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Although artificial intelligence (AI) has found useful appli-
cations in our daily professional lives, such as in the predic-
tive text used in e-mails and e-mail address prompts, it is 
still in its infancy in routine clinical practice and is almost 
completely absent from undergraduate medical curricula. 
A recent review on AI in undergraduate medical education 
highlights the limited adoption of AI in undergraduate med-
ical education and calls for the design of a standardised com-
petency framework.1 The authors acknowledge that their 
scoping review did not extend to postgraduate training or 
continuing medical education settings, both of which have 
potential as valuable learning environments for AI learning. 
Haematology as a specialty is ideally poised to benefit from 
AI applications given its reliance on data and image-driven 

diagnosis and the complexities of its treatment regimens. 
An excellent review article in this journal by Shouval et al.2 
describes in detail the spectrum of AI and its potential de-
ployment in haematology practice. In this perspective, we 
consider recent developments in AI research in haematology, 
we address concerns surrounding the wider adoption of AI 
in the clinical arena, and we propose solutions to the educa-
tional barriers that currently hinder its clinical application.

The volume of publications in medical AI research has 
expanded greatly in recent years,3 particularly in special-
ties where image interpretation and pattern recognition by 
highly trained clinicians form the cornerstone of diagnosis. 
AI has the capacity to enhance the clinician's ability to make 
accurate and rapid diagnoses quickly based on a vast array 
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of data, as well as to use data to make prognoses on patient 
outcomes. Haematological diagnosis combines the visual 
interpretation skills of the haematologist with a multitude 
of sophisticated immunological and genomic data acquisi-
tion tools. However, there remains a limited emphasis on the 
use of AI in haematology beyond the research environment. 
The most recent versions of the Royal Colleges curricula 
in haematology in the UK or Ireland, for example, do not 
mention AI in otherwise very comprehensive documents.4 
Although examples of the successful implementation of 
novel AI-related modules in undergraduate curricula in 
North America have been described,5,6 we are not aware 
of any longitudinal courses in medical AI that span the 
undergraduate–postgraduate interface in medical special-
ties, including haematology. We believe that trainees in hae-
matology should have a working knowledge of AI in order to 
embrace it as a tool for optimising clinical care.

The manual microscopic review of peripheral blood 
films remains the ‘gold standard’ for the diagnosis of sev-
eral haematological conditions. It has been estimated that 
some 15% of blood samples require manual review.7 A recent 
study reported on the use of a novel AI-based decision sup-
port system that utilised a full-field approach for blood cell 
recognition and classification in both normal and abnormal 
peripheral blood films.8 Impressive degrees of correlation 
with conventional manual microscopy were achieved. Such 
systems will not replace morphologists but act as a labour-
assistance device to alleviate busy workloads. The reduction 
in slide review time afforded by such AI machine-learning 
tools would allow haematologists to devote more time to ab-
normal slide examination. A deep-learning AI method was 
used to automatically count white blood cells in colour bone 
marrow microscopic images.9 The highest correct recogni-
tion rate that was achieved approached 98.8%. The authors 
reflected on the decreased inspection time needed with 
instant production of images, as well as the elimination of 
human factors such as fatigue that can lead to miscounting 
of cells. Promising convolutional neural network-based auto-
mated image analysis methods for the microscopic diagnosis 
of malaria from blood films have also been recently reported 
in the literature and this application could have significant 
advantages in resource poor malaria endemic regions of the 
world, where limited laboratory workforce capacity exists.10

The application of AI-aided image analysis to the mor-
phological detection of rare cells has obvious advantages 
in terms of reducing operator-dependent error and saving 
time on what is considered a laborious process. Researchers 
in Singapore developed a convolutional neural network-
based algorithm for the detection of haemoglobin H (HbH) 
inclusions in the red blood cells of patients with suspected 
alpha-thalassaemia.11 The software was trained using digital 
images of HbH-positive and -negative blood films. A sensi-
tivity of 91% and specificity of 99% to detect HbH-positive 
cells at various magnifications were achieved. Analysis of 
single-cell rheoscopy data using machine learning was used 
to diagnose efficiently and rapidly various hereditary hae-
molytic anaemias, including hereditary spherocytosis, using 

low whole blood sample volumes.12 An accuracy of 92% in 
identifying sample datasets was achieved by the best per-
forming algorithms. Data from new samples can be con-
tinuously incorporated in the future in order to extend the 
efficacy of this AI method.

