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A B S T R A C T   

Probability distributions offer the best description of survival data and as a result, various lifetime 
models have been proposed. However, some of these survival datasets are not followed or suf-
ficiently fitted by the existing proposed probability distributions. This paper presents a novel 
Kumaraswamy Odd Ramos-Louzada-G (KumORL-G) family of distributions together with its 
statistical features, including the quantile function, moments, probability-weighted moments, 
order statistics, and entropy measures. Some relevant characterizations were obtained using the 
hazard rate function and the ratio of two truncated moments. In light of the proposed KumORL-G 
family, a five-parameter sub-model, the Kumaraswamy Odd Ramos-Louzada Burr XII 
(KumORLBXII) distribution was introduced and its parameters were determined with the 
maximum likelihood estimation (MLE) technique. Monte Carlo simulation was performed and the 
numerical results were used to evaluate the MLE technique. The proposed probability distribu-
tion’s significance and applicability were empirically demonstrated using various complete and 
censored datasets on the survival times of cancer and diabetes patients. The analytical results 
showed that the KumORLBXII distribution performed well in practice in comparison to its sub- 
models and several other competing distributions. The new KumORL-G for diabetes and cancer 
survival data is found extremely efficient and offers an enhanced and novel technique for 
modeling survival datasets.   

1. Introduction 

Diabetes and cancer are prevalent medical conditions that pose a serious threat to public health worldwide. Millions of people are 
diagnosed with these noninfectious diseases each year, and many of them die as a result of the complications of these illnesses. Cancer 
and diabetes are among the top 10 causes of death globally, accounting for approximately 10 million (one in every six) and 1.5 million 
deaths, respectively in 2020 [1,2]. Statistical models have contributed much to reducing the case burden of cancer and diabetes 
through prudent decisions from research. These models have frequently been used to model large datasets, including demographic, 
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clinical, genetic, and behavioral risk factors collected on patients’ survival times. Several research studies have used statistical 
modeling approaches in healthcare management. Notable among these are De Villiers et al. [3], Lama et al. [4], Sandberg et al. [5], 
Altaf-Ul-Amin et al. [6], Ratnovsky et al. [7], Onchonga et al. [8], and Illescas et al. [9] which provide more details. 

Numerous statistical models have been suggested and applied owing to the acknowledged significance of statistical models in 
healthcare management. For example, El-Morshedy et al. [10] employed an updated form of the Weibull model to simulate bladder 
cancer and leukemia patients. Kumar and Nair [11] offered a version of the log-inverse Weibull distribution to model cancer datasets, 
Liu et al. [12] suggested the arcsine-modified Weibull model to study and assess the COVID-19 patients’ survival rates in China, while 
Mohammed et al. [13] developed a new lifetime Weibull density for the analysis of bladder cancer datasets, and Klakattawi [14] 
developed a novel, extended Weibull model to examine patient survival rates across different cancer subtypes. The power Lomax 
distribution for bladder cancer patients’ remission periods was examined by Rady et al. [15]. At the same time, Shah et al. [16] 
introduced a novel generalized logarithmic Weibull density and applied it to head cancer data. 

Although a wide range of distributions is available in the statistical literature for modeling healthcare and biomedical data, not all 
the salient statistical features, particularly the skewness patterns in the data are captured or modeled. Besides, most of these distri-
butions are less adaptable and unfit in various scenarios for various survival datasets. Thus, it becomes necessary for new probability 
distributions to be developed to expand and generalize those that already exist. These newly proposed generated distributions typically 
are more flexible, and better suited to explain circumstances in healthcare survival data. In this regard, diverse studies have proposed 
and used various strategies to develop new families of distributions. Most of these generated families can be found in Mahmood et al. 
[17], Marshall and Olkin [18], Rastic and Balakrishnan [19], Cordeiro and de Castro [20], Alzaatreh and Ghosh [21], Bourguignon 
et al. [22], Zografos and Balakrishnan [23], Rahman et al. [24], Ahmad [25], and Al-Shomrani et al. [26], among others. 

Okutu et al. [27] recently introduced the Odd Ramos-Louzada generator (ORL-G), from which numerous sub-models have been 
developed. Despite its desirable qualities, the ORL-G lacks a shape parameter, making it less versatile in modeling different skewness 
patterns that most survival data exhibit. To address this shortcoming of the ORL-G model, a novel extended version known as the 
Kumaraswamy Odd Ramos-Louzada generator (KumORL-G) with two extra shape parameters is presented by utilizing the 
Kumaraswamy-G (Kum-G) [20] approach. The additional parameters are intended to regulate the tail weights and skewness of the 
developed model. One appealing aspect of this family is that the two shape parameters allow for better control over the weights in both 
the tails and the center of the distribution. The Kum-G approach is used because of its mathematical simplicity and flexibility in 
modeling survival data. Thus, this study sought to obtain the more efficient KumORL-G model, derive and also investigate some of its 
statistical properties; develop some characterizations of the model employing the hazard rate function and the ratio of two truncated 
moments; utilize the MLE approach to estimate the model’s parameters and evaluate the estimators’ performance using a simulation 
analysis; and demonstrate how the new sub-model from the proposed generator offers a good fit to diabetes and cancer survival 
datasets. 

The KumORL-G model can generate new, more flexible distributions that can explain various lifetime data with non-monotonic and 
monotonic hazard rates, making it useful for lifetime data analysis. The distributions from this family can be efficiently applied in 
modeling data that are heavy-tailed, extremely skewed, monotonic, and non-monotonic failure rates in various fields such as engi-
neering, business, agriculture, and health. As a result, models from this family are anticipated to be more widely used in the domains 
mentioned earlier. 

The introduction of this new family of distributions is inspired by four motivations. First, most survival data are highly skewed; 
therefore, the new model seeks to enhance the degree of flexibility in capturing different skewness patterns than the classical statistical 
distributions such as the Weibull, Raleigh, and exponential, which frequently have few parameters. The second choice of this new 
family with more parameters, offers greater flexibility in capturing a wider range of survival patterns. The third choice of this new 
family is the ability to capture additional features of the survival data that make it better equipped to estimate survival probabilities 
and make better predictions. Finally, we are inspired by the introduction of the KumORL-G family due to its ability to offer improved 
fits to the public health data as well as its ability to enhance flexibility for describing various forms of hazard-rate functions, such as 
“upside-down bathtub” and “bathtub” shapes, which are extensively encountered in real-world data. 

The present study makes a substantial contribution to the field of probability theory (or mathematical statistics) by establishing a 
novel and innovative probability generator for modifying previously developed distributions to enhance flexibility in describing 
survival data. Within the KumORL-G class, we are especially interested in the new KumORLBXII distribution, which performs well in 
modeling diabetes and cancer survival datasets. Its improved adaptability and capacity to model the complicated structure of the data 
provide an effective tool for modeling survival data. A thorough examination of its statistical features such as entropy measures, 
moments, order statistics, and quantile functions among others, as well as the results of characterizations, distinguishes the KumORL-G 
class and its sub-model from other models. These results contribute to a better understanding of the new model’s features and flex-
ibility. The findings obtained herein provide both researchers and practitioners with strong statistical tools for effectively analyzing 
and modeling datasets with varied hazard rate functions. Also, such modeling methods improve knowledge regarding failure rates and 
provide better decision-making in a broad range of fields, including public health, engineering, finance, and many more. 

The remaining portion of the paper is set out as follows: The PDF, CDF, and hazard rate function of the KumORL-G density and 
KumORLBXII model, a specific sub-model of the KumORL-G, are presented in Section 2. Section 3 contains a useful expansion along 
with certain essential statistical characteristics of the suggested probability model. Section 4 presents some derived characterization 
results for the KumORL-G density while the MLE of the model parameters and simulation analyses carried out are given in Section 5. 
Section 6 discusses the relevance of the KumORL-G density to the complete and censored real datasets, showing its adaptability and 
utility, while Section 7 concludes the study, stating the summary, limitations of the suggested model, the future direction of the study, 
and practical implications based on the findings of the study. 
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2. Model formulation 

This section defines the PDF, CDF, survival, and hazard rate functions of the KumORL-G model. The section also includes graphs of 
the hazard rate function and the PDF of the novel KumORLBXII, a special member of the family. 

2.1. The Kumaraswamy odd ramos-louzada generated family of distributions 

Given that X is an ORL-G random variable with CDF represented by (1); where G(x; ϵ ) is the baseline CDF and ϵ is a parameter 
vector connected to the CDF, 

ZORL− G(x; θ, ϵ)=1 −

(

1+
G(x; ϵ)

θ(θ − 1)(1 − G(x; ϵ))

)

e−
G(x; ϵ)

θ(1− G(x; ϵ)), x> 0, θ ≥ 2, (1)  

along with the corresponding PDF provided by (2); 

zORL− G(x; θ, ϵ)=
G(x; ϵ)

θ2(θ − 1)(1 − G(x; ϵ))2

(

θ2 − 2θ+
G(x; ϵ)

1 − G(x; ϵ)

)

e−
G(x; ϵ)

θ(1− G(x; ϵ)), (2) 

Equations (3,4) provide the PDF and CDF of the Kum-G model, respectively; 

f(x; α, β) =αβz(x; ϵ)[Z(x; ϵ)]α− 1
[1 − {Z(x, ϵ)}α

]
β− 1

, (3)  

F(x; α, β) =1 − [1 − {Z(x, ϵ)}α
]
β
, x > 0,α>0, β>0, (4) 

Suppose the random variable X has a distribution within the KumORL-G family, then the CDF of the KumORL-G family in (5) is 
obtained by merging the CDFs of the ORL-G and Kum-G families, from which we obtain; 

FKumORL− G(x; θ,α, β, ϵ)=1 −

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
G(x; ϵ)

θ(θ − 1)(1 − G(x; ϵ))

)

e−
G(x; ϵ)

θ(1− G(x; ϵ))

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

, x > 0 (5) 

The PDF in (6) corresponding to (5) is obtained by directly finding the first derivative of (5) or setting (1, 2) into (3); 

fKumORL− G(x; θ,α, β, ϵ)=
αβg(x; ϵ)

θ2(θ − 1)(G(x; ϵ ))
3

(
G(x; ϵ)

(
θ2 − 2θ

)
+G(x; ϵ)

)
e
−

G(x; ϵ)
θG(x; ϵ)

×

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1 ⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α ⎤

⎥
⎦

β− 1

, x

> 0
(6)  

where α > 0 and β > 0 are shape parameters, θ ≥ 2, is a scale parameter and ϵ is a k × 1 parameter vector of the baseline CDF. 
The KumORL-G survival and hazard functions are respectively given by (7,8): 

SKumORL− G(x; θ, α, β, ϵ)=

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
G(x; ϵ)

θ(θ − 1)(1 − G(x; ϵ))

)

e−
G(x; ϵ)

θ(1− G(x; ϵ))

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

, x > 0 (7)  

hKumRL− G(x; θ, α, β, ϵ)=
αβg(x, ϵ)(1 − G(x; ϵ))

1
θ − 1( θ2 − 2θ − log

(
1− G(x; ϵ )

