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ABSTRACT

Chronic inflammation is a hallmark of atherosclerosis and macrophages play a central role in 
controlling inflammation at all stages of atherosclerosis. In atherosclerosis, macrophages and 
monocyte-derived macrophages are continuously exposed to cholesterol, oxidized lipids, cell 
debris, cytokines, and chemokines. Not only do these stimuli induce a specific macrophage 
phenotype, but they also interact extensively, leading to macrophage heterogeneity in 
atherosclerotic plaques. Herein, we review the diverse phenotypes of macrophages, the 
mechanisms underlying macrophage activation, and the contributions of macrophages to 
atherosclerosis in this context. We also summarize recent studies on foamy macrophages 
and monocyte-derived macrophages in plaque during disease progression. We provide a 
comprehensive overview of transcriptional, epigenetic, and metabolic reprogramming of 
macrophages and discuss the emerging concepts of targeting cytokines and macrophages to 
modulate atherosclerosis.
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INTRODUCTION

Atherosclerosis is a pronounced chronic inflammatory disease. Cholesterol, lipids, and 
cellular debris accumulate on the walls of blood vessels over time, causing inflammation. 
Anatomically, a chronic inflammatory response persists in the arterial intima, which is 
the layer located on top of the smooth muscle cell (SMC)-rich medial layer, and the outer 
layer, which is known as the adventitia. The persistent inflammatory response increases the 
volume of the intima, forming atherosclerotic plaques covered with a fibrous cap, leading to 
narrowing of the blood vessels.1-4 The progression of disease can eventually result in sudden 
rupture of atherosclerotic plaques and thrombosis. In turn, thrombosis can give rise to 
ischemia and consequent myocardial infarction, which is one of the leading causes of death.5 
Although drugs that target atherosclerotic risk factors are effective at lowering cholesterol 
and are widely used to provide optimal treatment,6 recent studies have shown that targeting 
the inflammatory component of atherosclerosis, such as immune cells and pro-inflammatory 
cytokines, can effectively decrease atherosclerosis.7,8
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As one of many types of immune cells, macrophages have been shown to play a key role in 
atherosclerotic lesion formation and progression.1-4 A macrophage is an essential player 
of the innate immune system that engulf and responds to cellular debris, pathogens, and 
danger signals. These cells are found in virtually all tissues and patrol for potential threats. 
Besides phagocytosis, they mediate inflammatory response by releasing pro- and anti-
inflammatory cytokines and also help initiate adaptive immunity by recruiting other immune 
cells such as lymphocytes. Macrophages can adopt different functional programs and change 
their activation states in response to the various signals from their microenvironment. 
From this point of view, the macrophage activation spectrum is considered to be extremely 
wide,1-4 involving a complex functional response to a plethora of different signals. Thus, 
dysregulation of macrophage activation has been associated with many human diseases such 
as atherosclerosis, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE).

In atherosclerosis, the activation states of macrophages are very dynamic because the 
microenvironment changes significantly during the disease progression. Macrophages 
can be exposed and stimulated to various cytokines, oxidized lipids, cholesterol crystals, 
dying cells, and hypoxia in atherosclerosis. After activation, macrophages undergo robust 
activation transitions, which can mediate inflammatory responses. Of note, macrophages 
have been shown to contribute to the initiation, growth and rupture of arterial plaques, and 
they exhibit phenotype rewiring, which leads to heterogeneous activation states among 
plaque macrophages. In this review, we will focus on the diversity of macrophage phenotypes 
and the underlying mechanism of heterogeneity in atherosclerosis. The activation states 
and phenotypes of macrophages will be summarized in terms of transcriptional, metabolic, 
and epigenetic regulation, and the balance of monocytes and macrophages according to 
disease progression will be described. Finally, we will discuss a new strategy for treating 
atherosclerosis by targeting cytokines produced by macrophages.