Machine-learning algorithms have been applied with 
considerable success in predicting hospital re-admission, 
e.g., in high-risk patients with sickle cell disease.13 This has 
obvious benefits for the targeting of healthcare resources at 
individual discharged patients in an effort to prevent their 
re-admission. Machine learning has also been used for the 
automated phenotyping of megakaryocytes using non-
neoplastic samples and those from patients with myelopro-
liferative neoplasms including essential thrombocythaemia, 
polycythaemia rubra vera, and myelofibrosis.14 The au-
thors point to the potential for machine learning as a new 
tool for assessing patient samples and monitoring disease 
progression.

There has been increasing attention in recent years given 
to the application of AI in the diagnosis of multiple myeloma 
(MM). Despite being one of the most common haemato-
logical malignancies worldwide, MM remains difficult to 
cure owing to high levels of relapse and chemoresistance. 
AI-based studies provide hope for the discovery of novel 
markers for the earlier diagnosis and improved selection 
of therapies in patients with MM. Researchers from China 
used various machine-learning algorithms to develop a di-
agnostic model of MM based on training and test datasets 
of routine laboratory data (haemoglobin, serum creatinine, 
serum calcium, immunoglobulin, albumin, total protein).15 
The Gradient Boosting Decision Tree algorithm performed 
the best, with a precision of 92.9% and an impressive area 
under the receiver operating characteristic curve of 0.975 
(95% confidence interval 0.963–0.986).

Artificial intelligence also has the capacity to reveal infor-
mation that is concealed in high-dimensional haematologi-
cal data. The prognostic potential of immunophenotypical 
marker expression intensity using flow cytometry data to 
predict relapse of childhood acute lymphoblastic leukaemia 
(ALL) was assessed in one study.16 Researchers found a con-
sistent association between a lower expression of the CD38 
marker and ALL relapse. Carreras et al.17 also reported a 
high degree of accuracy in predicting the survival of patients 
with diffuse large B-cell lymphoma using artificial neural 
networks to analyse a pancancer immune profiling panel.

Haematopoietic stem cell transplantation (HSCT) is 
widely used in the treatment of various haematological 
malignancies. Machine learning may be used to automate 
various HSCT steps, such as donor selection, identification 
of biomarkers for early diagnosis of complications, and 
modelling of graft-versus-host disease risk stratification. 
A novel disease-risk stratification tool incorporating dis-
ease features related to histology, genetics and treatment 
response was validated in a retrospective study of >47 000 
adult patients who underwent allogeneic HSCT for vari-
ous haematological malignancies.18 The potential benefits 
of this model in facilitating the analysis and interpretation 
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of clinical trial results from heterogeneous cohorts are 
discussed.

Anxiety towards the greater use of AI in healthcare is 
understandable and stems from legitimate concerns sur-
rounding data protection, lack of transparency in clini-
cal decision-making, and erosion of the time-honoured 
doctor–patient relationship. Fears may be expressed that 
embracing AI will lead to the replacement of physicians by 
machines which, no matter how technologically advanced, 
can never simulate the empathy conveyed by doctors in 
a longitudinal therapeutic relationship.19 Haematologists 
should be reassured that, far from being substituted by AI, 
they can benefit from having their diagnostic and prog-
nostic skills augmented by this exciting technology, which 
will enable them to assign more mundane tasks to ma-
chines while focusing on more complex clinical problems 
and maximising their time with patients and trainees. The 
exponential volume of data arising from the use of high-
throughput next-generation molecular genetic sequenc-
ing positions haematology well for the application of AI 
in diagnosis and personalised management, with the ul-
timate goal of improving treatment outcomes, diagnostic 
accuracy and speed, and reduction in technical errors.20 
AI also has the potential to reduce the isolation of clini-
cians working in remote or poorly resourced settings, thus 
improving access to and global equity of healthcare. The 
challenge will be to harness this technology while preserv-
ing the primacy of the physician's role in decision-making 
and provision of clinical oversight.

