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a b s t r a c t

Principal component analysis (PCA) is a useful tool for omics analysis to identify underlying factors and
visualize relationships between biomarkers. However, this approach is limited in addressing life com-
plexity and further improvement is required. This study aimed to develop a new approach that combines
mass spectrometry-based metabolomics with multiblock PCA to elucidate the whole-body global meta-
bolic network, thereby generating comparable metabolite maps to clarify the metabolic relationships
among several organs. To evaluate the newly developed method, Zucker diabetic fatty (ZDF) rats
(n = 6) were used as type 2 diabetic models and Sprague Dawley (SD) rats (n = 6) as controls.
Metabolites in the heart, kidney, and liver were analyzed by capillary electrophoresis and liquid chro-
matography mass spectrometry, respectively, and the detected metabolites were analyzed by multiblock
PCA. More than 300 metabolites were detected in the heart, kidney, and liver. When the metabolites
obtained from the three organs were analyzed with multiblock PCA, the score and loading maps obtained
were highly synchronized and their metabolism patterns were visually comparable. A significant finding
in this study was the different expression patterns in lipid metabolism among the three organs; notably
triacylglycerols with polyunsaturated fatty acids or less unsaturated fatty acids showed specific accumu-
lation patterns depending on the organs.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Comprehensive analysis ‘‘omics” is a new approach to address
life complexity [1]. Metabolomics clarifies disease-associated bio-
chemical activities using noninvasive samples such as blood and
urine [2,3]. The most significant issue for metabolomics research
is handling enormous amount of data to uncover the underlying
cellular messages. However, since the data obtained from a single
organ is large, the data collected from multiple organs (or multiple
regions) becomes considerable to handle effectively [4,5]. Classical
pathway analysis is limited in eliciting latent biological functions
as detected metabolites are usually assigned to already known
metabolic pathways; consequently, unknown functions or rela-
tions are rarely discovered [6].

PCA has been widely used in metabolomic analysis to identify
underlying factors or to visualize the relationships between
biomarkers [7]. However, its ability is limited in addressing com-
plex and considerable metabolomics data. PLS-DA and OPLS-DA,
the extension models of PCA, are powerful tools to discover signif-
icant biomarkers distinguishing two or more groups [8,9]; how-
ever, these tools are disadvantageous in overviewing metabolic
expression patterns or elucidating the relationship between
biomarkers. Several metabolomic studies with PCA have been con-
ducted to uncover domain-specific metabolism using multiple tis-
sues [10]; however, the small metabolic changes in some domains
are often obscured by the large metabolic changes in the other
domains. Since the fundamental function of PCA is to simplify data
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while retaining data variation [7], conventional PCA is limited in
highlighting minor changes when handling several block data.
Recently, several PCA methods dealing with multiple blocks have
been developed to improve the interpretation of complicated
events [11–18], of which multiblock PCA has been used for meta-
bolomics [19,20]. However, these have been only to reduce the
complexity of multiple data; therefore, multiblock PCA has not
yet addressed the issue of domain-specific metabolism.

Here, we propose ‘‘multiblock metabolomics” to elucidate
whole-body metabolism by combining capillary electrophoresis
mass spectrometry (CE/MS) [21] and LC/MS metabolomics with
multiblock PCA. This approach was evaluated by analyzing the
heart, kidney, and liver of a type 2 diabetes rat model, Zucker dia-
betic fatty (ZDF) model [22]. This murine model has a mutation in
the leptin receptor, accompanied by enhanced b-cell destruction
and impaired glucose homeostasis. Since the metabolism of this
model has been analyzed using urine, plasma, or a single organ
[23], multiple organ analysis will provide new insights regarding
the entire metabolism in diabetic rats. SD rats were used as a con-
trol; these are widely used as a control for diabetic studies using
the ZDF model [24–27].

2. Materials and methods

2.1. Algorithm for multiblock PCA strategies

The multiblock PCA program was generated following Hassani’s
method [16]. The procedure is briefly summarized below.