ACTIVATION STATES OF MACROPHAGES

Activation of macrophages plays a vital role in tissue homeostasis, disease pathogenesis, 
and inflammatory responses, and dysregulated activation of macrophages is associated with 
many human inflammatory diseases, including atherosclerosis, autoimmune diseases, and 
metabolic disorders.9-12 In the traditional, simplified classification, macrophage phenotypes 
are divided into 2 groups (M1 and M2), determined based on cytokine-induced in vitro 
conditions.10 Macrophages that promote inflammation are called M1 macrophages (or 
M[LPS+IFNγ]), and are important in host defense and the secretion of pro-inflammatory 
cytokines. M2 macrophages (or M[IL4+IL13]) are described as decreasing inflammation 
and aiding in tissue repair.13 Experimentally, selective markers are often used to explain 
macrophage polarization into these 2 groups. For example, CD206, Arg1, CD301, and Relmα 
(M2 markers) are induced in response to interleukin (IL)-4 stimulation, whereas CD11c and 
inducible nitric oxide synthase (M1 markers) are increased in M(LPS+IFNγ) macrophages 
in mice. The traditional classification of M1 and M2 macrophages is particularly important 
in terms of their function in understanding the inflammatory response, but in fact, these 
2 active states only represent the extremes of the active states of macrophages (Fig. 1).10 
Indeed, macrophages have remarkable plasticity and show a spectrum of activation; they 
can switch and reprogram their functional phenotype in response to various cues and 
consequently exhibit distinct functions essential to tissue homeostasis and inflammation. 
However, the diversity and function of activation states of macrophages still remain to be 
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fully characterized in vivo because there is considerable diversity in gene expression patterns 
between macrophages in different tissues.

Activation states and the distinct functions of macrophages are affected by transcriptional, 
metabolic, and epigenetic reprogramming, and are modulated by transcription factors, 
metabolites, and epigenetic enzymes (important aspects of transcriptional regulation 
for macrophage activation have been described extensively elsewhere.13,14). For instance, 
interferon gamma (IFNγ) and IL-4 exert a clear antagonistic effect on macrophage 
activation, mediated by signal transducer and activator of transcription (STAT) 1 and 
STAT6, respectively. Recent evidence has also demonstrated that the signaling pathways 
and transcription factors that are important for different macrophage activation states 
induce metabolic and epigenetic changes.13-16 Lipopolysaccharide (LPS)/IFNγ stimulation has 
been shown to induce extensive metabolic reprogramming of macrophages and dendritic 
cells. Increased glucose uptake in M(LPS/IFNγ) macrophages enhances aerobic glycolysis 
and impairs oxidative phosphorylation (OXPHOS).17,18 In inflammatory macrophages 
such as M(LPS+IFNγ), pyruvate from the glycolytic pathway is converted to lactate, while 
tricarboxylic acid (TCA) cycle intermediates accumulate, resulting in impaired OXPHOS 
with effects on the inflammatory response and macrophage function.18,19 In contrast, 
M(IL-4) macrophages show a sharp increase in fatty acid oxidation and OXPHOS, which 
are associated with the anti-inflammatory response and tissue repair.19 CD36-mediated 
triglyceride uptake and subsequent lipolysis through lysosomal lipase can increase OXPHOS 
to maintain M(IL-4) macrophages. However, it seems that the transition toward glycolysis or 
OXPHOS cannot predict the activation status of macrophages because M(IL-4) macrophages 
also depend on glucose uptake to increase OXPHOS.19 For example, inhibition of the 
glycolysis pathway inhibited IL-4-induced gene expression,20 whereas inhibition of carnitine 
palmitoyltransferase, a key enzyme required for fatty acid import, did not change the 
activation state of M(IL-4) macrophages.21,22

In addition to metabolic rewiring, epigenetically conferred transcriptional changes provide 
the molecular basis for macrophage polarization with distinct functional states and for 
reprogramming of macrophages upon subsequent environmental cues.9,10,23 Notably, 
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Fig. 1. The spectrum of macrophage activation and its regulators. The color spectrum indicates different 
activation states of macrophages, showing a linear scale of 2 macrophage designations, M1 and M2. 
Transcriptional, epigenetic, and metabolic factors that regulate macrophage activation are indicated. 
LPS, lipopolysaccharide; IFNγ, interferon gamma; IL, interleukin; NF-κB, nuclear factor κB; AP1, activator protein 1; 
IRF3, interferon regulatory factor 3; STAT, signal transducer and activator of transcription; MLL, mixed-lineage leukemia; 
HDAC3, histone deacetylase 3; BRD, bromodomain-containing protein; SMYD5, SET and MYND domain-containing 
protein 5; Jmjd3, Jumonji domain-containing protein D3; OXPHOS, oxidative phosphorylation.



