of a hypothetical sphere whose

volume is V. For a perfect sphere, ξ = 0; for other shapes, ξ is positive.
The free energy of confined particles is closely related to their translational motion.

It depends on the free volume in which they can freely move [38,39]. Free energy also
depends on the number of inclusions and the temperature, which are the same before
and after the division. When the free volume of a particle inside a vesicle is taken into
account, the center of mass of the particle cannot be closer to the inner surface of the vesicle
membrane than to its radius [14,40]. This inaccessible region is called the depletion region,
and its volume is denoted as Vdep. Accordingly, the free volume of the inclusions is the
volume of the vesicle minus that of the depletion region (Vdep).

3. Cooperativeness of Elastic Energy of Membrane and Free Energy of Inclusions

For the free energy of inclusions to be dominant in vesicle deformation, the number
and volume of inclusions must be large. Two feasible strategies allow inclusions to con-
tribute to deformation: (i) increasing the inclusion’s size and (ii) increasing the number
of inclusions. It is challenging to encapsulate a large number of rigid micrometer-sized
spheres in vesicles because each vesicle has a finite volume, but it has been achieved in the
author’s experiments [16–20].
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To increase the inclusion size, Natsume et al. encapsulated a few hundred to a
few thousand one-micrometer polystyrene beads into vesicles of ten to several tens of
micrometers in diameter [16,19]. Polymers could be regarded as hard spheres with a
diameter of several to several tens of nanometers, which is two to three orders of magnitude
smaller than the diameter of these polystyrene beads; however, the above number of beads
per vesicle is just enough to consider the thermostatistical effects.

To increase the number of inclusions, Terasawa et al. encapsulated 5 w% polyethylene
glycol (PEG) with a sufficient gyration radius into vesicles [22]; in the PEG-encapsulating
vesicles that mimicked the cell wall and intracellular biopolymers, they observed cell
division-like deformation. These vesicles spontaneously deformed after fusion and eventu-
ally had a dumbbell shape consisting of two spherical vesicles. Terasawa et al. also assessed
whether the depletion interaction considerably contributed to the deformation. The free
energy change of the inner particles by vesicle deformation (|∆Edep|) was calculated as
∆Π∆Vdep, in which ∆Π was the osmotic pressure of the encapsulated PEG. Under their
division-like deformation condition of the vesicles and the confined PEG, the relationship
between |∆Edep| and the elastic energy change of the vesicle membrane |∆Ebend| holds as
|∆Edep| >> |∆Ebend|, and the deformation reduces PEG free energy.

4. Division of Vesicles with Densely Encapsulated Microspheres

The previous section briefly mentioned two strategies to construct spontaneous cell
division models and described one of those strategies, as realized by Terasawa et al.’s
experimental system [22]. This section describes the other strategy in which vesicles with
a higher volume fraction (approximately 50 vol%) are more efficiently constructed by
encapsulating one-micrometer polystyrene beads into the model.

As mentioned in Section 2, the depletion region depends on the size of the inclusions.
Micrometer-sized or larger beads can be observed under a microscope, and the dynamics
of the membrane and beads can be simultaneously observed in real time.

4.1. Change in Vesicle Volume

Natsume et al. created vesicles with densely packed beads by using centrifugation
when swelling a phospholipid film with a dilute bead dispersion [16]. Vesicle deformation
via osmotic pressure was induced by adding a hypertonic solution, and for over 10 min (the
first stage in Figure 1), the vesicles had characteristic features (the first stage in Figure 1)
such as prolate, oblate, and stomatocyte shapes, as observed in empty vesicles. This stage
was followed by the sequential formation of multispherical vesicles, with no other stable
vesicle shapes (the second stage in Figure 1). The area-to-volume ratio ξ was used to analyze
the morphological changes (Figure 1). The vesicles were spherical and stable when they
were prepared (ξ = 0). The addition of a hypertonic solution caused water to flow out of the
vesicles, resulting in a decrease in the vesicle volume while the membrane area remained
constant (ξ increased). As a result of the osmotic pressure, the vesicle was stretched along
its axis and became tubular. It reached the limit of ξ increase at approximately 700 s, and the
tubular vesicle deformed into two spheres connected by a narrow neck at approximately
1400 s. The vesicle volume remained almost constant between 700 s and 1400 s.

