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Abstract: The availability of silicon photonic integrated circuits (ICs) in the 2–4 µm wavelength
range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper,
we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this
wavelength range. We first present results on the heterogeneous integration of 2.3 µm wavelength
III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors.
Then a compact 2 µm wavelength widely tunable external cavity laser using a silicon photonic IC for
the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating
spectrometers are also presented. Further we show an on-chip photothermal transducer using a
suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

Keywords: silicon photonics; mid-infrared; optical sensor; integrated spectrometer; spectroscopy

1. Introduction

Silicon photonics has attracted great interest as a promising integrated-optics platform for various
applications in the telecommunication wavelength range, such as optical interconnects [1,2]. This
platform can take advantage of the silicon electronics processes to fabricate photonic devices in
high yield and high volume. In addition, the high refractive index contrast of silicon-on-insulator
(SOI) waveguides enables a tight bending radius, and consequently ultra-compact photonic devices
and systems. With these advantages, in recent years the potential applications of silicon photonic
integrated circuits (ICs) are extended to areas such as gas sensing [3–5], bio-sensing [6,7] and biomedical
diagnostics [8,9]. However, the silicon photonic devices used at telecommunication wavelengths
are typically retained for most of these new applications due to the lack of components at other
wavelengths, which limits the performance of these photonic systems. For example, a silicon photonic
on-chip sensor for evanescent field absorption spectroscopy of CH4 near 1.65 µm was recently
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demonstrated [10]. A sensitivity of 756 ppmv·Hz−1/2 is obtained by using a 10 cm long silicon
spiral waveguide. Extending the operation wavelength of the silicon photonic on-chip sensor to
around 2.35 µm or 3.25 µm would enable a more compact on-chip sensor with higher sensitivity
since the absorption coefficient of CH4 at these longer wavelengths is much higher than that at
1.65 µm [11]. The mid-infrared spectral range contains strong absorption features of many gases and
chemicals that are of great interest for industrial, medical and environmental applications [12–14]. The
realization of silicon photonics components in this wavelength range could enable economical and
compact optical sensors with superior performance in sensitivity, power consumption and portability
compared to current bulky solutions [15–17]. In standard absorption spectroscopy, the noise of the
photodetector often limits the sensitivity of the system and often cooled detectors are required to meet
the system requirements. In view of further miniaturization and cost reduction, novel indirect methods
to measure the optical absorption such as photoacoustic and photothermal spectroscopy are gaining
popularity. These methods are shown to be highly sensitive and robust to environmental noise for the
detection of various chemical compounds [18–25]. Part-per-trillion (ppt) trace gas sensitivities have
been demonstrated using a quartz-enhanced photoacoustic spectroscopy (QEPAS) system [25].

The SOI waveguide circuit platform has become a standard for integrated photonics in the
telecommunication wavelength range and the processes to fabricate these devices inside silicon
photonics foundries are well developed [26]. The development of mid-infrared (>2 µm wavelength)
optical sensors based on SOI waveguide circuits can benefit from these well-established processes.
But the absorption of silicon dioxide rapidly increases and substrate leakage loss also becomes
an issue at wavelengths beyond 4 µm [27]. Specific structures should be used to reduce the SOI
waveguide loss [28–33]. Also, importantly, light sources and photodetectors need to be integrated
on the SOI platform. This typically involves the integration of III–V semiconductors on the silicon
photonic platform. In this paper we summarize our recent work on 2–4 µm wavelength range
III–V-on-silicon photonic integrated circuits based on the SOI platform. The paper is organized as
follows. Section 2 introduces fully integrated mid-infrared photonic circuits for chip-scale optical
sensors. The third section focuses on the heterogeneously integrated 2.3 µm III–V laser sources
and photodetectors on silicon waveguide circuits. The fourth section presents a compact 2 µm
wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength
selective feedback. Then silicon arrayed waveguide grating (AWG) spectrometers operating in the
2–4 µm wavelength range are presented in the fifth section, together with the integration of InP-based
and GaSb-based photodetector arrays. In the last section, a photothermal mid-infrared spectroscopy
method is presented that uses a suspended SOI microring resonator operating at 1.55 µm acting as a
transducer for photothermal spectroscopy in the 3–4 µm wavelength range, circumventing the need
for a cooled mid-infrared detector.