2.1.1. Preparation
Matrix Xb, composed of N (samples) � Kb (metabolites), was

individually prepared for the heart (b = 1), kidney (b = 2), and liver
(b = 3). The sample number N was 12, including SD rats (n = 6) and
ZDF rats (n = 6), which were common in the heart, kidney, and
liver; however, the number of detected metabolites (Kb) changed
depending on the organ. Unit-variance scaling and zero-average
centering of the matrix were conducted for all Xb values.

2.1.2. Initialization
An arbitrary starting global score vector t (N � 1) was chosen.

2.1.3. Computation of block loadings (for b = 1, 2, 3)
All blocks of Xb were regressed using the t global score to obtain

the block loading vector pb (Kb � 1).

p
�b ¼ Xbt= t0tð Þ

pb ¼ p
�b=k p

�b k : Block loadings
2.1.4. Computation of block scores for b = 1, 2, 3

tb ¼ Xbpb : Block scores
2.1.5. Computation of global score and block weights
All block scores were combined to the T global score matrix

(N � b).

T ¼ t1t2t3
� �

The T global score matrix was regressed by the global score vec-
tor t, resulting in the global weight vector w (b � 1) as the regres-
sion coefficient.

w ¼ T 0t : Blockweights
1957
2.1.6. Normalization
The global weights were normalized to length one, and a new

global score vector, t, was calculated.

w to wj jj j ¼ 1
t ¼ Tw

This algorithm iterates until convergence was achieved. Defla-
tion was performed with the block loading pa

b, and the residual
matrix Xa+1

b was calculated as follows: The second component
was calculated using Xa+1

b (where a is the number of components).

Xb
aþ1 ¼ Xb

a � tbap
b
a

As with conventional PCA, the block score vector t of multiblock
PCA represents the similarity of samples (SD or ZDF individuals),
and the block loading vector p of multiblock PCA represents the
similarity of metabolites.
2.2. Materials

Ammonium acetate was obtained from FUJIFILM Wako Pure
Chemical Corporation (Osaka, Japan), and methanol and acetoni-
trile were purchased from Kanto Chemical Corporation (Tokyo,
Japan). We purchased 1379 authentic standards listed in Chemi-
cals.xlsx in the Supplementary Data to identify metabolites. Stan-
dards were dissolved in Milli-Q water (Millipore, Bedford, MA,
USA), 0.1 mol/L acetic acid (Kanto Chemical Corporation),
0.1 mol/L ammonium hydroxide (FUJIFILM Wako Pure Chemical
Corporation), or 50% methanol aqueous solution to obtain stock
solutions.
2.3. Samples

The heart, liver, kidney, and plasma of eight-week-old male ZDF
(n = 6) and SD rats (n = 6) were obtained from KAC (Kyoto, Japan).
All breeding and experimental procedures were performed accord-
ing to the following Japanese animal welfare laws: ‘‘Act on Welfare
and Management of Animals” (1973); ‘‘Standards relating to the
Care and Keeping and Reducing Pain of Laboratory Animals” (Min-
istry of the Environment, Japan, 2006); and ‘‘Basic guidance about
animal experiment in the Health, Labour and Welfare Ministry
competent organization” (enacted by the Ministry of Health,
Labour and Welfare, Japan, 2006).
2.4. Preparation of rat tissues