)
{

1 −

(

1 −
log (1− G(x; ϵ))

θ(θ− 1)

)

(1 − G(x; ϵ))
1
/

θ
}α− 1

θ2(θ − 1)
(

1 −

{

1 −

(

1 −
log (1− G(x; ϵ))

θ(θ− 1)

)

(1 − G(x; ϵ))
1
/

θ
}α)

, x

> 0,
(8) 

The KumORL-G family has the following important sub-families:  

• The exponentiated ORL-G model is obtained when β = 1;  
• A power function ORL-G model is derived when α = 1; and  
• the baseline model, that is the ORL-G family of distributions is obtained when α = β = 1. 
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2.2. The new Kumaraswamy Odd Ramos-Louzada Burr XII distribution 

We introduce the Kumaraswamy Odd Ramos-Louzada Burr XII (KumORLBXII) model, a unique member of the KumORL-G family. 
Consider the Burr XII as the baseline model, its CDF and PDF are provided by the following, respectively; 

G(x; ω, λ)=1 −
(
1 + xλ)− ωand g(x; ω, λ)=ωλxλ− 1( 1 + xλ)− ω− 1

, x > 0,ω>0, λ>0,

then the CDF of KumORLBXII in (9) is expressed as; 

FKumORLBXII(x; θ, β, α,ω, λ)=1 −

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

, x, α, β,ω, λ >0, θ ≥ 2 (9) 

The PDF, survival function, and hazard function are respectively expressed in (10-12) as; 

fKumORLBXII(x; θ, β, α,ω, λ)=
αβωλxλ− 1(1 + xλ)

ω− 1

θ2(θ − 1)
(
θ2 − 2θ+

(
1 + xλ)ω

− 1
)
e−
(1+xλ)

ω
− 1

θ  

×

⎛

⎜
⎝1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α− 1⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α ⎤

⎥
⎦

β− 1

, x > 0

(10)  

SKumORLBXII(x; θ, β, α,ω, λ)=

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

, x > 0, (11)  

hKumORLBXII(x; θ, β, α,ω, λ) =

αβωλxλ− 1(1 + xλ)
ω− 1( θ2 − 2θ + (1 + xλ)

ω
− 1

)
e−
(1+xλ)

ω
− 1

θ

⎛

⎜
⎝1 −

(

1 +
(1+xλ)

ω
− 1

θ(θ− 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α− 1

θ2(θ − 1)

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
(1+xλ)

ω
− 1

θ(θ− 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α ⎤

⎥
⎦

, x

> 0,
(12) 

The graphs in Fig. 1 show the KumORLBXII distribution, taking various “decreasing” and “unimodal” shapes including “left 
skewed” (green), “almost symmetric” (black), “right skewed” (red), and “reversed -J” (purple/blue) shapes. The hazard rate function 
graphs are shown in Fig. 2, with some well-behaved “decreasing” (purple), “reversed-J” (black), “bathtub” (red), and “bathtub” fol-
lowed by “inverted bathtub” (green/blue) shapes. The shapes of these graphs of KumORLBXII’s PDF and hazard function demonstrate 
that the model is very flexible and possesses the ability to model data of any shape with monotonic and non-monotonic failure rates. 

Fig. 1. KumORLBXII PDF graphs with various values of the parameters.  
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Table 1 shows some important sub-models of the KumORLBXII which are relevant for modeling data from various life phenomena. 
Each parameter assumes a value of 1, where for example, the following family members are obtained: ORLBXII, for α, β = 1 [27]; GRL, 
for α, β,ω = 1 [28]; RL, for α, β,ω, λ = 1 [28]; KumGRL, for ω = 1; ExORLLx, for β, λ = 1; and KumRL, for ω,λ = 1. 

3. Useful expansion and relevant statistical characteristics 

In this section, a useful expansion of the new probability model is obtained to aid in deriving certain essential statistical features of 
the KumORL-G and its sub-model. 

3.1. Expansion of the KumORL-G density 

Consider the following series expansion, for |z| < 1 and β > 0, 

(1 − z)β− 1
=
∑∞

q=0

(− 1)qΓ(β)
Γ(β − q)q!

zq (13)  

e− βz =
∑∞

k=0

(− 1)kβk

k!
zk (14) 

Applying (13) thrice followed by (6-14), we obtain the expression in (15) after some simplifications 

fKumORL− G(x; θ, α, β, ϵ)=
αβg(x; ϵ)

θ2(θ − 1)(G(x; ϵ ))
3

(
G(x; ϵ)

(
θ2 − 2θ

)
+G(x; ϵ)

)
×
∑∞

q=0

∑∞

m=0

∑∞

l=0

×
∑∞

k=0

(− 1)k+m+qΓ(β)Γ(α(q + 1))Γ(1 + m)(m + 1)k

Γ(β − q)q!Γ(α(q + 1) − m)m!Γ(1 + m − l)l!θkk!θl(θ − 1)l
(G(x; ϵ))k+l

(G(x; ϵ ))
k+l (15) 

Removing brackets and applying (13) twice, followed by substituting G(x; ϵ) = 1 − (1 − G(x; ϵ)), and applying (13) again with 
some simplifications becomes; 

fKumORL− G(x; θ, α, β, ϵ)

=

(
αβ
(
θ2 − 2θ

)

θ2(θ − 1)

∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

( l + k + j
u

)( u
v

)

×
(− 1)m+k+q+u+vΓ(β)Γ(α(1 + q))Γ(m + 1)(m + 1)kΓ(j + k + l + 2)

Γ(β − q)q!Γ(α(1 + q) − m)m!Γ(m + 1 − l)l!θkk!θl(θ − 1)lΓ(l + k + 2)j!
g(x; ϵ)(G(x; ϵ))v

+
αβ

θ2(θ − 1)

∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

( l + k + j + 1
u

)( u
v

)

×
(− 1)m+k+q+u+vΓ(β)Γ(α(1 + q))Γ(m + 1)(m + 1)kΓ(j + k + l + 3)

Γ(β − q)q!Γ(α(1 + q) − m)m!Γ(m + 1 − l)l!θkk!θl(θ − 1)lΓ(l + k + 3)j!
g(x; ϵ)(G(x; ϵ))v

)

(16) 

Fig. 2. Hazard rate function plots of KumORLBXII with various values of the parameters and their corresponding monotonic and non- 
monotonic graphs. 
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The useful expansion of the KumORL-G density is obtained in (17) after simplifying (16): 

fKumORL− G(x; θ, α, β, ϵ)=
∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
ϖjklmquvg(x; ϵ)(G(x; ϵ))v

, (17)  

where . 

ϖjklmquv = αβ

((
θ2 − 2θ

)

θ2(θ − 1)

(
j + k + l

u

)
Γ(j + k + l + 2)

Γ(k + l + 2)
+

1
θ2(θ − 1)

(
l + k + j + 1

u

)
Γ(j + l + k + 3)

Γ(l + k + 3)

)

×

(
u
v

)
( − 1)m+k+q+u+vΓ(β)Γ(α(1 + q) )Γ(1 + m)(m + 1)k

Γ(β − q)q!Γ(α(q + 1) − m )m!Γ(1 + m − l)l!θkk!θl(θ − 1)lj!

Expressing (17) in the form of exponentiated-G (exp-G) density function, we have (18): 

fKumORL− G(x; θ, α, β, ϵ)=
∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
ϖʹ

jklmquvhv+1(x; ϵ), (18)  

where ϖʹ
jklmquv =

ϖjklmquv
v+1 and hv+1(x; ϵ) = (1 + v)g(x; ϵ)(G(x; ϵ))v, is the exp-G density with the power parameter v+ 1. The expansion of 

the KumORLBXII density is subsequently obtained in (19) by substituting the BXII density into (17) which gives the following result: 

fKumORLBXII(x; θ, α, β,ω, λ)=ωλ
∑∞

i=0

∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
φijklmquvxλ− 1( 1 + xλ)− ω(1+i)− 1

, (19)  

where φijklmquv =

(
v
i

)

(− 1)iϖjklmquv. 

3.2. Relevant statistical characteristics 

We now discuss the relevant statistical characteristics of the KumORL-G along with its sub-model. Among them are the quantile 
function, moments, Renyi entropy, order statistics, and probability-weighted moments of the new model.  

• Quantile function 

The inverse of a distribution function is the quantile function. The KumORL-G family’s quantile function is determined as follows: 
Let FKumORL− G(Q(p), θ, α, β, ϵ) = p,0 ≤ p ≤ 1, solving for Q(p) gives the following expression in (20) for the quantile function of the 
KumORL-G family, 

Q(p) = G− 1

⎧
⎨

⎩

− θ(θ − 1) − θW−

(
−
[
(θ − 1) − (θ − 1)

(
1 − (1 − p)

1
β
)1

α
]
e− (θ− 1)

)

1 − θ(θ − 1) − θW−

(
−
[
(θ − 1) − (θ − 1)

(
1 − (1 − p)

1
β
)1

α
]
e− (θ− 1)

)

⎫
⎬

⎭
, (20)  

where W− (.) signifies the Lambert function’s negative branch [30]. 
Various features of the KumORL-G random variable, such as simulation analysis, skewness, kurtosis, and median, can be deter-

mined using (20). From the CDF of the Burr XII distribution, G− 1(x) =

⎡

⎣(1 − x)−
1
ω − 1

⎤

⎦

1
λ

, and using (20), the KumORLBXII model’s 

Table 1 
An overview of the KumORLBXII distribution’s sub-models.  

S/N α β θ ω λ Name of Distribution 

1 1 1 − − − Odd Ramos-Louzada Burr XII (ORLBXII) [27] 
2 − 1 − − − Exponentiated Odd Ramos-Louzada Burr XII (ExORLBXII) 
3 − − − 1 − Kumaraswamy Generalized Ramos-Louzada (KumGRL) 
4 − − − − 1 Kumaraswamy Odd Ramos-Louzada Lomax (KumORLLx) 
5 − 1 − − 1 Exponentiated Odd Ramos-Louzada Lomax (ExORLLx) 
6 − 1 − 1 − Exponentiated Generalized Ramos-Louzada (ExGRL) 
7 − − − 1 1 Kumaraswamy Ramos-Louzada (KumRL) 
8 − 1 − 1 1 Exponentiated Ramos-Louzada (ERL) 
9 1 1 − 1 − Generalized Ramos-Louzada (GRL) [29] 
10 1 1 − 1 1 Ramos-Louzada (RL) [28]  

J.K. Okutu et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e30690

7

quantile function is obtained in (21). 