2. Mid-Infrared Silicon Photonic Integrated Circuits

In most applications, a spectroscopic sensing system should have a light source, a probe
component and a spectrometer or single pixel detector. In previously demonstrated on-chip optical
sensors, light from an external light source is coupled to the probe component (waveguide circuit),
which interacts with the environment, and afterwards is read by an external detector. For a compact
sensor system, both the light source and detector should be integrated together with the waveguide
circuit. Figure 1 shows two typical configurations of fully integrated mid-infrared on-chip spectroscopic
sensors. In both configurations, light is coupled from the integrated light source to the waveguide and
then split to two arms. The probe component in one arm interacts with environment while the other
one provides the reference information. Different probe components have been proposed to realize
efficient interaction between the environment and light in the waveguide, e.g., slot waveguides [34,35],
spiral waveguides [10,36], and microring resonators (MRRs) [4,5,37]. In the case of liquid sensing,
a low-cost broadband light source such as a light emitting diode (LED) can be used since liquid
samples typically have broad absorption features. In this configuration, a spectrometer with integrated
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photodetectors should be implemented to analyze the absorption spectra. For gas sensing, typically a
tunable single mode laser is required to probe the absorption lines of gases, as used in the popular
tunable diode laser absorption spectroscopy (TDLAS) technique. Integrating a widely tunable laser
or a broadband wavelength coverage laser array on the waveguide circuit enables to simultaneously
detect several gases or even broad absorption features of liquids using the configuration shown in
Figure 1b.
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Figure 1. (a) Schematic of two silicon photonic configurations to realize an integrated on-chip
mid-infrared absorption spectroscopy sensor. Broadband source and spectrometer, best suited for
liquid and solid analytes; (b) Tunable single mode laser source for trace gas detection.

For mid-infrared silicon photonic ICs, low-loss passive waveguides, beam splitters and filters
(spectrometers) can be fabricated in silicon foundries [17], which is an asset of mid-infrared silicon
photonic sensors. At 2 µm wavelength, a propagation loss of 0.6 dB/cm was achieved for SOI
strip waveguides (TE-polarization) [38]. As the wavelength increases to 3.8 µm, a low prorogation
loss of ~1.5 dB/cm for 400 nm rib SOI waveguides with 220 nm etch depth was reported by
Nedeljkovic et al. [39].

3. III–V-on-Silicon Platform for the 2 µm Wavelength Range

Silicon is an indirect bandgap semiconductor with extreme low light emission efficiency,
transparent beyond 1.1 µm wavelength. In order to realize fully integrated silicon photonic systems, a
few approaches have been developed to integrate active opto-electronic devices on silicon, especially
in the telecommunication wavelength range. This includes the direct epitaxial growth of III–V or
Germanium-based material [40–42], the heterogeneous integration of III–V material on silicon [43,44]
and the flip-chip integration of prefabricated semiconductor devices [45]. Among these approaches,
the heterogeneous integration of III–V material on silicon through bonding has been proven to
be a promising solution to integrate opto-electronic devices on silicon photonic ICs. In this way,
heterogeneously integrated III–V-on-silicon lasers and photodetectors can be realized using the
same epitaxial layer stack. In the mid-infrared wavelength range, quantum cascade structures and
interband cascade structures can be used as the active region for high-performance lasers above
3 µm wavelength [46,47], while InP-based type-I, type-II and GaSb-based type-I heterostructures
can provide the gain for diode lasers in the 2–3 µm wavelength range [48–50], as shown in Figure 2.
Recently, A. Spott et al. reported a quantum cascade laser (QCL) heterogeneously integrated on
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a silicon-on-nitride-on-insulator waveguide circuit, with emission wavelength between 4.6 and
4.9 µm [51].Sensors 2017, 17, 1788  4 of 20 
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Figure 2. Transparent window of silicon and silicon dioxide, and emission wavelength coverage of
semiconductor lasers based on different III–V active regions. InP-based type-I, type-II and GaSb-based
type-I quantum well (QW) diode lasers, GaSb-based interband cascade lasers (ICLs), and QCLs
are included.