The shape of two spheres has higher elastic energy than that of a tubule. This suggests
that elastic energy was not responsible for the observed deformation. The free volume of
the encapsulated beads was estimated as Vfree = V − Vdep, where V is the total volume of
the vesicle and Vdep is the volume of the depletion region, which covers the inner surface
of the vesicle membrane at a width equivalent to a bead’s radius. At the same volume,
the two spheres had a larger Vfree than that of the tubule. Therefore, to maximize the
translational entropy of the confined beads, the vesicles were deformed from a tubule into
two connected spheres.
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Figure 1. Shape deformation pathway of a vesicle containing densely encapsulated polystyrene
beads. Scale bars, 5 µm. A perfect sphere has ξ = 0. Adding a hypertonic solution caused a decrease
in the vesicle volume and an increase in ξ in the first stage (<700 s). In the second stage, where ξ was
almost constant, the vesicle was deformed into two connected spheres. This figure is revised from
Figure 2 in [16].

4.2. Division Corresponding to the Area-to-Volume Ratio

Natsume et al. also described the shape deformation of long tubular vesicles encapsulating
dense beads with ξ > 0.12. Such vesicles divided into multispherical vesicles— consisting
of three or four spheres from each tubule [16]. Tubular vesicles sequentially divided into
spheres from one or both ends over several minutes (Figure 2). Given that the multispherical
vesicles consisted of n – 1 spheres, each with a radius R, and one small sphere with radius r
(r < R), the ratio of r to R, as well as n, is uniquely determined by ξ (Figure 2). There was
good agreement between the vesicle deformation and geometrical prediction using ξ [16].

Similar to the estimate for the vesicles that divided into two spheres (see Section 4.1),
vesicles that divided into three or four spheres had a larger free volume than that of a
tubular vesicle of the same volume [16].



Membranes 2022, 12, 608 5 of 10Membranes 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 2. Geometrical relationship between the ratio of radii r/R and ξ for the divided vesicles that 
encapsulated polystyrene beads. R, the radius of large spheres when n = 2, 3, and 4; r, radius of a 
single small sphere. Calculated results (red curves) were in good agreement with the experimental 
data (micrographs). The right micrograph shows a typical shape deformation pathway from a tub-
ular vesicle to multispheres when n = 4. Scale bars, 5 μm. At n ≥ 3, vesicles divided into one small 
sphere and other (n − 1) spheres that all had the same radius. This figure is a revision of Figures 6 
and 7 in [16]. 

Similar to the estimate for the vesicles that divided into two spheres (see Section 4.1), 
vesicles that divided into three or four spheres had a larger free volume than that of a 
tubular vesicle of the same volume [16]. 

4.3. Restriction of Water Outflow by Inclusions 
Natsume et al.’s work on the deformation of tubular vesicles raised some questions, 

namely: how is the radius is determined and why are sequentially formed spheres not of 
the same size when the entropy of beads is maximized? These questions can be explained 
as follows. In the process of vesicle deformation, spheres with the same R as the curvature 
of the tubule end are initially created from each end. Spheres of this size continue to be 
created until the ratio of area to volume in the tubule eventually needs to be adjusted by 
the creation of a smaller sphere. This system does not require an external control for divi-
sion, and ξ can determine the number and size of spheres to be produced. Spontaneously 
forming a curvature that gives some patterned multispheres was discussed in relation to 
osmotic pressure [41]. 

To comprehend the importance of ξ in the vesicle division, the relationship between 
ξ and the osmotic effect of inclusions should be understood. In the classical method of 
inducing vesicle deformation by applying osmotic pressure to drain water from the inte-
rior, the value of ξ is determined by the reduction in vesicle volume. When osmotic pres-
sure is applied to a vesicle containing polymers or beads, the decrease in volume resulting 
from water outflow inevitably increases the polymer or bead concentration or volume 
fraction. However, only limited research has been conducted on the relationship between 
ξ and the osmotic effect of inclusions. When Fujiwara et al. performed experiments in 

Figure 2. Geometrical relationship between the ratio of radii r/R and ξ for the divided vesicles that
encapsulated polystyrene beads. R, the radius of large spheres when n = 2, 3, and 4; r, radius of a
single small sphere. Calculated results (red curves) were in good agreement with the experimental
data (micrographs). The right micrograph shows a typical shape deformation pathway from a tubular
vesicle to multispheres when n = 4. Scale bars, 5 µm. At n ≥ 3, vesicles divided into one small sphere
and other (n − 1) spheres that all had the same radius. This figure is a revision of Figures 6 and 7 in [16].