Q(p) =
[(

1 − θ2 + θ − θW−

(

− (θ − 1)
[

1 −

(

1 − (1 − p)
1
β

)1
α
])

e− (θ− 1)
)ω

− 1
]1

λ
(21)    

• The rth non-central moments 

By definition, the KumORL-G family’s rth non-central moment is provided by (22) as; 

μʹ
r =E(Xr)=

∫ ∞

0
xrfKumORL− G(x; θ, α, β, ϵ)dx, r=1, 2,3,… (22) 

Using (17) and (22), we obtain; 

μʹ
r =
∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
ϖjklmquv

∫ ∞

0
xrg(x; ϵ)(G(x; ϵ))vdx,

from which we derive the KumORLBXII rth non-central moments as; 

μʹ
r =
∑∞

i=0

∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

u=0

∑∞

v=0
φijklmquv

∫ ∞

0
ωλxrxλ− 1( 1 + xλ)− ω(1+i)− 1dx. (23) 

To evaluate the integral in (23), we let: 

z=
(
1 + xλ)− 1 ⇒ x=(1 − z)

1
λz−

1
λ , as x → 0, z → 1, as x → ∞, z→0  

from which we have dx = − dz
λxλ− 1(1+xλ)

− 2 =
− dz

λxλ− 1z2 and obtain: 

∫ ∞

0
ωλxr+λ− 1( 1 + xλ)− ω(i+1)− 1dx= −

∫ 0

1
ωλxλ− 1(1 − z)

r
λz−

r
λzω(i+1)+1 dz

λxλ− 1z2  

= ω
∫ 1

0
(1 − z)

r
λzω(i+1)− r

λ − 1dz=ωB
(

ω(i+1) −
r
λ
,
r
λ
+1
)

and hence: 

μʹ
r =ω

∑∞

i=0

∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
φijklmquvB

(
ω(i+1) −

r
λ
,
r
λ
+ 1
)
, (24)  

where B(b, a) =
∫ 1

0 (1 − z)a− 1zb− 1dz is the complete beta function. By setting r = 1, 2,3, 4 into (24), we obtain the KumORLBXII first 
four moments. The following relations are utilized to compute the mean (μ), variance (σ2), coefficient of skewness (CS), and coefficient 
of kurtosis (CK);  

• μ = μ1́;  

• σ2 = μ2́ − μ2;  

• CS =
μʹ

3 − 3μʹ
2+2μ3

(μʹ
2 − μ2)

3 /2
;  

• CK =
μʹ

4 − 4μʹ
3+6μ2μʹ

2 − 3μ4

(μʹ
2 − μ2)

2 . 

Now we note an approximately symmetric model occurs if |CS|< 1
2, for extremely skewed model |CS| ≥ 1, and if 12 ≤ |CS| < 1, a 

slightly skewed model is obtained. About kurtosis, a mesokurtic model occurs if CK = 3, the light tails (platykurtic) model is obtained 
if CK < 3, and the greater tails (leptokurtic) if CK > 3. These measures of dispersion, skewness, and kurtosis were estimated 
numerically for various values of the parameters using R software and are presented in Table 2. Generally, the findings displayed in 
Table 2 indicate that as each parameter increases and the others are fixed, the following observations are made:  

1. The mean decreases, with the parameter α having more effects on the mean, while the variance decreases.  
2. The KumORLBXII density can be right- or left-skewed. Increasing α and θ, respectively, increases the skewness to the right or left.  
3. The kurtosis can be less than or more than 3. Increasing α and θ increases the kurtosis whereas increasing ω decreases the amount of 

kurtosis in the KumORLBXII distribution. 
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These results show that the new KumORLBXII model can represent very skewed, approximately skewed, and essentially symmetric 
data with greater and lighter tails, depending on the values of the parameters used.  

• Incomplete moments 

The rth incomplete moment mr(t) of the KumORL-G family is defined in Eq. (25) by; 

mr(t)=
∫ t

0
xrfKumORL− G(x; θ, α, β, ϵ)dx, r = 1,2,… (25)  

from (17, 25), we obtain the expression for the rth incomplete moment of the KumORL-G family in (26): 

mr(t)=
∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
ϖjklmquv

∫ t

0
xrg(x; ϵ)(G(x; ϵ))vdx, (26)  

from which we obtain the rth incomplete moment of KumORLBXII as; 

mr(t)=
∑∞

i=0

∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
φijklmquv

∫ t

0
ωλxrxλ− 1( 1 + xλ)− ω(1+i)− 1dx 

Equation (27) is obtained as the rth incomplete moment of KumORLBXII after simplifying the integral in the last expression; 

mr(t)=ω
∑∞

i=0

∑∞

j=0

∑∞

q=o

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0
φijklmquvB

(
tλ;ω(1+ i) −

r
λ
,
r
λ
+1
)
, (27)  

where B(t; a, b) =
∫ t

0 (1 − y)a− 1yb− 1dy is the incomplete Beta function of the second type. The first incomplete moment is found by 
setting r = 1;  

• Probability-weighted moments 

If a random variable X has KumORL − G family of distributions, the probability-weighted moments (PWM), denoted by Δr,p can be 
calculated through the following relation in (28); 

Δr,p =E(Xr(FKumORL− G(x; β, θ, α, ϵ))p
)=

∫ ∞

0
xrfKumORL− G(x; β, θ, α, ϵ)(FKumORL− G(x; β, θ, α, ϵ))p

, (28) 

We simplify the expression fKumORL− G(x; β, θ, α, ϵ)(FKumORL− G(x; β, θ, α, ϵ))p in a similar way (17) is obtained. Equation (29) is the final 
result of Δr,p . 

Table 2 
Numerical results of the kurtosis, skewness, variance, and the mean of the KumORLBXII model for selected parametric values.  

α β λ ω θ μ1́ 
σ2 CS CK 

0.2 1.05 0.7 0.7 2.1 8.899184 733.68762 7.48931 105.14595 
0.01     0.48650 43.40047 31.77536 1807.16462 
0.005     0.24383 21.80009 44.87711 3599.59025 
0.0001     4.88775 × 10− 3 0.43797 316.91518 1.793 × 105 

0.5 1.3 0.5 1.8 2.0 1.56482 4.03860 2.42828 12.04041   
1.5   0.88941 0.33249 − 0.13511 2.24043   
3.5   0.82157 0.19339 − 1.07141 2.67789   
7.5   0.80646 0.16893 − 1.37989 3.06954 

0.9 1.1 12 0.7 2.1 1.11990 0.05641 − 3.71152 17.90736  
1.3    1.11767 0.048099 − 3.96412 20.58964  
5    0.53279 0.304298 0.083997 1.03454  
30    1.23736 × 10− 4 1.33496 × 10− 4 93.45876 8741.93441 

0.01 2.0 0.5 0.9 2.5 8.11039 2368.56057 14.80418 399.37181    
2.0  0.28003 1.11807 6.28136 56.72254    
5.0  0.02242 5.67774 × 10− 3 4.58918 28.43350    
10.0  4.55137 × 10− 3 2.16813 × 10− 4 4.20367 23.53127 

0.5 1.2 8.7 6.0 2.0 0.63817 0.135670 − 1.12657 2.33118     
2.2 0.71627 0.092840 − 1.84581 4.60051     
2.3 0.76291 0.06213 − 2.56701 8.07004     
2.4 0.81706 0.02134 − 4.48633 25.06834  
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Δr,p =
∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

∑p

t=0
ϖ∗

jklmquvt

∫ ∞

0
xrg(x; ϵ)(G(x; ϵ))vdx, (29)  

where 

ϖ∗
jklmquvt = αβ

((
θ2 − 2θ

)

θ2(θ − 1)

(
j + k + l

u

)
Γ(l + k + j + 2)

Γ(l + k + 2)
+

1
θ2(θ − 1)

(
l + k + j + 1

u

)
Γ(l + k + j + 3)

Γ(l + k + 3)

)

×

(
u
v

)(
p
t

)
(− 1)m+k+q+u+v+tΓ(βt + β)Γ(α(1 + q))Γ(m + 1)(m + 1)k

Γ(β − q)q!Γ(α(q + 1) − m)m!Γ(m + 1 − l)l!θkk!θl(θ − 1)lj!

By setting the BXII densities in (29) we obtain the PWM of KumORLBXII in (30); 

Δr,p =ωλ
∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

∑∞

i=0

∑p

t=0
ϖ∗∗

jklmquvti

∫ ∞

0
xr+λ− 1( 1 + xλ)− ωi− ω− 1dx, (30)  

ϖ∗∗
jklmquvti =ϖ∗

jklmquvt(− 1)i
(

v
i

)

.

Using the result of the integration in (23), we obtain (31) as the simplified form of (30); 

Δr,p =ω
∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

∑∞

i=0

∑p

t=0
ϖ∗∗

jklmquvtiB
(

ω(i+1) −
r
λ
,
r
λ
+ 1
)
, (31)    

• Order statistics 

The PDF of KumORL − G family hth order statistics of a random sample of size n is defined in (32) by; 

fh:n(x)=
n!

(h − 1)!(n − h)!
f(x, β, θ, α, ϵ)(FKumORL− G(x, β, θ, α, ϵ))h− 1

(1 − FKumORL− G(x, β, θ, α, ϵ))n− h
, (32) 

Applying the generalized binomial series to the expression in (32) gives; 

fh:n(x)=
n!

(h − 1)!(n − h)!
∑n− h

w=0

(
n − h

w

)

(− 1)wfKumORL− G(x; β, θ, α, ϵ)(FKumORL− G(x, β, θ, α, ϵ))w+h− 1
, (33) 

By setting w + h − 1 = p in (29), substituting the results into [31], and simplifying becomes; 

fh:n(x)=
∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

v=0

∑∞

u=0

∑n− h

w=0

∑w+h− 1

t=0
ϖ∗∗∗

jklmquvwtg(x; ϵ)(G(x; ϵ))v
, (34)  

ϖ∗∗∗
jklmquvwt =αβ

((
θ2 − 2θ

)

θ2(θ − 1)

(
l + k + j

u

)
Γ(l + k + j + 2)

Γ(l + k + 2)
+

1
θ2(θ − 1)

(
l + k + j + 1

u

)
Γ(l + k + j + 3)

Γ(l + k + 3)

)

×
n!

(h − 1)!(n − h)!

(
u
v

)(
w + h − 1

t

)(
n − h

w

)
(− 1)m+k+q+u+v+t+wΓ(βt + β)Γ(α(1 + q))Γ(m + 1)(m + 1)k

Γ(β − q)q!Γ(α(1 + q) − m)m!Γ(m + 1 − l)l!θkk!θl(θ − 1)lj!

From (32), the hth order statistics PDF of a random sample of size n from the KumORLBXII model can be represented by (35): 

fh:n(x)=ωλ
∑∞

j=0

∑∞

q=0

∑∞

m=0

∑∞

l=0

∑∞

k=0

∑∞

u=0

∑∞

i,v=0

∑n− h

w=0

∑w+h− 1

t=0
ϖ∗∗∗∗

ijklmquvwtx
λ− 1( 1 + xλ)− ω(1+i)− 1

, (35)  

where ϖ∗∗∗∗
ijklmquvwt = (− 1)i

(
v
i

)

ϖ∗∗∗
jklmquvwt.  