Approximately 100 mg of tissue was transferred to tissue dis-
ruptor tubes supplied by Yasui Kikai (Osaka, Japan) and shaken
with iron cones cooled in liquid nitrogen. Tissue powders were
suspended with 1 mL of water and then mixed with 2 mL of metha-
nol and chloroform, respectively. After mixing using a shaker for
15 min, samples were centrifuged at 1000 � g for 10 min. Super-
natants were transferred to 15-mL Falcon tubes and dried under
a nitrogen stream at 40 �C [28]. The lower layers were transferred
to LC vials and analyzed via LC/MS (lipid). Dried residues of the
supernatants were dissolved with a 200-mL of 10% acetonitrile
and 90% water solution, and then analyzed using CE/MS and LC/
MS (hilic). Twelve samples were analyzed twice for each of the
platforms: CE/MS, LC/MS (hilic), and LC/MS (liquid) analyzed by
both positive and negative polarities. The averages of the two data-
sets were obtained as expression values. Quality control (QC) was
prepared by pooling 12 samples and was analyzed for every six
measurements. Five QCs were analyzed in each run. The coefficient
of variance (CV%) of every metabolite was calculated using five
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QCs, and metabolites with more than 50% CV were omitted from
the data table.

2.5. CE/MS-metabolomics

CE/MS experiments were performed using an Agilent CE capil-
lary electrophoresis system (Agilent Technologies, Waldbronn,
Germany) and an Agilent 6520 QTOF system (Agilent Technologies,
Palo Alto, CA, USA). Cationic separation was performed in fused-
silica capillaries (50 mm i.d. 100 cm total length) filled with
1 mol/L formic acid [28], and anionic separation was conducted
with 20 mmol/L ammonium acetate and 20 mmol/L ammonium
formate (pH 10) [29] as the electrolyte. Sample solutions were
injected at 50 mbar for 10 s, and a voltage of 30 kV was applied.
The capillary temperature was not controlled (at room tempera-
ture), and the temperature of the sample tray was maintained at
4 �C using an external thermostatic cooler. The sheath liquid
(methanol/water, 50% v/v) was delivered at 8 mL/min. ESI-TOF-
MS was conducted in both positive (cationic) and negative (an-
ionic) ion modes. The capillary voltage was set to 3 kV, and the
flow rate of nitrogen gas (heater temperature 300 �C) was set to
10 psi. Exact mass data were acquired over a 60–1200 m/z range
in the full scan mode.

2.6. LC/MS- hilic mode

LC/MS (hilic) analyses were performed using an Agilent 1290
series UPLC system equipped with a 6520 quadrupole TOF system
(Agilent Technologies, Palo Alto, CA, USA) operated by the Mas-
shunter Workstation B.04.01 software. The analytical column was
a CAPCELL PAK C18 IF 2.0 mm I.D. � 50 mm, 2 mm (Osaka Soda,
Osaka, Japan). The mobile phase consisted of two solvents: eluent
A was water/ammonium acetate (5 mmol/L), and eluent B was ace-
tonitrile. Metabolites were eluted at a flow rate of 0.2 mL/min at
40 �C with a linear gradient of 10–100% of eluent B over 10 min
with a further 5 min hold at 100% of solvent B. The injection vol-
ume was 10 lL. Mass spectrometric analysis was performed in
both positive and negative ionization modes with a scan rate of 2
spectra/s, mass range of 60–1200 (m/z), capillary voltage of
3500 V, and fragmentor setting of 120 V. The pressure of the neb-
ulizer was 40 psi, the gas temperature was 350 �C, and the contin-
uous gas flow was 8 L/min [30–32].

2.7. LC/MS-lipid mode

LC/MS (lipid) experiments were performed using an Agilent
1290 series UPLC system equipped with a 6220 TOF system (Agi-
lent Technologies, Palo Alto, CA, USA) operated by the Masshunter
Workstation B.04.01 software. Lipids were separated using Agilent
EC-C18 Poroshell columns (2.1 � 5 mm and 2.1 � 150 mm) with a
particle size of 2.7 lm and pore size of 120 Å. The mobile phase
comprised solvent A (5% water, 47.5% acetonitrile, and 47.5%
methanol) and solvent B (10 mmol/L ammonium acetate in 1%
water and 99% isopropyl alcohol) [33]. The gradient cycle began
with a solvent composition of 90% solvent A and 10% solvent B
and reached a solvent composition of 55% solvent B within
10 min. The injection volume was 1 lL. The mass spectrometer
was operated in both positive and negative modes with a mass
range of 50–2000 m/z, and the capillary voltage was set to
4000 V. The nebulizing gas pressure was 40 psi, and the dry gas
flow rate was 8 L/min at 350 �C.