In this paper, we focus for the laser integration on the 2–2.5 µm wavelength range which is relevant
for many gas sensing applications (including for example CO2, CO, HF and NH3). In this wavelength
range, GaSb-based type-I diode lasers exhibit high performance. However, the heterogeneous
integration of GaSb-based laser material on silicon is far from mature, which results in low process
yield and non-ideal performance. The InP material system is far better understood, especially in
the context of heterogeneous integration. A heterogeneously integrated III–V-on-silicon laser and
amplifier near 2 µm using InP-based strained InGaAs type-I heterostructures was reported [52,53].
However, the emission wavelength of highly strained quantum wells grown on InP substrate is limited
to around 2.3 µm [54]. In recent years, type-II quantum well lasers grown on InP substrate with
emission wavelength up to 2.7 µm were demonstrated [55]. Besides, resonant-cavity light emitting
diodes operating up to 3.3 µm wavelength and photoluminescence up to 3.9 µm wavelength were
reported based on these InP-based type-II InGaAs/GaAsSb quantum wells [49,56]. These results
indicate that InP-based type-II heterostructures are promising for the integration of 2–4 µm wavelength
range light sources on a silicon photonic integrated circuit.

Recently, we demonstrated 2.3 µm InP-based type-II laser sources and photodetectors
heterogeneously integrated on silicon photonic ICs [57–59]. Figure 3a shows the schematic cross-section
of the heterogeneous InP-based type-II device on a SOI waveguide. The III–V epitaxial layer stack
consists of a 200 nm thick n-InP contact layer, a type-II active region surrounding by two separate
confinement heterostructures, a 1.5 µm thick p-InP cladding layer and a 100 nm p-InGaAs contact
layer. The active region contains six pairs of “W”-shaped InGaAs/GaAsSb quantum wells. The silicon
waveguide circuit is fabricated in IMEC’s CMOS pilot line on a 200 mm SOI wafer, with a 180 nm deep
dry etch in the 400 nm thick silicon device layer. The III–V epitaxial layer stack is adhesively bonded
to a SOI waveguide using an ultra-thin divinylsiloxane-benzocyclobutene (DVS-BCB) layer of a few
tens of nanometers. After bonding, the InP-substrate is removed by HCl wet etching. Then the lasers
and photodetectors are co-processed in the III–V membrane. First, an anisotropic HCl wet etch of the
p-InP cladding layer is employed to create a “V”-shaped mesa. Then the active region is etched by
using a 1:1:20:70 H3PO4:H2O2:citric acid:H2O solution. Subsequently, the devices are isolated by wet
etching of the n-InP layer using HCl. A combination of SiNx and DVS-BCB is used to passivate the
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device mesa. A SEM image of the cross-section of the fabricated III–V-on-silicon devices is shown in
Figure 3b.Sensors 2017, 17, 1788  5 of 20 
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3.1. Heterogeneously Integrated 2.3 µm Range Distributed Feedback Lasers and Laser Arrays

Distributed feedback (DFB) lasers are well-suited light sources for the TDLAS measurement of
gases [60]. Figure 4a shows the schematic of an InP-based type-II DFB laser heterogeneously integrated
on a silicon waveguide [59]. The device can be divided into two parts: a gain section at the center and
III–V/silicon spot size converters (SSCs) on both sides. In the gain section, most of the optical mode is
confined in the III–V waveguide. A quarter-wave shifted first-order DFB grating with an etch depth of
180 nm in a 400 nm silicon device layer are implemented beneath the gain section. The evanescent tail
of the optical mode interacts with this grating, which selects the lasing wavelength of the DFB laser.
An efficient light coupling from the III–V waveguide to the silicon waveguide is realized using the
III–V/silicon SSCs by tapering both waveguides. The III–V/silicon SSCs have two sections [58]. In the
first section, the III–V waveguide is linearly tapered from 5 µm to 1.2 µm over a length of 50 µm. In
the second section, the III–V waveguide is slowly tapered to a narrow tip while the silicon waveguide
is tapered from 0.2 µm to 3 µm over a length of 180 µm. Figure 4b shows the simulated transmission
efficiency of the III–V/silicon SSC as a function of the width of III–V taper tip. It can be found that
the coupling efficiency is higher than 90% when the width of III–V taper tip is narrower than 0.5 µm.
A longitudinal cross section of the III–V/silicon SSC with a 0.5µm wide tip is shown in the inset of
Figure 4b, indicating the evolution of the fundamental mode. For DFB lasers, the threshold current
and output power depends on the coupling coefficient of the grating [61]. The calculated coupling
coefficient as a function of the DVS-BCB thickness and grating etch depth is shown in Figure 4c. With
a 50 nm thick bonding interface, the coupling coefficient of the DFB grating is around 78 cm−1, which
reduces to 35 cm−1 as the thickness of DVS-BCB thickness increases to 100 nm.