With the exponential expansion of medical knowl-
edge, there is an increasing acceptance that medical ed-
ucation, rather than attempting to exhaustively convey 

information, should equip learners with the research and 
critical enquiry skills required to navigate complex med-
ical data. Despite this, information and data science, big 
data analytics, and AI remain largely absent from most 
medical curricula.21 This domain of learning tends to re-
side in schools of engineering or computer science and 
opportunities for cross-pollination even within universi-
ties remain limited. A recent survey of 210 postgraduate 
trainee doctors in NHS hospitals in London found that, 
despite reservations about how AI might affect their clin-
ical judgement or practical skills, the majority of doctors 
believed that AI would reduce their workload and improve 
their research and audit skills.22 Most (92%) of the trainees 
reported that AI training was insufficient in their current 
curricula and 81% were supportive of more AI-training 
opportunities. The need for formal AI training has been 
prioritised in government health policy and there is a rec-
ognition that future doctors should be proficient in data 
input, interpretation of algorithmic output, and commu-
nication of AI-based management plans to patients.23

Grunhut et al.6 in their recent thoughtful review on the 
education of future physicians in AI reiterate the importance 
of exposing learners to the limitations and inherent biases 
of AI, as well as the ethical aspects of implementing AI for 
shared clinical decision-making. They challenge us to imag-
ine how a clinician untrained in AI can navigate the ethical 
dilemmas surrounding the application of AI in clinical prac-
tice, such as when an AI algorithm predicts a high proba-
bility of mortality in an individual patient. Paranjape et al.5 
stress the importance of interdisciplinary involvement in AI 
curricular design, with experts in data and implementation 
science working alongside medical educators and clinicians.

T A B L E  1   Core components of a spiral curriculum in medical artificial intelligence for haematology trainees

Educational content Learning and assessment Comments

Undergraduate phase

Data entrya Computer-based practical instruction Interdisciplinary experiential learning of the fundamentals 
of AI and machine learning should be integrated, where 
possible, into existing undergraduate modules in medical 
informatics and EBM

Data curationb Computer-based practical instruction

AI and machine-learning theory Online video-based lectures

Basic specialist training

AI algorithms Data scientist-led tutorials The early postgraduate phase of medical training should 
provide a grounding in applied AI and an introduction to 
the use of AI algorithms as a core activity across medical 
specialties

Clinical AI applications Literature review

Higher specialist training

Communicating AI to patients Simulation-based learning The higher specialist training phase should focus on how to 
integrate AI into clinical decision-making and doctor–
patient communication, as well as a consideration of its 
limitations

Ethics of AI in clinical practice Reflective assignments

Limitations and potential harm Peer-assisted reflective seminars

Continuing medical education

Research updates Conference workshops There should be sessions on applied AI-related research in 
haematology conferences and opportunities to engage in 
clinical audit of AI in specialists' practice

Evaluation of clinical practice Clinical audit activities

Abbreviations: AI, artificial intelligence; EBM, evidence-based medicine.
aData entry is the process of accurately transcribing information into an electronic device such as a computer.
bData curation is the process of creating, organising and maintaining datasets to enable them to be accessed and used by others.
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We believe that national specialty directors in haematol-
ogy and other medical subspecialties should work jointly 
with Royal Colleges and other national training boards in 
convening suitably qualified experts in AI and data science, 
as well as medical education experts, in an effort to co-design 
core modules in applied medical AI to bridge this educational 
gap. Table 1 outlines the broad elements of such an approach, 
which should be responsive to ongoing developments in AI 
technology and clinical application. Furthermore, we pro-
pose the creation of a British Society of Haematology special 
interest group and/or working group, which would be tasked 
with promoting research and educational innovation in the 
emerging domain of AI in haematology.

From the early days of pioneers like William Hewson 
(1739–1774), the specialty of haematology has demonstrated 
flexibility in adapting to multiple advances in knowledge 
and technology. We are on the verge of a new era of closer 
integration of AI into routine clinical practice that will ul-
timately benefit our patients and development of the spe-
cialty. To facilitate this transition, AI and machine-learning 
theory should become core elements of undergraduate and 
postgraduate medical curricula and should involve close 
co-operation between clinicians and data scientists. Future 
research should survey the expectations and attitudes of 
haematologists towards AI and evaluate the educational 
benefits of pilot curricula.
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