2.8. Data analysis

Raw data obtained from the mass spectrometer were converted
to CSV-type using a mass Hunter Export (Agilent Technologies).
1958
The converted CSV data comprised m/z, retention time, and inten-
sity. Data processing was performed in the following sequence: 1)
peak picking (identifying peak positions and areas), 2) bias correc-
tion of retention time and m/z, 3) peak alignment, 4) noise reduc-
tion, 5) bias correction of peak intensity, and 6) peak identification.
All processes were performed using the Marker analysis [34]. All
peak areas were divided by the area of the internal standard to
avoid injection-volume and mass-spectrometry detector sensitiv-
ity bias among multiple measurements. Furthermore, peaks were
normalized by wet tissue weights. Peak areas with a signal-to-
noise ratio of less than three were converted to zero. Then, isotopic,
fragment, and adduct ions were eliminated, and the peak datasets
were compared across the samples and aligned according to both
m/z and retention time. Noise peaks in the samples were recog-
nized by comparison with blank preparation samples. Peaks
detected in samples were identified based on the matchedm/z val-
ues and the normalized retention times of the 1379 standards pur-
chased from reagent manufacturers (‘‘Chemicals.xlsx in
Supplementary Data); all standards were previously analyzed
using the same platforms. When several metabolite candidates
were simultaneously identified, MS/MS analysis was carried out
to confirm the structure by matching the fragmentation patterns
with those of the candidates. Although all metabolites were quan-
tified separately, the sum of the quantified values of several iso-
mers, such as citrate and isocitrate, were counted as a single
marker due to low peak separation. Recovery and stability of each
metabolite was not assessed. The multiblock PCA program was
developed with reference to Hassani’s architecture [16] using Excel
VBA.
3. Results

3.1. Overview of the metabolome analysis of the heart, kidney, and
liver of ZDF rats

Metabolomics data acquired from CE/MS and LC/MS (hilic and
lipid modes) were integrated into a data table for each organ. In
total, 334, 442, and 363 metabolites were detected in the heart,
kidney, and liver, respectively, of which 203 were common
amongst the three organs (Figure S1A). To overview the ZDF rat
metabolism, 203 metabolites were analyzed using classical meta-
bolomic approaches, that is, correlation, volcano plot, metabolic
pathway, and heat map analyses. The correlation analysis was to
understand the similarity of metabolic expression patterns among
the three organs. Positive correlations represent similar metabolic
patterns between the two organs, whereas negative correlations
indicate dissimilar metabolism. Correlation coefficients calculated
from 12 samples (six SD rats and six ZDF rats) for the 203 common
metabolites between the two organs (heart vs. kidney, kidney vs.
liver, and liver vs. heart) are shown in Figure S1B. These results
showed that the metabolism patterns of the liver and kidney were
relatively similar (70% of the correlation coefficients were posi-
tive), whereas the positive correlation ratios for heart vs. liver
and heart vs. kidney were 52% and 43%, respectively, suggesting
that metabolism in heart was different from the others. Several
methylated compounds, including methylimidazoleacetic acid
and 1-methyladenosine, were highly correlated among the three
organs (Figure S1B). Both these metabolites are mostly detected
in urine as end products of metabolism, suggesting that end prod-
ucts will exhibit a high correlation between multiple organs. Vol-
cano plots highlight metabolites that significantly increase or
decrease in concentration in each organ [35]. This approach
revealed a significant increase in linoleate levels (18:2n6) and a
decrease in UDP-galactose levels in ZDF rat hearts (Figure S1C).
These metabolite behaviors are related to the inhibition of
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glycolysis and enhanced lipid metabolism in rat hearts during dia-
betes development [36]. Volcano plot analysis facilitates the dis-
covery of new biomarkers; however, this method is limited in
revealing biological mechanisms as it does not show the relation-
ships among these metabolites. Metabolic pathway analysis pro-
vides an overview of metabolic dynamism between SD and ZDF
rats, and between their organs (Fig. 1). The most significant advan-
tage of this approach is the pursuit of critical points that affect
metabolism. For example, the concentration of 1-
methylnicotinamide in ZDF hearts decreased remarkably even
though levels of the precursor (nicotinamide) increased compared
with those in control SD rats, implying that the reaction from
nicotinamide to 1-methylnicotinamide was inhibited by some dia-
betic factors in ZDF rats. Similarly, the hypoxanthine concentration
in ZDF hearts increased significantly, whereas that of the precursor
adenine decreased suggesting that this metabolism was promoted
Fig. 1. Metabolite pathway analysis. Pathways of glycolysis, pentose phosphate, tricarbo
[H_SD], SD heart; green [H_ZK], ZDF heart; light purple [K_SD], SD kidney; purple [K_ZK
behaviors between the precursor and product (e.g., nicotinamide to 1-methylnicotinam
graphs. (For interpretation of the references to colour in this figure legend, the reader is