• Entropy measure 

The amount of unpredictability in the KumORL-G random variable is quantified by using an entropy. The Renyi entropy of 
KumORL-G denoted by IR(δ) is defined as; 

IR(δ)=
1

1 − δ
log

∫ ∞

0
f δ
KumORL− G(x; θ, α, β, ϵ)dx, δ > 0 and δ ∕= 1, (36) 
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We first obtain an expansion f δ
KumORL− G(x; θ,α,β,ϵ), which is an important function in most formulae for entropy. Setting the density 

function of KumORL-G into (36) and applying the binomial series twice, we obtain; 

f δ
KumORL− G(x; θ, α, β, ϵ)=

⎡

⎢
⎣

(αβ)δ
(g(x, ϵ))δ

θ2δ(θ − 1)δ
(1 − G(x; ϵ ))

2δ

(

θ2 − 2θ +
G(x; ϵ )

1 − G(x; ϵ )

)δ∑∞

l=0

×
∑∞

m=0

(
δ(β − 1)

m

)(
αm + δ(α − 1)

l

)

(− 1)m+l
(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)l

e
− (l+δ)

G(x; ϵ)
θG(x; ϵ)

⎤

⎥
⎦

Again applying (14) and binomial series expansion followed by some simplifications, we obtain the expression in (37) for f δ
KumORL− G(x;

θ, α, β, ϵ) as; 

f δ
KumORL− G(x; θ, α, β, ϵ) = (αβ)δ

θ2δ(θ − 1)δ

∑∞

h=0

∑∞

i,j,k,l,m=0

(
δ(β − 1)

m

)(αm + δ(α − 1)
l

)( l
k

)(
δ
i

)( i + j + k + 2δ + h − 1
h

)

×
( − 1)m+l+j

(δ + l)j( θ2 − 2θ
)δ− i

θk+j(θ − 1)kj!
(g(x, ϵ) )δ

(G(x; ϵ) )i+j+k+h

(37)  

Finally, IR(δ) can be expressed as; 

IR(δ)=
1

1 − δ
log
(

(αβ)δ

θ2δ(θ − 1)γφi,j,k,l,m,h

∫ ∞

0
(g(x, ϵ))δ

(G(x; ϵ))i+j+k+hdx
)

, (38)  

where; 

φi,j,k,l,m,h =
∑∞

h=0

∑∞

i,j,k,l,m=0

(
δ(β − 1)

m

)(
αm + δ(α − 1)

l

)(
l
k

)(
δ
i

)(
i + j + k + 2δ + h − 1

h

)
(− 1)m+l+j

(δ + l)j( θ2 − 2θ
)δ− i

θk+j(θ − 1)kj!

We now obtain the Renyi entropy formula for KumORLBXII by substituting the Burr XII densities into ( 38) and simplifying as 
follows: 

∫ ∞

0
(g(x, ϵ))δ

(G(x; ϵ))i+j+k+hdx=(ωλ)δ
∑∞

p=0
(− 1)p

(
i + j + k + h

p

)∫ ∞

0
xδ(λ− 1)( 1 + xλ)− ω(p+δ)− δdx,

Let y = (1 + xλ)
− 1
,x = (1 − y)

1
λy−

1
λ ,as x→0,y→1,as x→∞,y→0,dx = −

dy
λxλ− 1y2. 

∫ ∞

0
(g(x, ϵ) )δ

(G(x; ϵ) )i+j+k+hdx =
(ωλ)δ

λ
∑∞

p=0
( − 1)p

(
i + j + k + h

p

)∫ 1

0
(1 − y)δ− δ

λ +
1
λ − 1yω(p+δ)+ δ

λ −
1
λ − 1dy  

=
(ωλ)δ

λ

∑∞

p=0
(− 1)p

(
i + j + k + h

h

)

B
(

δ −
1
λ
(δ − 1),ω(p+ δ)+

1
λ
(δ − 1)

)

and hence for our new KumORLBXII model, we have the Renyi entropy expression in (39); 

IR(δ)=
1

1 − δ
log
(

(αβωλ)δ

θ2δλ(θ − 1)δφ∗
i,j,k,l,m,h,pB

(

δ −
1
λ
(δ − 1),ω(p+ δ)+

1
λ
(δ − 1)

))

, (39)  

where φ∗
i,j,k,l,m,h,p =

∑∞
p=0(− 1)p

(
i + j + k + h

p

)

φi,j,k,l,m,h. 

Table 3 displays the numerical solutions of (39) that were obtained using the R software based on some selected parameter values. 
The positive and negative values indicate the flexibility in the randomness of KumORLBXII distribution. 

4. Characterizations of KumORL-G 

The two primary characterizations of the KumORL-G model that are covered in this section hinge on the hazard function and the 
ratio of two truncated moments. 

4.1. Characterization based on the ratio of two truncated moments 

The KumORL-G model is characterized using a simple relationship between two truncated moments based on the Glanzel theorem 
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(see Appendix A1, Theorem A). 

Proposition 1. Given a continuous random variable X : Ω→(0,∞), and let 

v1(x)=

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦ and v2(x)= v1(x)

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β

, x

> 0.

The random variable X has PDF in (6) provided the function Λ(x) specified in Theorem A has the expression in (40); 

Λ(x)=
β + 1
2β + 1

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β

, x > 0, (40) 

Proof. 
Suppose X has PDF in equation (6), then; 

(1 − FKumORL− G(x, θ, ϵ))E(v1(x)⎸X≥ x)=
β

β + 1

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β+1  

(1 − FKumORL− G(x, θ, ϵ))E(v2(x)⎸X≥ x)=
β

2β + 1

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

2β+1  

and so, 

Λ(x)=
(1 − FKumORL− G(x, θ, ϵ))E(v2(x)⎸X ≥ x)
(1 − FKumORL− G(x, θ, ϵ))E(v1(x)⎸X ≥ x)

=
β + 1
2β + 1

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β  

as 

Λʹ(x)= −
β + 1
2β + 1

αβg(x; ϵ)
θ2(θ − 1)(G(x; ϵ ))

3

(
G(x; ϵ)

(
θ2 − 2θ

)
+G(x; ϵ)

)
e
−

G(x; ϵ)
θG(x; ϵ)

Table 3 
Numerical results of Renyi entropy for KumORLBXII distribution for some chosen parameter values.  

Parameter Entropy 

α β λ ω θ γ = 1.5 γ = 6.0 γ = 12.5 
0.05 2.8 3.0 2.8 2.0 0.0211 0.4434 1.1222 
0.5     0.0895 0.7458 1.7653 
1.5     − 0.1951 − 0.4018 − 0.6289 
5.0     − 0.9460 − 3.3919 − 6.8848         

0.5 0.5 0.3 0.8 2.0 − 0.4802 − 1.4980 − 2.5060  
1.5    − 0.3415 − 1.1688 − 1.8229  
5.0    − 0.2514 − 1.7683 − 3.1003  
20.0    − 0.2359 − 2.6025 − 5.8418 

0.7 3.8 0.5 2.8 2.0 − 0.0105 0.1824 0.5345   
3.5   0.0301 0.5835 1.4558   
6.5   0.0598 0.8861 2.1538   
10.5   0.0843 1.1346 2.7263 

1.7 1.2 0.5 2.8 2.0 − 0.0403 − 0.0921 − 0.0850    
5.0  0.0413 0.6837 1.6660    
10.0  0.1293 1.5467 3.6436    
15.0  0.1781 2.0296 4.7533 

10.0 2.0 1.5 5.0 2.0 − 1.5023 − 5.3673 − 10.8823     
2.1 − 1.4439 − 5.1121 − 10.3472     
2.2 − 1.4537 − 5.1050 − 10.3179     
2.5 − 1.5794 − 5.5356 − 11.1759  
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×

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1 ⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β− 1

,

Conversely, if Λ(x) is defined as above, then; 

Λ(x)v1(x) − v2(x)= −
β

2β + 1
v1(x)

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β  

In contrast, if Λ(x) is defined as previously, then; 

ś (x)=
Λʹ(x)v1(x)

Λ(x)v1(x) − v2(x)
=

β + 1
β

αβg(x; ϵ)
θ2(θ − 1)(G(x; ϵ ))

3

(
G(x; ϵ)

(
θ2 − 2θ

)
+G(x; ϵ)

)
e
−

G(x; ϵ)
θG(x; ϵ)

×

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

− 1

,

and hence; 

s(x)= − (β+1)ln

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

e− s(x) =

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β+1

,

As a result of Theorem A, X has a PDF in (6). 

Corollary 1. Given a continuous random variable X : Ω→(0,∞) and a function v1(x) as specified in Proposition 1, the PDF of X is (6) 
provided the functions v2(x) and Λ(x) given in Theorem A satisfy the differential equation; 

Λʹ(x)v1(x)
Λ(x)v1(x) − v2(x)

=
β + 1

β
αβg(x; ϵ)

θ2(θ − 1)(G(x; ϵ ))
3

(
G(x; ϵ)

(
θ2 − 2θ

)
+G(x; ϵ)

)
e
−

G(x; ϵ)
θG(x; ϵ)

×

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

− 1

,

The differential equation in corollary 1 has a general solution represented as; 

Λ(x)=

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

− β− 1  

×

∫

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(β + 1)αg(x; ϵ)

θ2(θ − 1)(G(x; ϵ ))
3

(
G(x; ϵ)

(
θ2 − 2θ

)
+ G(x; ϵ)

)
e
−

G(x; ϵ)
θG(x; ϵ)

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1

×

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ − 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

β

(v1(x))− 1v2(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dx + C,

Where C is a constant. We would like to emphasize that Proposition 1 with C=0 has one set of functions that fulfill the aforementioned 
differential equation. There are alternative triplets of (v1(x), v2(x),Λ(x) ) that satisfy the criteria of Theorem A in Appendix A1. 
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Considering the KumORLBXII distribution, suppose v1(x) = 1 −

⎛

⎜
⎝1 −

(

1 +
(1+xλ)

ω
− 1

θ(θ− 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α

, x > 0 and v2(x) =

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
(1+xλ)

ω
− 1

θ(θ− 1)

)

e−
(1+xλ)

ω
− 1

θ

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

,x > 0, then X follows the KumORLBXII distribution provided Λ(x) in Proposition 1 is 

Λ(x)=
β + 1
2β + 1

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎫
⎪⎬

⎪⎭

α⎞

⎟
⎠

β

, x > 0,

4.2. Characterization of KumORL-G under hazard rate function 

A twice differentiable distribution function, G(x) with hazard function rate h(x) fulfills the first-order differential equation in (41); 

gʹ(x)
g(x)

=
hʹ(x)
h(x)

− h(x), (41) 

It needs to be emphasized that the hazard rate function in (41) is the sole differential equation available for many univariate 
continuous distributions. 