activation states of macrophages have been shown to be associated with epigenetic 
enzymes such as histone modifiers. Expression of mixed-lineage leukemia (MLL), a histone 
methyltransferase, is required for M1 gene expression and the formation of a de novo 
enhancer in M(IFNγ+LPS) macrophages.24 H4K20me3, which is carried out by SET and 
MYND domain-containing protein 5 (SMYD5), limits the expression of LPS target genes 
in macrophages25 and 2 histone modifiers, Jumonji domain-containing protein D3 (Jmjd3) 
and histone deacetylase 3 (HDAC3), have been shown to modulate the activation state of 
macrophages. Expression of LPS-induced genes is significantly decreased in Jmjd3-deficient 
macrophages.26,27 Of interest, Jmjd3 is also increased by IL-4 treatment28 and was shown to 
be important for M2 responses in response to helminth infections through IRF4.29 Similarly, 
macrophages lacking HDAC3 exhibit an M2-like phenotype and are hyperresponsive to 
IL-4.30 It has been shown that HDAC3 is required to activate hundreds of STAT1-dependent, 
inflammatory genes in M1 macrophages, which have been shown to rely on defective IFN-β 
responses in macrophages.31 Collectively, these metabolic and epigenetic regulations are 
reprogrammed by various stimuli, which allow macrophages to respond appropriately to 
environmental cues and function accordingly.

MACROPHAGE PHENOTYPES IN ATHEROSCLEROSIS

In atherosclerosis, chronic inflammation can lead to aberrant activation of macrophages, 
and various triggers cause functional heterogeneity of macrophages that combine the 
features of pro-inflammatory and anti-inflammatory phenotypes.3,32 Furthermore, different 
types of macrophages in plaques are organized in atherosclerotic vessels33 and affect 
lesion stability and the clinical outcome.3 The microenvironment around atherosclerotic 
vessels is influenced by hyperlipidemia, pro-inflammatory cytokines, cholesterol crystals, 
hypoxia, oxidative stress, and danger-associated molecular patterns derived from cell death, 
which macrophages detect. Hyperglycemia, which accelerates atherosclerosis, is also 
an important factor affecting macrophage activation, as shown in people with diabetes. 
Together, a variety of stimuli in atherosclerosis create a complex microenvironment in 
atherosclerotic vessels that ultimately influences disease progression and plaque stability.4 
These microenvironmental signals drive the transcriptional, metabolic, and epigenetic 
reprogramming of macrophages and perpetuate macrophage inflammation (Fig. 2). Thus, 
there is considerable interest in using the plasticity of macrophage activation to rebalance the 
inflammatory response and protect tissue homeostasis in atherosclerosis.

Recent studies have shown that advanced plaques of Ldlr−/− mice consist of heterogeneous 
populations of macrophages, including CD86high M1-like macrophages (≤40%), CD206+ 
M2-like macrophages (≤20%), and M(ox) macrophages (≤30%). Although macrophages of 
various active states co-exist in atherosclerosis, it was demonstrated that pro-inflammatory 
macrophages (M1-like) are preferentially located in the plaque shoulder, the prone area 
of unstable rupture of the plaque.33 In general, plaque macrophages have been thought 
to be responsible for causing inflammation and destroying tissues.34 Pro-inflammatory 
macrophages produce high levels of tumor necrosis factor (TNF), IL-1β, IL-6 and many 
chemokines such as C-C motif chemokine ligand (CCL) 235 and these pro-inflammatory 
cytokines can contribute to the progression of atherosclerosis and the stability of plaques. 
For example, the development of plaque and inflammation was suppressed in TNF-deficient 
apolipoprotein E (ApoE) knockout (KO) mice,36,37 whereas treatment of anti-TNF antibody 
enhanced the plaque burden with decreased levels of IL-5 and CCL5.38 The administration 
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of IL-6 exacerbates plaque lesions in ApoE models, and IL-6 messenger RNA (mRNA) and 
protein levels were increased in CD68+ plaque macrophages.39-41 In contrast, M2-like, anti-
inflammatory macrophages in atherosclerotic plaques contribute to disease and plaque 
regression. Treatment of IL-13, which is an M2 polarizing factor, hampered atherosclerosis 
progression in Ldlr KO mice42 and Stat6-deficient macrophages were associated with impaired 
plaque regression in a mouse regression model.43,44 In humans, M2-like macrophages are 
found near highly vascularized zones and calcified areas, and these macrophages participate 
in angiogenesis.45 Another phenotype directly associated with atherosclerotic plaques is 
M(ox) macrophages, which can be polarized in vitro in response to oxidized phospholipids.46 
Oxidized phospholipids or oxidized low-density lipoproteins (oxLDLs) are recognized by 
toll-like receptors (TLRs) and CD36 of macrophages, leading to inflammatory responses 
and chemokine expression.47-50 These M(ox) macrophages highly express NRF2-dependent 
genes, such as Hmox1 and Srxn1, and show glutathione-related phenotypes. Importantly, 
M(ox) macrophages have a weaker phagocytic function than typical M1-like or M2-like 
macrophages, which could potentially contribute to the development of advanced plaque. 
In addition to activated macrophages, foam cells are the major driver of plaque formation 
in atherosclerosis.4 Cholesterol is an important molecule in cellular components such 
as cell membranes and is a precursor to various biological metabolites.51 As cholesterol 
and triglycerides are retained in the artery wall, tissue macrophages try to get rid of the 
excess inflammatory lipids and store those in cytoplasmic lipid droplets.52 The imbalance 
of intracellular cholesterol hemostasis by modified inflammatory lipids transforms 
macrophages or monocytes into foamy macrophages.14,53 The ability of these foam cells to 
move decreases; as a result, they persist in the artery wall, causing chronic inflammation. 
For example, cholesterol crystals within macrophages are formed early in atherosclerotic 
plaques and activate the inflammasome and production of IL-1β.50 Long-term defects in 
cholesterol efflux and cholesterol esterification by the endoplasmic reticulum can also lead to 
macrophage death in plaques.