Figure 5a shows the CW L-I-V curve of a heterogeneously integrated InP-based type-II DFB laser
with a 1000 µm long gain section, 5 µm wide III–V mesa, 60 nm thick DVS-BCB layer and grating
pitch of 348 nm. At 5 ◦C, the threshold current of the DFB laser is 90 mA, which corresponds to
a current density of 1.8 kA/cm2. The maximum on-chip output power is around 1.3 mW. A high
resolution emission spectrum of the DFB laser biased at 190 mA at a temperature of 10 ◦C is shown in
Figure 5b. Single mode lasing with a side mode suppression ration (SMSR) of 40 dB is achieved. From
the emission spectrum, a normalized coupling coefficient κL of 5.5 can be deduced, which is quite
close to the calculated value (6.2) based on the data shown in Figure 4c. The maximum CW operating
temperature of the DFB laser is around 17 ◦C. For DFB lasers, the threshold current density will reduce
and the maximum CW operating temperature will become higher when the κL increases [61]. In
recently fabricated DFB lasers with a 50 nm DVS-BCB bonding layer, the maximum CW operating
temperature increases to 25 ◦C while the threshold current density reduces to 1.6 kA/cm2 at 5 ◦C [62].
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However, higher κL introduces spatial-hole burning in the DFB laser. The lasing wavelength can hop
from the defect mode to the band edge mode as the bias current increases. A maximum single mode
output power of ~3 mW is achieved in the band edge mode [62].Sensors 2017, 17, 1788  6 of 20 
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Figure 4. (a) Schematic of an InP-based type-II DFB laser heterogeneously integrated on a
silicon waveguide, the simulated mode intensity distribution in different sections is also included;
(b) simulated coupling efficiency of a 180 µm long III–V/silicon SSC as a function of the III–V taper
tip width. The inset figure shows the fundamental mode intensity evolution of the SSC with 0.5 µm
wide III–V taper tip; (c) calculated coupling strength of the DFB grating as a function of the DVS-BCB
thickness for three different etch depths (150, 180, 210 nm) in the 400 nm silicon device layer.
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In Figure 6a,b, the emission spectrum of a DFB laser with a grating period of 348 nm and 60 nm
bonding layer is plotted for a range of heat-sink temperatures and bias currents. The dependence of
the lasing wavelength on temperature is shown in the inset of Figure 6a. A temperature-tuning rate of
0.15 nm/◦C is fitted. In the inset of Figure 6b, the laser emission wavelength as a function of the bias
current at a heat-sink temperature of 5 ◦C, 10 ◦C and 15 ◦C is shown. The measured current-tuning
rate is about 0.01 nm/mA. As the temperature increases from 5 ◦C to 15 ◦C, single mode lasing is
observed over the whole bias current range. With this stable tuning behavior, the heterogeneously
integrated DFB laser can be used as the light source for TDLAS measurement of gases. We carried
out the first gas sensing measurement using such a silicon photonic laser source. In the measurement,
the light from the DFB laser is coupled to a single mode fiber and then coupled into and out of a gas
cell through a collimator. The 10 cm long gas cell contains pure CO at 1 atm and has wedged AR
coated windows. The heat-sink temperature of the DFB laser is fixed at 13 ◦C. Using the measured
dependencies of lasing wavelength on heat-sink temperature and bias current, the TDLAS spectrum
of CO is recovered in Figure 6c. It can be found that the measurement result fits the data from the
HITRAN database very well.
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Figure 6. (a) Evolution of the DFB laser emission spectrum with increasing heat-sink temperature under
190 mA bias current, (b) with increasing bias current at 5 ◦C. The inset figure shows the dependence of
the lasing wavelength on (a) temperature and (b) bias current at 5 ◦C, 10 ◦C, 15 ◦C; (c) direct TDLAS
measurement of CO and the corresponding HITRAN spectrum.