Proposition 2. Suppose X : Ω→(0,∞) is a random variable that is continuous from the KumORL-G family, then (6) is the PDF of X if and 
only if its hazard rate function hKumORL− G(x; θ,α, β, ϵ) fulfills the differential equation that follows. 

hʹ
KumORL− G(x; θ, α, β, ϵ)+ g(x; ϵ)

θ(G(x; ϵ ))
2 hKumORL− G(x; θ, α, β, ϵ)

=
αβ

θ2(θ − 1)
e
−

G(x; ϵ)
θG(x; ϵ) d

dx

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g(x; ϵ)
(

θ2 − 2θ +
G(x; ϵ)
G(x; ϵ)

)
⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ− 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1

(G(x; ϵ ))
2

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ− 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

for x>0, and with the initial
condition : hKumORL− G(0) = 0 for θ ≥ 2

(42)  

Proof:The differential equation in (42) exists if [6] represents the PDF of KumORL-G random variable. Now, considering the 
validity of the differential equation, then: 

d
dx

(

e
G(x; ϵ)
θG(x; ϵ)hKumORL− G(x; θ, ϵ)

)

=
αβ

θ2(θ − 1)
d
dx

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g(x; ϵ)
(

θ2 − 2θ +
G(x; ϵ)
G(x; ϵ)

)
⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ− 1)G(x; ϵ)

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α− 1

(G(x; ϵ ))
2

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(x; ϵ)

θ(θ− 1)G(x; ϵ )

)

e
−

G(x; ϵ)
θG(x; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

from which we obtain the hazard function of KumORL-G in (8). 
The proof ends. 

5. Parameter estimation and simulation analysis of KumORL-G 

We now examine and implement the ML estimators of the KumORL-G distribution for both the complete and right-censored data in 
this section. A simulation analysis is also performed to evaluate the performances of the ML estimators. 

5.1. Estimation of parameters for complete and censored datasets 

5.1.1. Parameter estimation for the complete datasets 
Let x1, x2,…, xn represent a size n of a random sample drawn from the KumORL-G family described in (6). The log-likelihood 
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function for the vector of parameter Ω = (x, β, θ, α, ϵ)́  is given in Eq. [43]; 

l (Ω)=nlogα+nlogβ +
∑n

i=1

log g(xi; ϵ) − 3
∑n

i=1
logG(xi; ϵ ) − 2nlogθ − nlog(θ − 1)

+
∑n

i=1
log

( (
θ2 − 2θ

)
(G(xi; ϵ ))+G(xi, ϵ)

)
−

1
θ
∑n

i=1

G(xi, ϵ)
G(xi; ϵ )

+(α − 1)
∑n

i=1
log

⎛

⎜
⎝1 −

(

1+
G(xi; ϵ)

θ(θ − 1)G(xi; ϵ)

)

e
−

G(xi ; ϵ)
θG(xi ; ϵ)

⎞

⎟
⎠+(β − 1)

∑n

i=1
log

⎡

⎢
⎣1 −

⎛

⎜
⎝1 −

(

1 +
G(xi; ϵ)

θ(θ − 1)G(xi; ϵ)

)

e
−

G(xi ; ϵ)
θG(xi ; ϵ)

⎞

⎟
⎠

α⎤

⎥
⎦

(43) 

Calculating the partial derivatives of (43) relative to θ, α, β, and ϵ leads to equations (44) to (47); 

∂l (Ω)

∂α =
n
α +

∑n

i=1
log A(xi; θ, ϵ) − (β − 1)

∑n

i=1

Aα(xi; θ, ϵ)log A(xi; θ, ϵ)
1 − Aα(xi; θ, ϵ)

(44)  

∂l (Ω)

∂β
=

n
β
+
∑n

i=1
log(1 − Aα(xi; θ, ϵ)), (45)  

∂l (Ω)

∂θ
=

1
θ2

∑n

i=1

G(xi, ϵ)
G(x; ϵ )

−
2n
θ

−
n

θ − 1
+
∑n

i=1

(2θ − 2)G(x; ϵ )
( (

θ2 − 2θ
)
G(x; ϵ ) + G(xi, ϵ)

)+ (α − 1)
∑n

i=1

Aθ(xi; θ, ϵ)
A(xi; θ, ϵ)

− α(β − 1)
∑n

i=1

Aα− 1(xi; θ, ϵ)Aθ(xi; θ, ϵ)
1 − Aα(xi; θ, ϵ)

, (46)  

∂l (Ω)

∂ϵ
=
∑n

i=1

1
g(xi; ϵ)

∂g(xi; ϵ)
∂ϵ

+3
∑n

i=1

1
G(x; ϵ )

∂G(xi; ϵ)
∂ϵ

+
(
1 −

(
θ2 − 2θ

))∑n

i=1

1
(
θ2 − 2θ

)
(G(x; ϵ )) + G(xi, ϵ)

∂G(xi; ϵ)
∂ϵ

−
1
θ
∑n

i=1

1
(G(x; ϵ ))

2
∂G(xi; ϵ)

∂ϵ
+ (α − 1)

∑n

i=1

Aϵ(xi; θ, ϵ)
A(xi; θ, ϵ)

− α(β − 1)
∑n

i=1

Aα− 1(xi; θ, ϵ)Aϵ(xi; θ, ϵ)
1 − Aα(xi; θ, ϵ)

, (47)  

where; 

A(xi; θ, ϵ) =

⎛

⎜
⎝1 −

(

1 +
G(xi; ϵ)

θ(θ − 1)G(xi; ϵ)

)

e
−

G(xi ; ϵ)
θG(xi ; ϵ)

⎞

⎟
⎠,Aθ(xi; θ, ϵ) = ∂A(xi; θ, ϵ)

∂θ
= Aθ(xi; θ, ϵ)

= −

⎧
⎪⎨

⎪⎩

G(xi; ϵ)
θ2G(xi; ϵ)

e
−

G(xi ; ϵ)
θG(xi ; ϵ)

(

1 −
2θ − 1
(θ − 1)2 +

G(xi; ϵ)
θ(θ − 1)G(xi; ϵ )

)
⎫
⎪⎬

⎪⎭
,Aϵ(xi; θ, ϵ) = ∂A(xi; θ, ϵ)

∂ϵ  

Aϵ(xi; θ, ϵ)= −

⎧
⎪⎨

⎪⎩

1
(G(xi; ϵ ))

2
∂G(xi; ϵ)

∂ϵ
e
−

G(xi ; ϵ)
θG(xi ; ϵ)

[
1

θ(θ − 1)
−

1
θ

(

1+
G(xi; ϵ)

θ(θ − 1)G(xi; ϵ )

)]
⎫
⎪⎬

⎪⎭

The ML estimates are calculated by equating each of (44) to (47) to zero and solving them simultaneously with numerical 
computations. 

5.1.2. Parameter estimation for the censored datasets 
Let X = (X1,X2,…,Xn) be a random sample from KumORL-G family of distributions with the parameter vector Ω = (x, θ, α, β, ϵ) that 

can have right censored data over a fixed censoring time τ. Then, each Xi can be represented as (xi,ϱi), where xi is the failure time with 
censored observation and ϱi is the censoring index. If a failure occurs, ϱi = 1 and ϱi = 0, if censoring is observed. The likelihood 
function in (48) is obtained to suppose that the right censoring lacks information. 

L(Ω)=
∏n

i=1

(
fKumORL− G(xi, θ, α, β, ϵ)

)ϱi (SKumORL− G(xi, θ, α, β, ϵ))1− ϱi , (48) 

The function for total log-likelihood can be obtained by; 
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Table 4 
Results of the AB, RMSE, and Av simulations for KumORLBXII.    

I II 

Parameter n AB RMSE Av AB RMSE Av 

α 10 7.9812 8.2145 15.2376 1.6424 1.2315 10.4521 
50 1.1151 2.7132 9.4821 1.4025 0.4982 2.5119 
150 0.2854 1.2975 1.4626 0.6217 0.2591 1.4530 
300 0.0232 0.3435 1.2987 0.3625 0.2171 0.8943 
500 0.0291 0.1023 1.2117 0.1530 0.0908 0.8175 
800 0.0092 0.0167 1.2081 0.0221 0.0152 0.8026 

β 10 5.2132 12.2135 20.2317 3.2134 2.5673 25.2748 
50 2.2146 7.8704 17.4622 1.5623 1.5209 17.4207 
150 1.2574 3.1128 3.1146 0.5441 0.3681 3.4236 
300 0.7230 1.7113 1.3152 0.2522 0.1803 1.1237 
500 0.0228 0.8720 1.2318 0.0801 0.1017 0.8721 
800 0.0025 0.0215 1.2274 0.0126 0.0256 0.8243 

θ 10 21.2312 10.2141 41.2201 20.2136 22.1133 55.1267 
50 18.2188 4.8712 30.1243 16.1772 12.3669 41.1243 
150 4.0125 1.3217 15.1019 2.8214 1.6432 20.5122 
300 1.5231 0.3723 9.2142 1.4521 0.5115 5.7957 
500 0.2210 0.0925 3.3421 0.2244 0.1232 3.7422 
800 0.0701 0.0054 2.7216 0.0196 0.0040 3.7218 

λ 10 − 0.8342 2.5600 18.0136 1.3466 3.1207 25.3216 
50 − 0.5223 1.3743 14.4812 0.9647 1.3612 13.1923 
150 − 0.1921 0.2388 3.4344 − 0.4322 0.2389 6.2170 
300 − 0.0117 0.1718 1.1231 − 0.2171 0.1013 3.2435 
500 − 0.0080 0.0921 0.3728 − 0.0620 0.0250 2.6721 
800 − 0.0016 0.0043 0.3019 − 0.0026 0.0152 2.6212 

ω 10 4.6712 4.2197 32.7789 2.6107 1.4783 20.2017 
50 3.2390 1.9851 24.6580 1.7902 0.5924 11.2487 
150 0.3487 0.7219 8.5499 0.7843 0.4031 5.7150 
300 0.1023 0.2116 2.5468 0.4295 0.3062 2.5218 
500 0.0287 0.0921 0.7901 0.1203 0.1088 1.5219 
800 0.0221 0.0108 0.7105 0.0620 0.0225 1.5138    

III IV 

Parameter N AB RMSE Av AB RMSE AV 

α 10 20.0017 15.0362 21.4376 30.4276 21.1182 33.5522 
50 17.2072 10.3487 12.4511 20.8710 18.9105 10.7660 
150 8.1190 4.0333 9.8704 6.5490 11.4015 4.8744 
300 4.2053 1.4801 3.9329 1.0721 6.0017 3.4975 
500 1.0277 0.5691 2.5457 0.2463 0.9355 3.1341 
800 0.0041 0.00187 2.5629 0.00918 0.0281 3.0876 

β 10 13.0023 17.4603 12.0943 19.3206 34.6577 17.3754 
50 9.3203 10.9405 7.4688 10.2051 28.2188 14.2051 
150 6.1045 3.4461 4.0015 4.3220 20.4421 8.2613 
300 3.6597 2.0439 2.8290 2.1076 6.2330 2.8587 
500 1.2722 0.4532 1.9061 0.8017 2.1958 2.8195 
800 0.0451 0.0007 1.9763 0.0014 0.8723 2.8523 

θ 10 14.7125 16.1346 27.6107 22.7622 10.2172 13.4185 
50 9.5502 8.1472 18.4701 8.2301 7.3150 9.3244 
150 5.9214 4.6692 9.4771 3.2178 4.6360 3.7210 
300 2.6021 2.1793 2.5143 1.9659 2.8804 3.2421 
500 0.7698 0.9255 2.0425 0.0716 0.9356 3.2106 
800 0.0871 0.01843 2.0362 0.0087 0.0521 3.0502 