Historically, foam cells have been considered to correspond to pro-inflammatory states 
of macrophages. For instance, foam cells exhibited a decreased migratory capacity and 
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Fig. 2. Transcription factors that regulate the macrophage phenotype in atherosclerosis. Transcription factors 
that regulate macrophage differentiation, activation, and the formation of foam cells are indicated. 
PU.1, purified anti-SPI1; AP1, activator protein 1; C/EBPβ, CCAAT/enhancer binding protein β; ATF3, activating 
transcription factor 3; MAFB, MAF BZIP transcription factor B; PPARγ, peroxisome proliferator-activated receptor γ; 
LXR, liver X receptor; STAT, signal transducer and activator of transcription; IRF, interferon regulatory factor; LDL, 
low-density lipoprotein; oxLDL, oxidized low-density lipoprotein.



promoted the production of pro-inflammatory cytokines.54,55 However, recent studies 
using single-cell RNA sequencing (scRNA-seq) of immune cells from atherosclerotic aorta 
illustrated that foam cells in plaques failed to express pro-inflammatory genes for IL-1β or 
other cytokines, but instead, CCR2+ non-foamy macrophages showed dramatic expression 
of pro-inflammatory cytokines or chemokines.53,56 These studies suggest that non-foamy 
macrophages are more similar to recently recruited monocytes, and the role of monocytes 
and monocyte-derived macrophages should be considered in order to understand local 
inflammation, especially at plaque shoulder regions. In concurrence with these scRNA-
seq data, it has been shown that lipid-overloaded foam cells exhibit distinct transcription 
profiles representing an anti-inflammatory phenotype. The activation of peroxisome 
proliferator-activated receptor γ (PPARγ) and liver X receptor (LXR) transcription factor-
dependent pathways increased a subset of genes related to lipid-handling proteins such 
as the ATP binding cassette lipid transporter (Fig. 2).56,57 In addition to PPARγ and LXR, 
several transcription factors have been associated with foam cell formation and maintenance 
during atherosclerosis development. MAF BZIP transcription factor B (MAFB), which is 
associated with macrophage differentiation and polarization, has been shown to regulate 
the development of foam cells. In the early stage of atherosclerosis in mice, MAFB 
promoted plaque development through inhibition of foam cell apoptosis.58 In contrast, 
MAFB-deficient mice had larger necrotic cores in advanced plaques, suggesting that MAFB 
stabilizes atherosclerotic plaques in late stages of disease development.59 Another example 
is the transcription factor Kruppel-like factor 4 (KLF4) in the regulation of cholesterol 
25-hydroxylase (Ch25h) expression.60 Increased expression of Ch25h mRNA in mouse 
macrophages activated LXR expression in a KLF4-dependent manner60 and inhibited 
the NLRP3 inflammasome and IL-1β. Thus, activation of the KLF4-dependent pathway 
has yielded anti-inflammatory and atheroprotective effects in a mouse model. Activating 
transcription factor 3 (ATF3) also plays an important role in foam cell formation and disease 
progression in mice.61 ATF3 inhibited Ch25h expression and regulated lipid droplet formation 
in macrophages. Thus, ATF3 deficiency enhanced the formation of 25-hydroxycholesterol and 
caused foam cell formation.61 The anti-inflammatory function of high-density lipoprotein 
(HDL) has consistently been found to be mediated by HDL-induced ATF3 expression, leading 
to suppression of inflammatory cytokine expression in macrophages.62