4.3. Restriction of Water Outflow by Inclusions

Natsume et al.’s work on the deformation of tubular vesicles raised some questions,
namely: how is the radius is determined and why are sequentially formed spheres not of
the same size when the entropy of beads is maximized? These questions can be explained
as follows. In the process of vesicle deformation, spheres with the same R as the curvature
of the tubule end are initially created from each end. Spheres of this size continue to be
created until the ratio of area to volume in the tubule eventually needs to be adjusted by the
creation of a smaller sphere. This system does not require an external control for division,
and ξ can determine the number and size of spheres to be produced. Spontaneously
forming a curvature that gives some patterned multispheres was discussed in relation to
osmotic pressure [41].

To comprehend the importance of ξ in the vesicle division, the relationship between
ξ and the osmotic effect of inclusions should be understood. In the classical method of
inducing vesicle deformation by applying osmotic pressure to drain water from the interior,
the value of ξ is determined by the reduction in vesicle volume. When osmotic pressure
is applied to a vesicle containing polymers or beads, the decrease in volume resulting
from water outflow inevitably increases the polymer or bead concentration or volume
fraction. However, only limited research has been conducted on the relationship between
ξ and the osmotic effect of inclusions. When Fujiwara et al. performed experiments in
which cell extracts were confined to vesicles and concentrated by osmotic pressure, they
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found that the water outflow was restricted as the density approached a cell-like level
(approximately 30 vol%) [42,43]. No further increase in density occurred, even when
osmotic pressure was further increased [42]. In Natsume et al.’s experimental system,
vesicles with various ξ values were divided (Figure 2). Immediately after preparation,
almost all vesicles were spherical (ξ = 0), and ξ increased with the outflow of water. Our
findings that vesicles were densely packed at the time of division and that the decrease in
volume almost stopped before and after division suggest that the volume fraction of the
inclusions limits water outflow.

Thus, the entropy effect essentially contributes to the encapsulated polystyrene beads
system with a volume fraction of approximately 50 vol%. This system, which is based
on the area-to-volume ratio of the vesicle, displayed the characteristic behavior of regular
divisions into multispheres, and in the system, the osmotic effect of the encapsulated beads
seems to contribute to the change in vesicle volume.

5. Polyhedral Deformation of Vesicles Encapsulating Microspheres at Specific
Volume Fractions

This type of deformation accompanies the characteristic arrangement of internal beads
at volume fractions of approximately 15 vol%.

5.1. Phase Separation from the Perspective of Alder Transition

Volume fraction is an important parameter in bead dispersion. At low values, beads
are randomly dispersed, but as the volume fraction increases, beads form two phases,
namely ordered and disordered, which coexist in a crystal–fluid state. In a finite volume,
the volume of the partially crystallized fraction is lower than that of the randomly close-
packed fraction because the randomly dispersed beads have higher entropy [44]. The loss
of entropy due to crystallization in one part of the system is compensated by an increase
in entropy as the density decreases in the remaining fluid part. This phase separation has
been discussed from the perspective of the Alder transition [44–46]. In polystyrene beads
confined in vesicles, this phase separation occurs as the volume fraction of the beads is
reduced [19,20]. This behavior affects the deformation of the membrane.