1959
in ZDF rat hearts. Levels of triacylglycerols (TGs) containing short
fatty acid esters were increased in ZDF rats, whereas those of long
fatty acid esters decreased. This meant that fatty acid beta oxida-
tion was promoted in ZDF rats resulting in increased TG levels with
short fatty acids. Metabolite pathway analysis is effective when
these opposite changes are observed before and after a reaction,
indicating that enzyme activities change at these points. However,
as shown in Fig. 1, the levels of many metabolites randomly and
independently changed regardless of their precursor or post-
product behaviors, which implied that unknown feedback mecha-
nisms existed in the metabolism. Heatmap analysis can reveal
which metabolic fields are most influenced by diabetes [37]. Here,
there were significant increases in free fatty acid and phos-
phatidylcholine content in the heart and kidney of ZDF rats (Fig-
ure S2). Although heatmap analysis was useful for overviewing
metabolism, it was ill-suited to elucidate minor biological changes.
xylic acid (TCA), purine, and lipid metabolism are shown as bar graphs: light green
], ZDF kidney; light blue [L_SD], SD liver; and dark blue [L_ZK], ZDF liver. Opposite
ide or adenine to hypoxanthine in the heart) are highlighted with magnified bar
referred to the web version of this article.)
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3.2. Multiblock metabolomics

Traditional approaches provide a rough understanding of meta-
bolic changes in each organ caused by diabetes; however, they are
limited in their ability to clarify complex metabolic networks
between organs. Multiblock metabolomics aims to elucidate the
underlying metabolic relationships among several organs that
these traditional approaches cannot achieve. The data structure
of the multiblock metabolomics is shown in Fig. 2A. In contrast
to conventional metabolomics, data structures become three-
dimensional (individuals � metabolites � organs). The multiblock
metabolomic scheme is shown in Fig. 2B. After combining CE/MS,
LC/MS (hilic mode), and LC/MS (lipid mode) into one sheet,
metabolites were identified based on elution times and m/z of
standard metabolites. The data tables obtained for the heart, kid-
ney, and liver were analyzed using the multiblock PCA algorithm
(Fig. 2C). As with conventional PCA, block score vector t of multi-
block PCA represented the similarity of samples (SD or ZDF individ-
uals), and block loading vector p of multiblock PCA represented the
similarity of metabolites.