INNATE IMMUNE MEMORY OF MACROPHAGES: PRIMING 
EFFECT
As described above, macrophages and immune cells in the atherosclerotic microenvironment 
are continuously exposed to various stimuli such as cholesterol, lipoproteins, dying cells, 
cytokines, hypoxia, and oxidative stress. Macrophages or monocytes exposed to chronic 
or repeated stimuli in vivo can reprogram their activation states to mount a response based 
on “innate immune memory” to subsequent stimulation.13,14,16 Over the last decade, the 
mechanism of innate immune memory has been well established in the context of infections 
by pathogens. There are 2 representative arms of innate immune memory, referred to as 
trained immunity and tolerance, which are mediated by transcriptional, epigenetic, and 
metabolic reprogramming (Fig. 3). These innate immune memory mechanisms allow innate 
immune cells to adapt to previous environmental factors and respond more appropriately 
to the next stimulus. For example, pre-exposure to β-glucan or Bacillus Calmette-Guérin 
can train and prime macrophages, which display an enhanced defensive response against 
unrelated infections.13,14,16 In contrast, macrophages or monocytes can be tolerized by 
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pre-exposure to TLR agonists or TNF. Tolerized macrophages are not able to produce 
pro-inflammatory cytokines in response to subsequent stimuli and prevent excessive 
inflammatory responses.13,14,16 Therefore, innate immune memory can affect the overall 
immunological status in a clinically relevant manner.

Sterile inflammatory mediators can also establish innate immune memory. In 
atherosclerosis, both hypercholesterolemia and oxLDL have been shown to induce innate 
immune training.63 Human macrophages pretreated with oxLDL and restimulated with LPS 
or Pam3Cys produced increased pro-inflammatory cytokines including TNF, IL-6, IL-8, 
and CCL2.63 Interestingly, a methylation inhibitor reversed this training effect, suggesting 
that reprogramming of the chromatin landscape is required for the induction of the oxLDL 
priming effect. Another study demonstrated that human monocytes pretreated with oxLDL 
and restimulated with LPS displayed increased inflammatory responses, and this effect was 
abrogated by co-treatment with a recombinant IL-1R antagonist.64 Hypercholesterolemia 
is also a sterile driver of innate immune training in mice.64 In Ldlr–/– mice fed a western diet 
for 4 weeks, monocytes exhibited enhanced expression of pro-inflammatory cytokines in 
response to TLR agonists ex vivo. Consistently, the serum inflammatory cytokines in mice fed 
a western diet were higher than in mice fed a chow diet.64 Myelopoiesis was also enhanced 
in mice fed a western diet, and RNA-seq data showed that genes related to cholesterol-
biosynthesis pathways were downregulated, whereas the expression of pro-inflammatory 
genes was enhanced. Interestingly, when mice fed a western diet were switched back to 
a normal diet for 4 weeks, systemic inflammation decreased, but the primed response of 
monocytes to ex vivo TLR stimulation was not normalized. This study revealed that the 
western diet trained myeloid progenitor GMP population in an IL-1β dependent manner 
through reprogramming at the transcriptional and epigenetic levels.64 In addition, clinical 
studies have shown that circulating monocytes in patients with atherosclerosis also have 
enhanced inflammatory signatures associated with epigenetic and metabolic remodeling.65-67 
For example, monocytes isolated from patients with established atherosclerosis induce a 
stronger inflammatory response to TLR agonists, such as LPS and Pam3Cys, than monocytes 
from healthy patients. Increased production of IL-6 and IL-1β in monocytes isolated from 
the atherosclerosis patients was observed, with higher expression of glycolytic, TCA cycle, 
and pentose phosphate pathway genes, indicating that monocyte priming occurred in the 
disease microenvironment through metabolic reprogramming. Taken together, the emerging 
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concept of innate immune memory adds a new layer of macrophage regulation and offers a 
new understanding of chronic inflammation and atherosclerosis.