The limited tuning range of a DFB laser limits the number of gases that can be detected with the
source. The development of broadly tunable laser sources enables multi-species trace gas detection
and bio-sensing. Recently, we demonstrated broad wavelength coverage III–V-on-silicon DFB laser
arrays [62]. Figure 7a shows the emission spectra of six 1000 µm-long heterogeneously integrated DFB
lasers in an array. All lasers are driven in CW, biased at 150 mA and operated at 5 ◦C. As the silicon
grating pitch increases from 343 nm to 368 nm, the lasing wavelength shifts from 2280 nm to 2430 nm.
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This broad wavelength span overlaps with absorption features of several important gases, such as
NH3, CO, CH4, C2H2 and HF. As seen in Figure 7a, a 1 nm change in the silicon grating pitch results in
a 6 nm shift in the emission wavelength. In addition, the tuning range of a single DFB laser is around
3 nm. Therefore, a 0.5 nm increment in the silicon grating pitch is required to get a continuously
tunable DFB array, which is quite challenging for current silicon photonic pilot lines. Besides adjusting
the grating pitch, another method to control the lasing wavelength is to adjust the gain section width
of the DFB lasers. Figure 7b shows the CW lasing spectra of four 700 µm-long DFB lasers with different
III–V waveguide widths as a function of bias current. More than 10 nm continuous current-tuning
range is achieved this way.Sensors 2017, 17, 1788  8 of 20 
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3.2. III–V-on-Silicon Photodetectors in the 2 µm Wavelength Range

Besides light sources, photodetectors are another type of opto-electronic devices that should
be integrated on photonic ICs for compact silicon photonic spectroscopic sensors, as discussed in
Section 2. We use the same epitaxial layer stack as the heterogeneously integrated InP-based type-II
DFB laser to realize 2 µm wavelength range III–V-on-silicon photodetectors [55,63]. This way, all of the
opto-electronic components required for a spectroscopic sensor can be realized using a single epitaxial
layer stack and process flow. Two different coupling methods between the silicon waveguide and the
III–V active region are compared in our study [63]. The first structure is based on an adiabatic taper as
shown in Figure 8a. The III–V mesa of the photodetector is a 150 µm long waveguide, tapered from
1 µm to 3.5 µm. In this device, light is efficiently coupled from the silicon waveguide into the III–V
waveguide by a narrow taper tip, and subsequently absorbed by the active region. Figure 8b shows a
simulated intensity distribution of the optical field along the adiabatic taper when the absorption of
the active region is taken into account. The simulation result indicates that more than 95% of the light
is absorbed in the III–V active region. The other III–V-on-silicon photodetector structure is based on
a grating-assisted coupling as shown in Figure 8c. In this structure, light in the silicon waveguide is
diffracted to the III–V active region by using a silicon grating. The size of the diffraction grating and
photodetector mesa is 20 × 20 µm and 25 × 25 µm, respectively. Compared to the adiabatic-taper-based
photodetector, the grating-assisted photodetector has better fabrication tolerance since it does not
require a narrow III–V taper tip and very fine alignment between the III–V and silicon waveguide.
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Figure 8. (a) Schematic of an adiabatically-coupled photodetector integrated on a silicon
waveguide; (b) mode intensity distribution in a longitudinal cross section of the III–V/silicon taper
taking the active region absorption into account; (c) schematic cross-section of a grating-assisted
III–V-on-silicon photodetector.

A typical I-V characteristic of the adiabatic-taper-based photodetector in the dark at room
temperature is shown in Figure 9a. The dark current is 10 nA at a reverse voltage of −0.5 V and
increases to 100 nA at −3 V. Figure 9b shows the I-V curve of the photodetector under different
waveguide-referred input power levels at 2.35 µm wavelength. The waveguide-referred responsivity
is around 1.6 A/W. At 0 V bias, the photodetector response is linear to the input optical power up to
200 µW. As the input power increases, higher reverse voltage is required to extract all photogenerated
carriers. Under a reverse bias voltage of 1 V, the photodetector has linear response up to an input power
of around 630 µW, which is the maximum optical power that can be obtained from our laser source.

Figure 9. (a) I-V curve of the heterogeneously integrated adiabatic-taper-based photodetector in the
dark, the inset shows the dark current of the device from −1 V to 0 V; (b) I-V curve of the photodetector
under different waveguide-coupled input powers at a wavelength of 2.35 µm.

The grating-assisted photodetector has a dark current of 5 nA under −0.5 V bias and
responsivity of 0.1 A/W at 2.35 µm wavelength. The lower dark current compared to that of the
adiabatically-coupled photodetector can be ascribed to the smaller perimeter. The responsivity of the
grating-assisted photodetector is determined by the out-coupling efficiency of the diffraction grating
(simulated to be 40%) towards the detector and the limited thickness of the absorbing active region
layer. The active region of the epitaxial layer stack used for the III–V-on-silicon photodetectors is a
~100 nm thick type-II quantum well layer stack, thereby resulting in a low responsivity. Increasing the
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thickness of the absorbing III–V layer and introducing a bottom mirror under the diffraction grating
can be used to improve the quantum efficiency of the grating-assisted photodetector [64].