λ 10 2.7119 4.2136 7.9205 − 5.4302 10.6212 6.9263 
50 − 1.7521 3.8192 3.5422 − 3.7832 7.9750 5.1837 
150 − 0.8320 0.8216 2.7704 − 2.4339 3.4105 4.2156 
300 − 0.1376 0.0321 1.2793 − 0.9817 1.8547 3.1504 
500 − 0.0214 0.0092 1.2143 − 0.4427 0.6993 2.2845 
800 − 0.0051 0.0004 1.2012 − 0.0069 0.0072 2.1341 

ω 10 11.0378 13.6521 8.3214 9.3266 12.0144 7.3243 
50 7.9954 9.2719 3.6534 5.6512 4.7557 4.8755 
150 3.4007 7.2265 2.8731 3.2783 2.5708 3.0962 
300 0.925 1.0743 2.1731 1.7630 1.6506 2.6034 
500 0.023 0.4217 2.0146 0.0692 0.0219 2.5098 
800 0.0072 0.0185 2.0095 0.0051 0.0036 2.5133  
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l (Ω)=
∑n

i=1

log
[(

fKumORL− G(xi, θ, α, β, ϵ)
)ϱi (SKumORL− G(xi, θ, α, β, ϵ))1− ϱi

]

=
∑n

i=1

[
ϱi log

(
fKumORL− G(xi, θ, α, β, ϵ)

)
+(1 − ϱi)log(SKumORL− G(xi, θ, α, β, ϵ))

]
, (49)  

Now, we let ϱ =
∑n

i=0ϱi and setting (6,7) of the KumORL-G model into (49) produce; 

l (Ω)= ϱ log α+ ϱ log β +
∑n

i=1
ϱi log g(xi; ϵ) − 3

∑n
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The ML estimators are obtained by maximizing the log-likelihood in (50) using numerical methods. 

5.2. Monte Carlo simulation analysis of KumORL-G 

Using Monte Carlo simulation, the MLEs’ performance of the five KumORLBXII parameters is evaluated. For different sample sizes 
n, the simulation is considered over several iterations with N = 5000, with the following parameter values grouped into four different 
sets:  

• I: α = 1.2,β = 1.2,θ = 2.6,λ = 0.3,ω = 0.7.  
• II: α = 0.8,β = 0,8,θ = 3.7,λ = 2.6,ω = 1.5.  
• III: = 2.5, β = 1.9,θ = 2.0,λ = 1.2,ω = 2.0.  
• IV: α = 3.1,β = 2.8,θ = 3.0,λ = 2.1,ω = 2.5. 

The initial parameters selected for the simulation analysis were chosen without any strict guidelines since there were no issues. Any 
value of the parameters within the range could be selected. Three evaluation criteria are used to evaluate the estimators’ performance. 
These evaluation criteria are the average bias (AB), root mean square error (RMSE), and average estimations (Av), defined as follows:  

• RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1(Ω̂i − Ω)
2

√

.  

• AB = 1
N
∑N

i=1(Ω̂i − Ω).  

• Av = 1
N
∑N

i=1Ω̂i. 

Where Ω = (α,β,θ, λ,ω). 
The results of the simulation analysis obtained via the R software are displayed in Table 4. As the sample size n increases, we 

observe that the MLEs of α, β, θ, λ, and ω tend to be stable, the biases decrease, and RMSE reduces to zero, proving that the MLE 
technique employed accurately estimates the KumORLBXII model’s parameters. 

6. Applications to real-life datasets 

The fitting potential of the proposed probability model is evaluated using the four real-life complete and censored datasets on 
diabetes and cancer. In each case, the new model is compared with its sub-models (ExORLBXII, KumGRL, KumRL, ORLBXII, and RL) 
and other existing models, which include Burr XII (BXII) [32], Nadarajah, and Haghighi (NH) [31], New Generalized Inverse Weibull 
(NGIW) [33], Odd Kumaraswamy Inverse Weibull (OKIW) [34], and Exponentiated Kumaraswamy Inverse Weibull (EKIW) [35]. The 
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CDFs of the models used in the application are displayed in Appendix A2. 
Different analytical tools and measures are employed to assess the model’s adequacy. These include the consistent Akaike infor-

mation criterion (CAIC), the Bayesian information criterion (BIC), the Akaike information criterion (AIC), Anderson–Darling (AD), 
Kolmogorov–Smirnov (KS) with its p-value, and likelihood ratio ( − 2l). The model that stands best is based on the lowest values of 
these statistics and the highest KS p-value. The mathematical expressions for these statistics are shown below: 

CVM=
∑k

j=1

[

F
(
xj
)
−

2j − 1
2k

]2

+
1

12k
,KS= supx[Fk(x) − F̂(x)],

AD= − k −
1
k
∑k

j=1
(2j − 1)

[
log
(
1 − F

(
xj− k+1

))
+ logF

(
xj
)]
,AIC=2p − 2l ,BIC=plog (k) − 2l ,CAIC=AIC +

2p(p + 1)
k − p − 1  

where k indicates the sample size, xj defines the jth observation when the data points are presented in increasing order, l is the log ML 
function evaluated on the ML estimates, p denotes the number of parameters in the model, F̂(x) represents the estimated density, 
whereas Fk(x) denotes the empirical CDF, and supx is the maximum set of distances. We have also compared the fitness of the 
KumORLBXII with its sub-models via the likelihood ratio (LR) test. The LR statistic is LR = 2[l(Ω̂) − l(Δ̂)], where l(ω̂) and l(Δ̂) are the 
log-likelihood functions of the ML estimates of the full and reduced models respectively. Under the null hypothesis, LR is rejected if 
LR > χ2

U, where χ2
U is the upper 100 % point of the χ2 distribution, with degrees of freedom being the number of parameters of the full 

model minus that of the reduced model. All analyses in this section were completed employing the R program.  

• Complete Datasets: 

The first set of data provides the survival time in years before the start of diabetes of a randomly selected group of 105 individuals 
from the Upper East Region of Ghana’s Bolgatanga Regional Hospital obtained from Zamanah et al. [36]. The dataset contains the 
following: 

52,18, 69, 19, 28, 74, 25, 29, 56, 39, 76, 26, 81, 33, 34, 38, 38, 34, 35, 43, 45, 45, 63, 47, 46, 42, 42, 42, 41, 46, 45, 45, 43, 41, 40, 
49, 49, 48,53, 53, 35, 54, 61, 54, 55, 55, 25, 73, 51, 74, 37, 56, 58, 58, 58, 57, 50,18,62,62, 81, 63, 47, 64, 64, 65, 67, 60, 36, 68, 19, 69, 
61, 61, 61, 70,75,83, 52, 62, 33, 80, 26, 76, 75, 37, 29, 39, 51, 35, 59, 50, 82, 52, 52, 71, 51, 73, 24, 51, 48, 48, 40, 54, 36. 

The second dataset is from Ijaz et al. [37] and it involves the time to remission of 128 patients with bladder cancer, expressed in 
months. The dataset values are as follows: 

0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760, 2.020, 2.020, 2.070, 2.090, 
2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 
3.640, 3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 5.320, 
5.340, 5.410, 5.410, 5.490, 5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 
7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660, 9.020, 9.220, 9.470, 9.740, 10.06, 10.34,10.66, 10.75, 11.25, 
11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 
18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 

Table 5 provides the statistical summaries including measures of skewness and peakness of the two complete data sets. The 
datasets, in particular, show both positive skewness traits, with the cancer dataset demonstrating slight skewness (nearly symmetric). 

Fig. 3 depicts Aarset [38] scaled total test on time (TTT)-transform plots for both complete datasets. The plot in the left panel shows 
that the complete diabetes dataset has a concave shape, indicating that the empirical hazard rate is monotonic. However, the plot in the 
right panel produces a non-monotonic failure rate for the complete cancer dataset. 

Tables 6 and 7 show the ML estimates and their standard errors (in parentheses) for the complete diabetes and cancer datasets 
respectively while Tables 8 and 9 display the relevant selection criteria measures for best-fitting models for the complete diabetes and 
cancer datasets, respectively. The KumORLBXII model is seen to be the best-competing model based on its highest p-value of KS and 
lowest values of these statistics, − 2l, AIC, CAIC, CVM, KS, and AD. 

Tables 10 and 11 display the results of the LR tests, which clearly show that at a 5 % level of significance, there exist notable 
distinctions between KumORLBXII and its sub-models used in the application, and hence the KumORLBXII proves superior over its sub- 
models. 

Figs. 4 and 5 display the histograms and empirical distributions, with the fitted PDFs on the left panels and fitted CDFs on the right 
panels of the competing probability models, respectively for the observed complete two datasets. It is observed that KumORLBXII 
model closely reflects the histograms and empirical CDFs for the complete diabetes and cancer datasets. 

Table 5 
Summary statistics for the complete datasets on diabetes and cancer patients.   

N median Mean Standard deviation skewness Kurtosis 

Dataset 1 (Diabetes) 105 51.00 50.71 16.0004 0.01261 2.3751 
Dataset 2 (Cancer) 128 6.3950 9.3660 10.5083 3.2866 18.4831  
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• Censored Datasets: 

The third dataset available in Amadu [39] pertains to the weekly relapse rates of thirty individuals with leukemia undergoing 
similar therapies. The dataset values are: 

1,1,2,4, 4, 6, 6, 6, 7,8, 9,9,10, 12,13,14, 18,19, 24,26, 29, 31,42*, 45, 50*, 57*, 60, 71*, 85*, 91, where the asterisks (*) indicate the 
censored observations. 

The fourth dataset involves the remission periods in number of months experienced by a random sample of 137 bladder patients. 
The dataset values are as produced below: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 24.80*, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 

Fig. 3. Scaled TTT-transform plots for the diabetes dataset (left panel-I) and cancer dataset (right panel-II).  

Table 6 
Estimates of parameters and standard errors for the complete diabetes dataset.  