MONOCYTE-DERIVED MACROPHAGES IN 
ATHEROSCLEROSIS
In humans and mice, monocytes can differentiate into macrophages and myeloid lineage 
dendritic cells. Monocytes compose 2%–10% of all immune cells in the human body and 
play multiple roles in immune function. Monocytes are derived from the bone marrow and 
spleen and then released into the circulation for surveillance.68 In the event of infection 
or tissue damage, monocytes are recruited into the damaged tissue, where they regulate 
the inflammatory responses and tissue homeostasis. It has also been shown that recruited 
monocytes are the major precursor of the tissue macrophage population in certain 
pathogenic conditions. There are at least 3 subsets of monocytes in human blood based on 
their surface markers: classic CD14++CD16− monocytes, non-classic CD14+CD16++ monocytes, 
and intermediate CD14++CD16+ monocytes.68 Under normal conditions, CD14++CD16− 
monocytes are involved in recruitment into tissues and contribute to the maintenance of 
tissue macrophage populations. In contrast, non-classic CD14+CD16++ monocytes are less 
recruited to tissues in a CCR5-dependent manner.69 Intermediate monocytes are specifically 
enriched in the bone marrow and express high levels of surface receptors related to reparative 
processes. In mice, monocytes can be divided into 2 subpopulations: inflammatory Ly6Chigh, 
CCR2pos, CX3CR1low monocytes, which are comparable to human classical monocytes, and 
resident Ly6Clow, CCR2neg, CX3CR1high monocytes, which are equivalent to human non-
classical monocytes.7,68,70

In atherosclerosis, monocytes have been associated with plaque macrophages and 
disease progression due to their ability to trigger pro-inflammatory or anti-inflammatory 
macrophage states, and the levels of monocytes in the blood showed a strong correlation 
with the progression of atherosclerosis.7 Importantly, their activation states of monocytes 
are determined by local environmental cues and cytokine availability. Various inflammatory 
stimuli accelerate the production of bone marrow monocytes and the outflow of blood 
monocytes to the inflamed area. For example, in atherosclerosis, the modified lipoproteins 
give rise to the recruitment of monocytes into the subendothelial space.7 The monocytes 
then differentiate into macrophages capable of removing accumulated lipoproteins, a 
process that is initially thought to be a beneficial response. However, the sustained process 
ultimately leads to the accumulation of cholesterol-laden foam cells that contribute to 
plaque formation. In addition to modified lipoproteins, the local production of chemokines 
promotes the migration of monocytes from blood to tissue.7,68,70 For instance, CCL2 is highly 
expressed in atherosclerotic plaques and promotes the recruitment of CCR2+ monocytes. 
Other chemokines such as CCL5, CX3CL1, and CXCL12 promote the development and 
recruitment of bone marrow and blood monocytes.70 Once monocytes arrive at the inflamed 
tissues, monocyte-derived macrophages require colony-stimulating factor 1 (CSF-1) for their 
survival and maintenance.71,72 Recently, it has been shown that CSF-1 derived from local 
smooth muscle and endothelial cells supports plaque macrophage survival.73 In addition, 
rapid adaption and differentiation of monocytes in plaques requires CSF-1 receptor-
mediated signaling in aortic stromal cells and macrophages.71,72 Among the various subsets 
of monocytes, CD14+CD16++ monocytes are associated with maintaining the vasculature, 
cell survival, and localization within plaques through CX3CR1/CX3CL1 interactions in 
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atherosclerosis.69,74,75 In mice, CD14+CD16++ monocyte-deficiency in NR4A1 KO mice 
switched the activation states of macrophages toward an inflammatory phenotype and 
exacerbated endothelial dysfunction and atherosclerosis.76-78 In addition to the recruitment 
of monocytes to maintain and replenish the plaque foam cell pool, it can also be expanded 
by macrophage self-proliferation.79 However, the relative balance in atherosclerosis 
between macrophage proliferation and recruitment from blood is still somewhat unclear. 
While many tissue macrophages are replenished by circulating LyC6high monocytes during 
homeostasis, some tissue-resident macrophages such as microglia can exist independently 
of circulating monocytes. In general, Ly6Clow monocytes have less potential to differentiate 
into tissue-resident macrophages.80 In atherosclerosis, newly formed lesions mostly 
recruit monocytes from the circulation, but more advanced niches rely mainly on local 
macrophage proliferation, and the contribution of new monocyte recruitment is less 
substantial.79 Although the proliferating macrophages in advanced lesions initially derive 
from monocytes recruited from the blood, it is now clear that the balance between local 
macrophage proliferation and recruitment from blood is crucial for disease progression. This 
hypothesis is supported by the mouse regression model, in which Cre-mediated inhibition 
of liver lipoprotein production or ApoE KO aortic transplantation into wild-type mice can 
reset physiological blood LDL levels.43,81-84 In the setting of disease regression, the number of 
plaque macrophages decreases, and the remaining macrophages exhibit less inflammatory 
and more reparative phenotypes. After aortic transplantation, in regression lesions, most 
less inflammatory and reparative macrophages came from the blood circulation, indicating 
the recruitment of new monocytes into the arterial wall, even in the context of plaque 
regression.43 In the regression model, Ly6Chigh monocytes are newly recruited in a CCR2-
dependent manner and differentiated into reparative and less inflammatory macrophages 
through a STAT6 regulated differentiation program. Therefore, knowing exactly the 
difference between monocytes and monocyte-derived macrophages and tissue-resident 
macrophages at the site of local inflammation is necessary to understand the formation of 
foam cells and plaques and the progression of atherosclerosis.