5.2. Coexistence of Ordered and Disordered Phases of Microspheres in Vesicles

To prepare vesicles containing polystyrene beads with volume fractions ranging from
0 to 45 vol%, Natsume et al. adopted the water-in-oil emulsion transfer method using
centrifugation [17,18]. A hypertonic aqueous solution of D-glucose was added to induce
the polyhedral deformation of the vesicles; a typical example of the deformation is shown
in Figure 3. Polyhedral deformation was mostly observed in vesicles with a diameter
of approximately 20 µm and a volume fraction of approximately 13 vol%. The angles
corresponding to the polyhedral were obtained at the corners of the flat surfaces. This was
followed by the formation of a prominent protrusion at the angular antipodal point, as
seen in Figure 3d [19]. This characteristic configuration was explained by the coexistence of
crystallized and disordered phases of the beads in the vesicles. Several triangular faces of
bead crystals were formed on the vesicle membrane. The characteristic patterns of colloidal
particles observed on such faces correspond to close-packed structures and suggest an
orderly array of particles [20].

It has been well documented that phase separation owing to Alder transition is unique
to finite systems [47], and its existence cannot be theoretically proven for infinite systems.
Vesicles encapsulating beads with a specific volume fraction are finite systems. The present
system is a typical example of a multiphase system caused by Alder transition.



Membranes 2022, 12, 608 7 of 10Membranes 2022, 12, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 3. Temporal transition of an asymmetrical polyhedral vesicle at 59–97 min after the addition 
of hypertonic solution. (a) The deformation pathway of a vesicle with encapsulated polystyrene 
beads at 13 vol%. Scale bar, 5 μm. (b,c) Behavior of the encapsulated polystyrene beads near or away 
from the flat surface of the vesicle membrane at 59 min; although the beads in (b) are organized in 
a crystallization pattern, no orderly bead array could be found in (c). (d) A tubular structure (white 
arrow) protruding from the polyhedral vesicle at 97 min. Moderate volume fractions of polystyrene 
beads play an essential role in this characteristic polyhedral deformation. The figure is modified 
from Figures 3 and 4 in [19]. 

It has been well documented that phase separation owing to Alder transition is 
unique to finite systems [47], and its existence cannot be theoretically proven for infinite 
systems. Vesicles encapsulating beads with a specific volume fraction are finite systems. 
The present system is a typical example of a multiphase system caused by Alder transi-
tion. 

6. Conclusions 
This review discussed the use of vesicles that encapsulate beads or polymers as a 

division model based on thermostatistical mechanics [16,19,22]. Vesicles with highly 
dense inclusions divide into several small spherical vesicles [16,22]. Given that the deple-
tion region exists on the inner surface of the vesicle membrane and has a width equivalent 
to the radius of the beads or rounded polymers, divisions reduce the osmotic pressure 
and increase the entropy of the inclusions by decreasing the depletion region. In a vesicle 
encapsulating beads at moderate volume fractions [19], beads adjacent to the vesicle inner 
membrane transiently become regularly aligned [20]. During division, planes form along 
the vesicle membrane in which beads are arranged in an orderly pattern, probably because 
the thermostatistical effect of increasing the free volume of disordered beads increases the 
entropy of the internal beads as a whole. In both cases, the focus has been on spontaneous 
deformation at a constant membrane area-to-volume ratio. Vesicles with a continuously 
increasing membrane area would be a better model to mimic cell division and are consid-
ered in the next section. 

7. Future Directions 
In the systems presented herein, bulky excess membranes were produced to induce 

vesicle deformation by fusing vesicles or draining water through changes in osmotic pres-
sure. Because of these ways to give an area-to-volume ratio ξ, the membrane surface area 
of the vesicle was taken as a sporadic or unchanging value determined at the time of prep-
aration. However, the membrane surface area continuously increases during cell division. 

Figure 3. Temporal transition of an asymmetrical polyhedral vesicle at 59–97 min after the addition
of hypertonic solution. (a) The deformation pathway of a vesicle with encapsulated polystyrene
beads at 13 vol%. Scale bar, 5 µm. (b,c) Behavior of the encapsulated polystyrene beads near or away
from the flat surface of the vesicle membrane at 59 min; although the beads in (b) are organized in a
crystallization pattern, no orderly bead array could be found in (c). (d) A tubular structure (white
arrow) protruding from the polyhedral vesicle at 97 min. Moderate volume fractions of polystyrene
beads play an essential role in this characteristic polyhedral deformation. The figure is modified from
Figures 3 and 4 in [19].