Distribution α̂ β̂ θ̂ λ̂ ω̂ 

KumORLBXII 4.6761 (0.5838) 27.5718(30.4327) 117.9996(0.4266) 0.7544(0.2682) 1.4257(0.5063) 
OKIW 19.1324 (26.7297) 0.9557 (0.4736) 12.0218(14.5167) 28.6061(39.1715) 0.4961(0.5139) 
EKIW 27.5091(92.1535) 1.2487 (0.2851) 0.3029(0.1623) 12.8883(53.7527) 57.8262(36.2488) 
NGIW 36.3553 (6.9941) 69.0844(39.1998) 51.1777(14.70372) 0.6657 (0.1030)  
ExORLBXII 5.9735 (0.9662)  120.9457(0.0157) 1.1877(0.6693) 1.2087(0.6798) 
KumGRL 4.3605 (0.34523) 92.335 (2.02e-04) 125.81 (3.29e-03) 0.99972(2.33e-02)  
KumRL 5.2416 (1.4131) 20.6506(41.3857) 66.7199 (55.2123)   
ORLBXII 2.7823 (3.9620) 1.3153 (1.8730) 2599000 (6.8e-08)   
NH 0.0024 (1.64e-04) 6.3741 (6.59e-08)    
BXII 2.9406 (5.8255) 0.087884(0.1743)    
RL   49.6548(4.9512)    

Table 7 
Estimates of parameters and standard errors for the complete cancer dataset.  

distribution α̂ β̂ θ̂ λ̂ ω̂ 

KumORLBXII 1.9322 (0.82218) 17.1879 (57.40462) 4.56215 (7.04595) 0.9295 (0.39953) 0.44299 (0.3315) 
OKIW 3.0208 (4.6896) 0.2453 (0.1165) 1.7781(0.9860) 3.6023(3.0203) 2.7333 (1.4432) 
EKIW 4.3447 (0.8004) 0.2331 (0.0755) 0.8748(0.4720) 5.5467(0.8285) 100.3275(94.856) 
NGIW − 0.1878(0.1279) 64.1552(64.9569) 7.3222(0.9176) 0.2527 (0.0596)  
ExORLBXII 4.9590 (2.2878)  14.3840 (0.0118) 0.2193(0.0579) 3.7800(0.5033) 
KumGRL 2.2840 (0.9499) 5.5028 (10.404) 4.27329 (4.00528) 0.57158(0.2447)  
KumRL 1.1594 (0.1335) 1.51148 (1.4588) 11.4394 (11.71530)   
ORLBXII   86.6658 (0.0038) 0.4020(0.0409) 3.5611(0.2420) 
NH 0.1217 (0.0344) 0.9226 (0.1516)    
BXII    2.3348(0.3541) 0.2338(0.0399) 
RL   8.2691(0.8319)    
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7.32, 10.06, 14.77, 32.15, 0.87*, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 
2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 10.86*, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 
17.14, 79.05, 1.35, 2.87, 4.33*, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 3.02*, 4.40, 5.85, 8.26, 
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 19.36*, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 4.65*, 6.76, 8.60*, 
12.07, 21.73, 2.07, 3.36, 4.70*, 6.93, 8.65, 12.63, 22.69, where the asterisks (*) indicate the observations with censorship. 

Table 12 displays the summary statistics of the two censored datasets. The two datasets show positive skewness traits, with the 
bladder cancer dataset demonstrating high skewness and kurtosis. 

Fig. 6 provides the scaled TTT-transform plots for both leukemia and bladder cancer datasets. The leukemia cancer dataset plot 
shows concave shape after convex, indicating that the empirical hazard rate is a bathtub (left panel-I), whereas the bladder cancer 
dataset plot appears to be the reverse, concave, and then convex (right panel-II). As a result, the empirical hazard rates for both 

Table 8 
Model selection criteria measures for the complete diabetes dataset.  

Model − 2l CVM AD KS p-value AIC CAIC BIC 

KumORLBXII 872.5796 0.0190 0.2247 0.0340 0.9997 882.5797 883.1858 895.8494 
EKIW 880.8270 0.0872 0.6004 0.0675 0.7247 890.8270 891.4331 904.0968 
OKIW 875.2810 0.0274 0.2359 0.0386 0.9977 885.2810 885.8871 898.5508 
NGIW 884.8680 0.1023 0.7300 0.0707 0.6701 892.8680 893.2680 903.4838 
ExORLBXII 877.9742 0.0663 0.6526 0.0590 0.8576 885.9742 886.3742 896.5900 
KumGRL 878.1938 0.0368 0.28109 0.0467 0.9763 886.1938 886.5938 896.8096 
KumRL 879.0812 0.0305 0.3033 0.0455 0.9814 885.0812 885.3188 893.0431 
ORLBXII 879.5864 0.0359 0.2951 0.0446 0.9850 885.5864 885.8240 893.5483 
NH 984.1812 4.4055 21.064 0.3580 4.084e-12 988.1812 988.2988 993.4892 
BXII 1306.7820 8.6773 40.087 0.3580 5.714e-06 1310.782 1310.899 1316.09 
RL 1034.4630 4.5041 22.2780 0.3642 2.2e-16 1036.463 1036.5018 1039.117  

Table 9 
Model selection criteria measures for the complete cancer dataset.  

Model − 2l CVM AD KS p-value AIC CAIC BIC 

KumORLBXII 821.8511 0.0486 0.3191 0.0486 0.9225 831.8511 832.3429 846.1112 
EKIW 823.2022 0.0550 0.3751 0.0517 0.8832 833.2022 833.6940 847.4624 
OKIW 822.3197 0.0641 0.4293 0.0544 0.8433 832.3197 832.8115 846.5799 
NGIW 822.3116 0.0576 0.3785 0.0515 0.8858 830.3116 830.6368 841.7197 
ExORLBXII 827.0604 0.0645 0.3702 0.0550 0.8333 835.0604 835.3856 846.4685 
KumGRL 827.1705 0.0829 0.5001 0.0589 0.7666 835.1705 835.4957 846.5786 
KumRL 828.4712 0.1441 0.8080 0.0753 0.4626 834.4712 834.6647 843.0273 
ORLBXII 828.2742 0.2875 1.8516 0.0875 0.2805 834.2742 834.4677 842.8303 
NH 829.4513 0.1991 1.3038 0.0919 0.2296 833.4513 833.5473 839.1554 
BXII 907.0332 2.7219 13.364 0.2507 2.1e-07 911.0332 911.1292 916.7373 
RL 832.0356 0.1786 1.1556 0.0810 0.3699 834.0356 834.0673 836.8876  

Table 10 
Comparison of KumORLBXII and its sub-models for the complete diabetes dataset.  

model hypotheses LR critical value 

ExORLBXII H0 : β̂ = 1 vrs H1 : H0 is false 5.3946 3.841 
KumGRL H0 : ω̂ = 1 vrs H1 : H0 is false 5.6142 3.841 
KumRL H0 : ω̂ = λ̂ = 1 vrs H1 : H0 is false 6.5016 5.991 
ORLBXII H0 : α̂ = β̂ = 1 vrs H1 : H0 is false 7.0068 5.991 
RL H0 : α̂ = β̂ = λ̂ = ω̂ = 1 vrs H1 : H0 is false 161.8834 9.488  

Table 11 
Comparison of KumORLBXII and its sub-models for the complete cancer dataset.  

model hypotheses LR critical value 

ExORLBXII H0 : β̂ = 1 vrs H1 : H0 is false 5.2093 3.841 
KumGRL H0 : ω̂ = 1 vrs H1 : H0 is false 5.3194 3.841 
KumRL H0 : ω̂ = λ̂ = 1 vrs H1 : H0 is false 6.6201 5.991 
ORLBXII H0 : α̂ = β̂ = 1 vrs H1 : H0 is false 6.4231 5.991 
RL H0 : α̂ = β̂ = λ̂ = ω̂ = 1 vrs H1 : H0 is false 10.1845 9.488  
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datasets reveal that the failure rate is non-monotonic. 
Tables 13 and 14 present the ML estimates and their standard errors (in parentheses) for the leukemia and bladder cancer datasets, 

respectively, Tables 15 and 16, provide the relevant selection criteria measures for the best-fitting models for the censored cancer 
datasets. It is observed from the results in Tables 15 and 16, that although the selection criteria (AIC, BIC, and CAIC) do not favor the 
KumORLBXII model, it is the best-fit model based on the greatest p-value of KS and least values of these statistics: − 2l , CVM, AD, and 
KS. From the likelihood ratio test results in Tables 17 and 18, it is noted that there is no statistical difference between KumORLBXII and 
its sub-models, even though KumORLBXII has shown to be a good fit. 

The plots of fitted PDFs with histograms on the left panels, and on the right is the empirical against fitted CDFs of the observed 

Fig. 4. Fitted PDFs (left panel-I) and fitted CDFs (right panel-II) vs. empirical for the complete diabetes dataset.  

Fig. 5. Fitted PDFs (left panel-I) and fitted CDFs (right pane-Il) vs. empirical for complete cancer dataset.  

Table 12 
Summary statistics for censored leukemia and bladder cancer datasets.   

N Median Mean Standard deviation Skewness kurtosis 

Dataset 3 (Leukemia) 30 13.50 25.33 25.73115 1.192072 3.33419 
Dataset 4 (Bladder) 137 6.250 9.343 10.34217 3.248328 18.4638  
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censored datasets have been presented in Figs. 7 and 8. The adequacy of KumORLBXII is demonstrated in Figs. 7 and 8 due to the 
closeness of its fits to the histograms and empirical CDFs of the censored data. 

7. Conclusions, limitations, further research, and practical implications 

The study proposed and examined the KumORL-G, an extension of the ORL-G family of distributions [27] with two more shape 
parameters to increase its versatility in modeling real-world datasets. Its statistical properties including quantile function expansions, 
ordinary, and incomplete moments, inequality measures, probability-weighted moments, order statistics, and Renyi entropy were 
thoroughly discussed and presented. The study also developed characterizations based on the hazard function and the ratio of two 
truncated moments. These results give an in-depth assessment of the proposed method. The KumORLBXII was introduced, along with 

Fig. 6. Scaled TTT-Transform plots for the leukemia cancer dataset (left panel-I) and bladder cancer dataset (right panel-II).  

Table 13 
Estimates of parameters and standard errors (in parenthesis) for the leukemia cancer dataset.  

distribution α̂ β̂ θ̂ λ̂ ω̂ 

KumORLBXII 13.9955 (30.796) 0.2116 (0.513) 18.0781 (2.526) 0.1415 (0.109) 5.2399 (1.338) 
OKIW 1.2648 (32.31) 0.63272 (0.662) 2.24867 (36.862) 0.6311 (1.6794) 1.3019 (4.325) 
EKIW 4.5003 (43.329) 0.4409 (0.502) 0.40521 (1.974) 5.8534 (26.675) 5.7573 (11.809) 
NGIW 0.6788 (2.250) 11.6083 (41.794) 5.73037 (2.250) 0.2606 (0.282)  
ExORLBXII 36.0468 (0.002)  19.9021 (0.008) 0.0657 (0.010) 5.6230 (0.120) 
KumGRL 1.1355 (0.814) 20.2567 (88.11) 150.0251 (4.251) 0.7745 (0.480)  
KumRL 0.8259 (0.160) 4.1160 (10.495) 173.0109 (501.833)   
ORLBXII   4.8185 (8.650) 4.3394 (8.634) 0.1379 (0.296) 
BXII    12.6773 (30.467) 0.0248 (0.0597) 
NH 0.1123(0.077) 0.4947 (0.170)    
RL   29.3677 (6.076)    

Table 14 
Estimates of parameters and standard errors (in parenthesis) for the bladder cancer dataset.  

distribution α̂ β̂ θ̂ λ̂ ω̂ 

KumORLBXII 5.9437 (5.380) 2.3666 (4.300) 188.356 (0.0024) 0.10097 (0.099) 7.2186 (0.761) 
OKIW 9.1792 (0.485) 0.1119 (0.086) 2.8028 (1.879) 18.9989 (41.416) 4.0499 (2.783) 
EKIW 4.3873 (0.188) 0.2106 (0.045) 0.9104 (0.505) 5.9662(0.671) 150.589 (0.0024) 
NGIW − 0.1458 (0.105) 108.5478 (0.002) 7.74058 (0.303) 0.2231 (0.015)  
ExORLBXII 4.2907 (1.906)  188.4(1.9716e-03) 0.1357(3.23e-02) 7.0878 (0.572) 
KumGRL 2.9264 (1.075) 20.0411 (10.248) 4.1262 (0.2823) 0.4383(3.929)  
KumRL 1.1665 (0.134) 1.3819 (1.322) 11.0951(11.251)   
ORLBXII   79.6635 (2.98e-03) 0.4089(3.81e-02) 3.5112 (0.244) 
BXII    2.3353 (0.354) 0.2182 (0.037) 
NH 0.1115(0.032) 0.9335 (0.161)    
RL   8.89736 (0.889)    
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its statistical features. It is a unique sub-model of the KumORL-G that employed the Burr XII as the baseline model. The KumORLBXII is 
a five-parameter extension of the RL distribution with many sub-models suited for modeling lifetime data. The MLE strategy was 
utilized to estimate the model parameters and evaluated using Monte Carlo simulation. Our findings show that as the sample size 
increases, the AB and RMSE continually drop, validating the consistency and robustness of the ML estimation approach. To assess the 
new model’s performance and flexibility, a comprehensive application was carried out using complete and censored survival datasets. 
Different analytical tools and measures were employed to assess the model’s adequacy. Among its competitors, the KumORLBXII 
distribution stands out as a potential and novel approach for modeling diabetes and cancer datasets, particularly because it can 
accurately represent the complex structure of survival dataset. 