SMC-DERIVED MACROPHAGES IN ATHEROSCLEROSIS

One of the most striking discoveries in recent studies is that not all macrophage foam 
cells are derived from macrophages or monocyte-derived macrophages. Although many 
studies have highlighted the formation of foam cells from monocyte-derived macrophages 
of atherosclerotic lesion formation, in fact, many foam cells are also derived from 
intima SMCs.85 Recent studies demonstrated that SMCs have the capacity to convert 
and transdifferentiate into macrophage-like cells that make up the foam cells present in 
plaque.86-88 Foam cells with at least enough features to identify the features of SMCs share 
relatively non-inflammatory gene expression profiles with more classical macrophage foam 
cells.56 In response to platelet-derived growth factor beta (PDGFβ) signaling, SMCs can lose 
their contractile phenotype and transdifferentiate into cells characterized by extracellular 
matrix production and a reparative function that heals and stabilizes the artery wall.89-91 
These SMCs thicken and stabilize the fibrous cap in atherosclerotic lesions. As the disease 
progresses, SMCs become one of the first cell types to take up and retain lipoproteins.92 Then, 
SMCs transdifferentiate into plaque foam cells when stimulated by microenvironmental 
signals and stimuli in plaques such as oxidized lipids, TGF-β and other cytokines.93-95 
Cholesterol itself has been shown to promote transdifferentiation of mouse SMCs into 
cells that induce high expression of macrophage markers CD68, ABCA1 and galectin 3.87 
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Interestingly, there are more foam cells that are not macrophages than have been thought. 
Co-staining with SMC and foam cell-specific markers illustrated that about 50% of foam cells 
in human atherosclerotic lesions are SMC-derived cells.96 Nevertheless, it remains unclear 
to what extent the origin and proportion of foam cells are derived from SMCs in terms 
of expression phenotype and trajectory, but lineage-tracing experiments in mice further 
suggested a better understanding of the underlying mechanism of transdifferentiation. 
For example, it is known that purified anti-SPI1, a major macrophage transcription factor, 
binds to the KLF4 promoter in response to PDGF signals in SMCs. Similar to the function 
of STAT6, KLF4 increases ZC3H12A expression, which inhibits nuclear factor κB function 
and activates the CCAAT/enhancer binding protein β and PPARγ pathways to drive SMC 
transdifferentiation and anti-inflammatory phenotypes.88,97,98 SMC-derived foam cells develop 
the above-mentioned macrophage markers and accumulate cholesterol and lipoproteins, but 
these SMC-derived foam cells are not considered bona fide macrophages because they do not 
have a phagocytic or efferocytotic capacity.99 In the meantime, it was difficult to isolate these 
cells from their monocyte-derived counterparts in experiments due to the gradual loss of 
SMC markers in SMC-derived foam cells,100 and this limitation was a challenge for research 
on SMC-derived foam cells. However, recent single-cell experimental techniques and lineage 
tracking methods are expected to reveal more about SMC-derived macrophages.

TARGETING INFLAMMATORY CYTOKINES IN 
ATHEROSCLEROSIS
Whether inflammatory or anti-inflammatory, macrophages in atherosclerosis are the 
major producers of cytokines, and these cytokines are closely associated with all stages 
of atherosclerosis. It has been shown that therapeutically targeting major cytokines such 
as TNF-α, IL-1β, and IL-17 is effective in a wide variety of inflammatory diseases including 
RA, SLE, and Crohn's disease. In atherosclerosis, medicines targeting lipid and cholesterol 
management have been the primary options so far, but new evidence has recently emerged 
that targeting cytokines that coordinate inflammation can relieve atherosclerosis.