3.3. Comparison of multiblock-PCA and solo-PCA

We analyzed the metabolomic data obtained from the heart,
kidney, and liver using multiblock and solo-PCA to compare their
performances. Solo-PCA was performed individually for each organ
using conventional PCA architecture. Explained variance of the
model indicates the degree of extracted information where values
close to 100% indicate high reliability. The explained variances of
the first component in multiblock PCA were 2.8%, 1.5%, and 0.1%
less than those of solo-PCA for the heart, kidney, and liver, respec-
tively (Fig. 3A). The explained variances of solo-PCA are theoreti-
cally larger than those of multiblock PCA; however, the degree of
losses in multiblock PCA was limited. The block scores (t values)
of multiblock PCA obtained from the heart, kidney, and liver were
nearly equal, whereas those of solo-PCA were unequal, especially
in the second and third components (Figure S3). Symmetries of
block scores between two organs were evaluated using inner prod-
ucts for t vectors with the following equation: cos h p,q = tpt�tq /
(||tp||�||tq||), where p or q = heart, kidney, or liver. These values
range between � 1 and 1, where values closer to 1 indicate high
symmetry. The symmetries of t scores in multiblock PCA were evi-
dently much higher than those of solo-PCA, indicating that the
Fig. 2. Multiblock metabolomics scheme. (A) Multiblock metabolomics requires a th
Metabolomics data obtained from CE/MS and LC/MS (hilic and lipid modes) were merg
matched m/z values and normalized retention times of the corresponding standard com
matrices were integrated using multiblock PCA. (C) Multiblock PCA architecture: ❶All blo
p1,2,3. ❷The block scores t1,2,3 were calculated with the normalized block loadings p1,2,3

combined to a global score matrix T. ❹The global score matrix T was regressed by the glo
to length one and a new global score vector t was then calculated.

1960
block p loadings of each organ calculated by multiblock PCA were
also comparable (Fig. 3B). Solo-PCA maximizes the variance of each
dataset regardless of the other dataset; thus, axis orientations were
set independently from the dataset of other organs. However, the
orientations of multiblock PCA depended on the other organs,
and the axis orientations showed nearly identical directions. The
block score plots with the first and second components generated
by multiblock PCA were highly synchronized among the three
organs, whereas those of solo-PCA did not (Fig. 3C).

3.4. Elucidation of metabolism with multiblock PCA loadings

The multiblock PCA generates block scores and loading values
among the target organs. Clear separations of ZDF and SD groups
were observed in the score maps given by multiblock PCA
(Fig. 3C), with the ZDF group located on the right side (positive side
of the first component) for all organs. These observations mean
that the metabolites plotted on the right side of the loading maps
increase in the ZDF group as the block score and loading maps are
synchronized. The axes of each component in the three organs
showed the same directions; therefore, the similarity or dissimilar-
ity of metabolite expression patterns in the three organs were
comparable.

Linoleate content (18:2n6), which significantly increased in the
ZDF rat heart but decreased in the ZDF rat liver in volcano plot
analysis (Figure S1C), was located on the right side of the heart
and the left side of the liver in the block loading plots (Fig. 4A). This
indicated that the linoleate (18:2n6) expression pattern was com-
pletely opposite in the heart and liver, and multiblock PCA clearly
identified these metabolite patterns. Methylimidazoleacetic acid,
which showed high correlations between the three organs (Fig-
ure S1B), was located in the same direction (lower right side) in
the three block loading maps (Fig. 4B), indicating that metabolites
with the same expression pattern were in the same direction of the
block-loading maps. Glycerone phosphate is a major metabolite of
glycolysis and is generated from D-fructose 1,6-bisphosphate and
then transformed to pyruvate via glyceraldehyde 3-phosphate.
Pyruvate further reacts with CoA to generate acetyl-CoA, or is
transformed to L-lactate under anaerobic conditions. Fig. 4C illus-
trates the expression patterns of glycerone phosphate, pyruvate,
and L-lactate in the three organs. Glycerone phosphate was located
on the right side of both the heart and liver maps, suggesting that
glycolysis in ZDF rats was disrupted by diabetic factors and that
ree-dimensional data structure, metabolites, individual samples, and organs. (B)
ed into one data table. After noise reduction, peaks were identified based on the
pounds. This process was repeated for the heart, kidney, and liver, and three data
cks of X1,2,3 were regressed by an arbitrary global score t to obtain the block loadings
using the following equation: tb = Xb pb where b = 1, 2, 3. ❸All block scores were
bal score vector t, resulting in the global weights. ❺ Global weights were normalized