The proposed probability distribution will serve as an invaluable tool in survival analysis, with prospective uses in healthcare and 
biomedical data modeling. In addition, this probability model provides alternatives to existing distributions established in relevant 

Table 15 
Model selection criteria measures for the leukemia cancer dataset.  

Distribution − 2l AIC BIC CAIC CVM AD KS p-value 

KumORLBXII 216.4471 226.4471 233.4531 228.9471 0.0355 0.3451 0.0966 0.9423 
OKIW 216.4811 226.4811 233.4871 228.9811 0.0470 0.4418 0.1092 0.8671 
EKIW 216.5025 226.5025 233.5085 229.0025 0.0460 0.4390 0.1125 0.8421 
NGIW 220.4575 228.4575 234.0623 230.0575 0.0477 0.4600 0.1161 0.8134 
ExORLBXII 216.5849 224.5849 230.1897 226.1849 0.0435 0.4157 0.1108 0.8548 
KumGRL 219.2652 227.2652 232.8700 228.8652 0.0588 0.4451 0.1117 0.8485 
KumRL 219.6124 225.6124 229.8160 226.5355 0.0882 0.5235 0.1222 0.7612 
ORLBXII 216.6276 222.6276 226.8312 223.5507 0.0549 0.4728 0.0987 0.9321 
NH 217.9807 221.9807 224.7831 222.4251 0.0582 0.4712 0.0996 0.9272 
BXII 229.0087 233.0087 235.8111 233.4531 0.5659 3.0828 0.2645 0.0300 
RL 220.735 222.735 224.1362 222.8779 0.1723 0.8504 0.1646 0.3907  

Table 16 
Model selection criteria measures for the bladder cancer dataset.  

Distribution − 2l AIC BIC CAIC CVM AD KS p-value 

KumORLBXII 838.0985 848.0985 862.6984 848.5565 0.0429 0.2717 0.0463 0.9305 
OKIW 839.3426 849.3426 863.9425 849.8006 0.0604 0.3820 0.0512 0.8657 
EKIW 839.8167 849.8167 864.4166 850.2747 0.0929 0.5561 0.0589 0.7278 
NGIW 839.1353 847.1353 858.8152 847.4383 0.0871 0.5025 0.0593 0.7216 
ExORLBXII 838.1819 846.1819 857.8618 846.4849 0.1106 0.5791 0.0659 0.5916 
KumGRL 840.2672 848.2672 859.9471 848.5702 0.0924 0.6940 0.0679 0.5535 
KumRL 843.5731 849.5731 858.3331 849.7536 0.3142 1.4986 0.0996 0.1321 
ORLBXII 854.9202 860.9202 869.6802 861.1007 0.2432 1.7669 0.0962 0.1582 
BXII 924.6137 928.6137 934.4536 928.7033 2.4662 12.685 0.2332 6.7e-07 
NH 845.3051 849.3051 855.1451 849.3947 0.2610 1.5678 0.0792 0.3568 
RL 845.7131 847.7131 850.6331 847.7427 0.2829 1.5958 0.0886 0.2321  

Table 17 
Comparison of KumORLBXII and its sub-models for the leukemia cancer dataset.  

model hypotheses LR critical value 

ExORLBXII 
KumGRL 

H0 : β̂ = 1 vrs H1 : H0 is false 0.1378 3.841 
H0 : ω̂ = 1 vrs H1 : H0 is false 2.8181 3.841 

KumRL H0 : ω̂ = λ̂ = 1 vrs H1 : H0 is false 3.1653 5.991 
ORLBXII H0 : α̂ = β̂ = 1 vrs H1 : H0 is false 0.1805 5.991 
RL H0 : α̂ = β̂ = λ̂ = ω̂ = 1 vrs H1 : H0 is false 4.2879 9.488  

Table 18 
Comparison of KumORLBXII and its sub-models for the bladder cancer dataset.  

model hypotheses LR critical value 

ExORLBXII 
KumGRL 

H0 : β̂ = 1 vrs H1 : H0 is false 0.0834 3.841 
H0 : ω̂ = 1 vrs H1 : H0 is false 2.1687 3.841 

KumRL H0 : ω̂ = λ̂ = 1 vrs H1 : H0 is false 5.4746 5.991 
ORLBXII H0 : α̂ = β̂ = 1 vrs H1 : H0 is false 16.9217 5.991 
RL H0 : α̂ = β̂ = λ̂ = ω̂ = 1 vrs H1 : H0 is false 7.6146 9.488  
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studies and expands alternatives for modeling cancer and diabetes survival datasets. The new model’s versatility in different data 
settings, and its reliable results with larger sets of data, encourage more research into its potential uses in healthcare, biomedical, and 
related sectors. Despite its numerous advantages, the KumORL-G model cannot be used to model discrete datasets since it is a 
continuous type distribution, and the formulations of the ML estimates and statistical attributes are difficult to convert to closed-form 
equations. 

In future research, we hope to tackle some extensions such as other sub-models of the KumORL-G, a discrete version of 
KumORLBXII, and statistical properties that are not addressed in this paper. The estimation of the KumORL-G using other estimation 
methods, characterization results based on order statistics and record values, and applications of the new probability model to 
censored data with covariates will also be addressed in our future study. Researchers can increase our comprehension of the suggested 
model and its impact in a variety of domains by following these lines of inquiry. 

Additionally, the use of this innovative model has the potential to provide essential information on the survival rates of diabetes 
and cancer patients, as well as aid in enhancing treatment and caregiving. The novel probability proposed in this paper has the po-
tential to be an effective instrument for identifying populations at higher risk and projecting patient outcomes, which may assist 
healthcare practitioners build more efficient programs for diabetes and cancer screening and prevention. Healthcare professionals 
could gain from the findings of the study to invest in research and development of innovative treatments and technologies to reduce the 
impact of the diseases on individuals. 
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Fig. 7. Fitted PDFs (left panel-I) and fitted CDFs (right panel-II) vs. empirical for leukemia cancer dataset.  

Fig. 8. Fitted PDFs (left panel-I) and fitted CDFs vs. empirical (right panel-II) for bladder cancer dataset.  

J.K. Okutu et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e30690

24

Availability of data 

The study’s data is accessible in the text and is properly cited. 

CRediT authorship contribution statement 

John Kwadey Okutu: Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. 
Nana K. Frempong: Writing – review & editing, Validation, Supervision. Simon K. Appiah: Writing – review & editing, Validation, 
Supervision. Atinuke O. Adebanji: Writing – review & editing, Validation, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Appendix A1 

Theorem A. Let (Ω,F ,Р) represent a given probability space and let M = [c, d] be an interval for some c < d (c = − ∞, d =

∞could as well be permitted). Let X : Ω→M denotes a continuous random variable with CDF G (x) and let v1 and v2 represent two real 
functions that are defined on the interval M such that; 

E(v2(x)⎸X≥ x)= E(v1(x)⎸X≥ x)Λ(x), x ∈ M ,

is defined with some real function Λ. Suppose that v1, v2 ∈ C1(M ),Λ ∈ C2(M ) and G(x) is twice continuously differentiable and completely 
monotonic function on the set M . Finally, assume that the equation Λv1 = v2 has no real solution in the interior of M , then the functions Λ, v1,

v2 specifically define G (x) by; 

G(x)=
∫ x

a
C
⃒
⃒
⃒
⃒

Λʹ(u)
Λ(u)v1(u) − v2(u)

⃒
⃒
⃒
⃒e

− s(u)du  

where the function s is a solution of the differential equation ś (x) = Λʹv1
Λv1 − v2

, and C is a constant, chosen to make 
∫

dG = 1. 

Appendix A2 

FOKIW(x ) =

(

1 − e
1−

⎛

⎝1− e

(

− θ

(
α
x

)β
)⎞

⎠

− λ

)ω

, x, α, β, θ, λ,ω > 0  

FEKIW(x )=

⎛

⎝1 −

⎛

⎝1 − e

(

− λ

(
α
x

)β
)
⎞

⎠

ω⎞

⎠

θ

, x, α, β, θ, λ,ω > 0  

FNGIW(x)=1 −

⎛

⎜
⎜
⎝1 − e

(

−
α
x − θ

(
1
x

)λ
)
⎞

⎟
⎟
⎠

β

, x > 0, α, β, θ, λ> 0  

FExORLBXII(x) =

⎛

⎜
⎝1 −

(

1 +
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ

⎞

⎟
⎠

α

, x,ω, λ, α>0, θ ≥ 2  

FKumGRL(x)= 1 −

⎛

⎜
⎝1 −

⎧
⎪⎨

⎪⎩
1 −

(

1 +
xλ

θ(θ − 1)

)

e−
xλ

θ

⎫
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⎪⎭

α⎞

⎟
⎠

β

, x, α, β, λ > 0, θ ≥ 2  

FKumRL(x)=1 −

⎛
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x

θ(θ − 1)
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e−
x
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⎫
⎬

⎭

α⎞

⎠

β

, x, α, β>0, θ ≥ 2 
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FORLBXII(x )=1 −

(

1+
(1 + xλ)

ω
− 1

θ(θ − 1)

)

e−
(1+xλ)

ω
− 1

θ , x,ω, λ>0, θ ≥ 2  

FRL(x )=1 −

(
θ2 + x − θ

)

θ(θ − 1)
e−

x
θ , x, θ ≥ 2  

FBXII(x)=1 −
(
1 + xλ)− ω

, x > 0,ω>0, λ>0  

FNH(x)= 1 − e(1− (1+αx)β), x, α, β > 0  
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