The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS),101 the 
first test of anti-inflammatory treatment of atherosclerosis, was a clinical trial targeting 
therapeutically soluble IL-1β in patients. Canakinumab, which neutralizes IL-1β, was 
administered to patients with high-risk cardiovascular disease with a history of myocardial 
infarction and elevated high-sensitivity C reactive protein (hsCRP, >2 mg/L). IL-1β is secreted 
by myeloid cells such as macrophages and monocytes, as well as by arterial SMCs and 
endothelial cells.102-104 In atherosclerosis, the uptake of excessive oxLDL via CD36 produces 
intracellular cholesterol crystals that destabilize lysosomes and activate the inflammasome 
complex, leading to IL-1β secretion.48,50 Thus, NLRP3-inflammasome activation has been 
associated with numerous dysfunctions of plaque macrophages, including inflammation 
and impaired metabolism.105 The CANTOS trial demonstrated that therapeutically targeting 
IL-1β effectively decreased levels of IL-6 (an inflammatory cytokine) and hsCRP. A dose of 
150 mg exhibited a remarkable benefit in the primary endpoint examining recurrence of 
cardiovascular events between 3 and 4 years later. However, there was no difference in the 
overall mortality rate because the patients who received treatment had a high incidence of 
fatal infections. Notably, there was no change in cholesterol levels, which underscored the 
importance of inflammatory cytokines in atherosclerosis and suggested a potential cytokine-
targeting approach for the treatment of atherosclerosis. In contrast to the implications 

260https://doi.org/10.12997/jla.2021.10.3.251

Macrophage Activation in Atherosclerosis

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



of the CANTOS results, neutralizing IL-1β antibodies in mice at advanced atherosclerotic 
states reduced SMC remodeling and fibrous cap formation and eventually led to elevated 
plaque vulnerability.106 Taken together, these results imply that IL-1β may have multiple 
deleterious or beneficial effects dependent on the stage of atherosclerosis, and more detailed 
mechanisms should be explored for clinical applications. Besides targeting IL-1β, anti-
inflammatory approaches are being attempted to target inflammatory cytokines such as 
TNF-α and IL-6, which are well known to be associated with the pathological mechanisms 
of atherosclerosis. However, the limited success of IL-1β blockade and unexplored 
questions of these pathways and mechanisms have presented both potential possibilities 
and disappointments. Broadening our understanding of tissue-specific macrophage and 
monocyte differentiation programs will enable targeted treatments specific to atherosclerosis 
without perturbing a wide range of inflammatory pathways.

CONCLUSION

In this review, we described recent evidence and emerging concepts in the basic 
understanding of macrophages in atherosclerosis. Atherosclerosis is a chronic inflammation-
driven disease, and macrophages play an important role in controlling inflammation in 
all stages of atherosclerosis. In atherosclerosis, macrophages respond to dyslipidemia, 
cytokines, dying cells, and hypoxia and exhibit heterogeneity in their activation state 
depending on the type of stimulus they receive. The heterogeneity of this activation state 
includes foam cells and plaque macrophages, along with typical inflammatory and anti-
inflammatory macrophages. In the field of basic biology, surprising results have been 
found over the past decade, but there are still many shortcomings in understanding the 
pathogenesis of atherosclerosis. In this regard, it is necessary to understand more about the 
metabolic and epigenetic regulation of macrophages and the heterogeneity and plasticity 
of macrophages across multiple stages of atherosclerosis. Emerging concepts about 
metabolic and epigenetic regulation, such as innate immune memory, will greatly aid in 
a better understanding of foam cell formation and advanced or fragile plaques. Distinct 
effector responses, such as phagocytosis, cytokine production, and cholesterol modulation, 
depending on the macrophage phenotype should be further studied. The CANTOS trial 
positively suggested that inflammation can be targeted in atherosclerosis to reduce clinically 
important cardiovascular disease. Besides targeting inflammatory cytokines, using the 
plasticity of macrophages to rebalance dysregulated inflammatory responses would be 
a promising therapeutic target for atherosclerosis because it would enable more tissue-
specific and disease-specific modulation. Flexible but tight regulation of macrophages by 
interfering with epigenetic and metabolic factors will form the basis for interventions to 
rebalance inflammation and macrophage activity. In particular, characterizing the chromatin 
landscape of pathogenic cells such as plaque macrophages can help pinpoint the targeting 
of macrophage-type specific gene expression programs. Furthermore, since the complex 
environment within atherosclerotic plaques in vivo simultaneously affects macrophages 
and monocyte-derived macrophages, investigating the effects of signaling crosstalk on 
inflammatory responses can help us to understand macrophage activation in plaques and to 
develop targeted therapeutic approaches.
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