Fig. 3. Comparison of multiblock PCA and solo PCA. Multiblock and solo-PCA were performed with the metabolomic data of the heart, kidney, and liver. (A) The explained
variances (%) are indicated by black (solo) and gray (multiblock) bars for the first three components. (B) The cos h values of the t block scores in the solo and multiblock PCAs
are indicated by black and gray bars, respectively. HK: cos h between heart and kidney, KL: cos h between kidney and liver, LH: cos h between liver and heart. (C) The tb block
scores of the first and second components are plotted for the multiblock and solo PCAs for the three organs. Six SD rats and six ZDF rats are plotted as light blue and red solid
circles in the scatter plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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glycerone phosphate accumulated in the ZDF rat heart and liver.
Pyruvate and L-lactate were also located on the right side of the
heart and liver maps, respectively, a result of sluggish tricarboxylic
acid metabolism; low-level oxygen supply increases L-lactate con-
tent in the liver more than that in the heart. D-erythrose 4-
phosphate, D-ribulose 5-phosphate, and D-gluconic acid, which
are metabolites of the pentose phosphate pathway, are also impor-
tant for glucose metabolism. These were located on the right side
of the heart map, implying that the pentose phosphate pathway
metabolism was stagnant in the heart, whereas these phenomena
were not observed in the kidney and liver (Fig. 4D). In metabolic
pathway analysis (Fig. 1), there was a significant increase in hypox-
anthine levels and a decrease in adenine levels in the heart, which
implied that adenine aminohydrolase activity in the ZDF rat heart
was promoted. When adenine and hypoxanthine were plotted on
the loading maps, hypoxanthine was located at a symmetric posi-
1961
tion to adenine with its precursor AMP and adenosine, which indi-
cated that the reaction from adenine to hypoxanthine was
promoted (Fig. 4E).

3.5. Clustering multiblock PCA loadings

Clustering multiblock loading p values help with the under-
standing of small differences in metabolite expression patterns
among organs. Clustering was performed for multiblock loading
p values with metabolite categories, such as amino acids, bile acids,
fatty acids, and triacylglycerol (Fig. 5A). The results revealed that
metabolites in the same categories were not always classified into
the same clusters. The fatty acid group was divided into two major
groups: highly unsaturated fatty acids (FA group 1) and less unsat-
urated fatty acids (FA group 2). FA group 1 included arachidonic
acid (20:4), docosapentaenoic acid (22:5), and docosahexaenoic



Fig. 4. Simultaneous multiorgan analysis with multiblock PCA. Scattered block loading plots generated by the multiblock PCA for the heart, kidney, and liver were aligned
horizontally: linoleate (A), methylimidazoleacetic acid (B), glycolysis (C), pentose phosphate pathway (D), and AMP-related metabolites (E). All metabolites are plotted as
light gray circles to clarify the relative locations.
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acid (22:6), and FA group 2 included palmitic acid (16:0) and stea-
ric acid (octadecanoic acid) (18:0). FA group 1 was located on the
right side of the heart block loading map (Fig. 5B), which meant
that the unsaturated fatty acid levels increased significantly in
the ZDF rat hearts compared with those in the SD rat hearts. The
FA group 2 was also located on the right side of the heart map;
1962
however, this was closer to the origin, which indicated that the
increases of fatty acids belonging to FA group 2 was less striking
compared with those in the FA group 1. Contrastingly, FA group
1 in the kidney was located on the left side of the map, indicating
that unsaturated fatty acid expression patterns in the kidney were
completely different from those in the heart. Triacylglycerols were