6. Conclusions

This review discussed the use of vesicles that encapsulate beads or polymers as a
division model based on thermostatistical mechanics [16,19,22]. Vesicles with highly dense
inclusions divide into several small spherical vesicles [16,22]. Given that the depletion
region exists on the inner surface of the vesicle membrane and has a width equivalent
to the radius of the beads or rounded polymers, divisions reduce the osmotic pressure
and increase the entropy of the inclusions by decreasing the depletion region. In a vesicle
encapsulating beads at moderate volume fractions [19], beads adjacent to the vesicle
inner membrane transiently become regularly aligned [20]. During division, planes form
along the vesicle membrane in which beads are arranged in an orderly pattern, probably
because the thermostatistical effect of increasing the free volume of disordered beads
increases the entropy of the internal beads as a whole. In both cases, the focus has been on
spontaneous deformation at a constant membrane area-to-volume ratio. Vesicles with a
continuously increasing membrane area would be a better model to mimic cell division
and are considered in the next section.

7. Future Directions

In the systems presented herein, bulky excess membranes were produced to induce
vesicle deformation by fusing vesicles or draining water through changes in osmotic pres-
sure. Because of these ways to give an area-to-volume ratio ξ, the membrane surface area
of the vesicle was taken as a sporadic or unchanging value determined at the time of prepa-
ration. However, the membrane surface area continuously increases during cell division.
In eukaryotes, the total membrane area increases as phospholipids are synthesized in the
endoplasmic reticulum and are distributed throughout the cell. Subsequently, a contractile
ring composed of motor proteins causes the plasma membrane to be progressively con-
stricted. This leads to the completion of cytokinesis [5]. Membrane growth comes up as an
essential problem to take note of in the study of cell division models [48,49].
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Systems in which the membrane area increases have been reported [50–53]. Walde et al.
showed that when insoluble oleic anhydride is present in a 100 nm oleic acid vesicle disper-
sion, the vesicles catalyze the hydrolysis of the anhydride to produce more oleic acid
molecules [54]. Newly produced oleic acid is incorporated into the existing vesicles, in-
creasing their size to approximately 500 nm. A similar increase in membrane volume was
observed when fatty acid micelles were introduced into a solution of fatty acid vesicles [55].

The author’s group is also constructing a system that increases the number of mem-
brane molecules in the vesicle to mimic L-form bacteria. The addition of sodium oleate to
micrometer-size phospholipid vesicles increased the membrane area by up to 50% in almost
all vesicles [56]. These findings indicate that even if a vesicle does not have a biosynthetic
pathway for amphiphilic molecules, the membrane area can be spontaneously increased by
the insertion of heterogeneous amphiphilic molecules into the vesicular membrane. Various
deformation paths were induced by adding sodium oleate to vesicles containing the PEG
of different molecular weight, but not to empty vesicles. However, unlike the systems of
Terasawa et al. [22] or Natsume et al. [16], no division into three or more spheres was ob-
served, even when the area-to-volume ratio (ξ) is sufficiently large. Therefore, deformation
paths depend on whether the membrane surface area continuously increases or remains
constant. Dividing vesicle systems with membrane enlargement have been constructed to
make the vesicles bear greater resemblance to living cells. To realize primitive cellular life
models based on vesicles, it is essential for a vesicle with highly dense inclusions to acquire
such features as autocatalysis [57] or self-replication [58,59].

Membrane deformation induced by inclusions has been studied in various systems [60]
such as deformation by active inclusions [61,62] or bundles of filaments [63,64]. In these
studies, membrane deformations are attributed to the properties of the inclusions. From
the viewpoint of the thermostatistical effect, it is possible to deform a membrane even
if the inclusions do not have individual properties, as described in this review—namely,
their entropic effects play an essential role [26,28–30]. The combination of membrane
deformation caused by a continuous increase in surface area and the entropic effect of
inclusions could lead to deformation patterns that settle into a specific stable state, resulting
in behaviors that are characteristic when specialized proteins are absent. Regardless
of the molecular species, thermostatistical studies are likely to be essential in realizing
these behaviors.
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