Fig. 5. Combination of cluster analysis and multiblock PCA. (A) The multiblock PCA block loading p values of 203 commonly detected metabolites in the three organs were
classified by cluster analysis based on their metabolite categories. (B) Free fatty acids belonging to FA groups 1 and 2 are plotted as brown solid circles in the heart, kidney,
and liver block loading maps. (C)Triacylglycerols belonging to TG groups 1 and 2 are plotted with violet solid circles for the first and second component loading maps in the
heart, kidney, and liver. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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also classified into two groups: those with long and highly unsat-
urated fatty acids (TG group 1), and those with short and less
unsaturated fatty acids (TG group 2). TG group 1 included TG
(54:5), TG (56:6), and TG (58:9), and TG group 2 comprised TG
(44:1), TG (46:1), TG (48:1), etc. Both TG groups 1 and 2 were
located at the top of the heart map, whereas both groups were
located at the bottom of the kidney map, indicating that TG expres-
sion patterns in the heart and kidney were opposite (Fig. 5C). TG
group 1 in the heart was shifted slightly to the left compared to
TG group 2, indicating that the levels of TGs with long and highly
unsaturated fatty acids in the heart decreased slightly in ZDF rats
compared with SD rats. TG group 2 was concentrated on the right
side of the liver map, whereas TG group 1 was on the left side, indi-
cating that TG group 2 was highly accumulated in the ZDF liver,
even though TG group 1 was not.
4. Discussion

Here, we propose multiblock metabolomics that combines mass
spectrometry-based metabolomics with multiblock PCA to eluci-
date metabolic networks among multiple organs. Since organs
have intrinsic roles and mutually interact in an individual organ-
ism, single-organ analysis is limited in understanding an entire
body mechanism. A notable discovery of this study was to reveal
1963
organ-specific lipid metabolism, levels of TGs with long and
polyunsaturated fatty acids decreased significantly, whereas those
of TGs containing saturated or less unsaturated fatty acids
increased in the ZDF rat liver. Although previous studies have
shown TG levels in the liver of diabetic models to increase com-
pared to non-diabetic models [39], our study revealed that TG
accumulation patterns changed depending on the TG class and
organs. These findings suggest that TG accumulation is related to
fatty acid-binding proteins (FABPs) that specifically localize in each
organ. FABPs are categorized into several families, including liver-
FABP (FABP1), heart-FABP (FABP3), and brain-FABP, and they are
involved in the binding, transport, and metabolism of long-chain
fatty acids [38]. FABPs are controlled by peroxisome proliferator-
activated receptors (PPARs), which bind to fatty acids or hydropho-
bic agonists. Wang et al. demonstrated the relationship between
PPAR-c activity and FABP expression using a c-c agonist, and
revealed that the expression of FABP1 and FABP3, controlled by
PPAR-c, was completely independent [40]. This finding supports
our results on the different TG accumulation patterns among the
heart, kidney, and liver (Fig. 5C). Jönsson et al. observed an increase
of saturated and less unsaturated fatty acids, and a decrease of
polyunsaturated fatty acids in the serum of ZDF rats [41]. This phe-
nomenon was also observed in the TGs of ZDF rat liver in our
study; however, it was limited to the liver and was not observed
in the other organs. Kubota et al. investigated rice bran to improve
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diabetic conditions using ZDF rats and revealed that some proteins
in rice bran induced b-oxidation and alleviated the diabetic condi-
tion [42]. They also revealed a significant increase of pyruvate in
the liver during the improvement; this phenomenon was also
observed in our study (if SD is considered an improved state,
Fig. 4C). However, this phenomenon was only observed in the liver,
and the expression pattern in the heart was opposite.

5. Conclusion

In this study, we developed multiblock metabolomics that com-
bined mass spectrometry-based metabolomics and multiblock
PCA. The biggest advantage of multiblock metabolomics is the gen-
eration of highly synchronized loading maps that can visually com-
pare metabolic expression patterns among multiple organs. We
revealed organ-specific TG accumulation in a ZDF rat model using
this platform. We conclude that metabolism patterns differed
depending on the organs, and investigating multiple organs is nec-
essary to understand entire body metabolism.
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