4. GaSb/Silicon Hybrid External Cavity Laser

In order to achieve a wide wavelength tuning range, mid-infrared semiconductor lasers are
typically assembled in two configurations: a DFB laser array and an external cavity laser structure [46].
In the previous section, we presented our work on broad wavelength coverage with a 2.3 µm
III–V-on-silicon DFB laser array. In this section, we will introduce our recent results on a 2 µm
GaSb/silicon hybrid external cavity laser [65]. In this work, a silicon photonic IC is used as the
external cavity to replace traditional bulky configurations (such as the Littrow configuration) and
their mechanical controllers [66,67], thereby leading to a miniaturized and high-performance widely
tunable external cavity laser.

The external cavity laser consists of a GaSb-based gain chip and a silicon photonic IC for the
wavelength-selective feedback, as schematically shown in Figure 10. In the gain chip, a HR coating
with >95% reflectivity is applied on one facet while an AR coating with <0.1% reflectivity is applied
on the other facet close to the silicon photonic IC. The III–V waveguide is tilted 5.2 degrees at the
AR-coated facet. The light coupling between the gain chip and silicon photonic IC is realized by a
silicon SSC. At the silicon SSC facet, a 6 µm × 0.06 µm slab waveguide tilted 12 degrees is used to
achieve efficient butt-coupling and reduce back-reflections. Then a 200 µm long silicon waveguide
tapered from 180 nm to 700 nm is used to convert the mode from the slab waveguide to the single
mode of the strip waveguide. Simulations indicate that the butt-coupling loss at the GaSb/silicon slab
waveguide interface is 1 dB while the mode conversion loss in the slab/strip waveguide is also around
1 dB. The silicon photonic IC contains a Vernier filter consisting of two thermally tuned micro-ring
resonators (MRRs), a phase section to allow for quasi-continuous wavelength tuning and a silicon
distributed Bragg reflector (DBR). A Fabry-Perot laser cavity is formed between the HR-coated facet of
the gain chip and the silicon waveguide DBR. Ti/Au micro-heaters are integrated on the Vernier filter
to thermally control the overlapping wavelength of the transmission spectra of the two MRRs, thereby
leading to broad tuning of the lasing wavelength. In our device, the free spectral range (FSR) of the
two MRRs is 6 nm and 6.5 nm, respectively.
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Figure 10. Schematic of a GaSb/silicon hybrid external cavity laser.

Figure 11a shows the amplified spontaneous emission spectrum coupled from the GaSb-based
gain chip to a silicon waveguide (without the DBR and Vernier filter) through the silicon SSC. It can
be found that the spectrum is smooth without any sign of lasing modes, indicating low parasitic
reflections at the GaSb/silicon interface.
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Figure 11. (a) Amplified spontaneous emission coupled from the GaSb-based SLD to a silicon
waveguide; (b) superimposed spectra of the hybrid laser by thermally tuning only one MRR; (c) both
MRRs and (d) phase shifter.

The broadband gain can e.g., cover a large part of the absorption window of CO2 in the 2 µm
wavelength range. By implementing the waveguide-based DBR and Vernier filter in the silicon photonic
feedback circuit, a tunable single mode laser can be obtained. Figure 11b shows the superimposed
lasing spectra of the GaSb/silicon hybrid laser by tuning one MRR. A tuning range of 58 nm is
achieved with a SMSR better than 52 dB over the full tuning range and more than 60 dB at the optimal
wavelength. When only one MRR is tuned, the tuning resolution is determined by the FSR of the
other MRR. Fine quasi-continuous wavelength tuning can be achieved by simultaneously tuning both
MRRs. Figure 11c shows the superimposed spectra with 0.7 nm resolution tuning over 25 nm range
realized in this way. But even when tuning both MRRs, the tuning resolution is still limited by the FSR
of the longitudinal modes of the Fabry-Perot cavity. Continuous tuning can be achieved by thermally
tuning the phase section to continuously adjust the Fabry-Perot cavity length. A spectral map of the
fiber-coupled laser emission as a function of the dissipated power on the phase section is shown in
Figure 11d illustrating the continuous tuning. All results shown in Figure 11b–d are achieved from
an external cavity laser with a coupling gap of 500 nm between the MRRs and bus waveguides. This
laser has a maximum output power of 3.8 mW and threshold current density of 1 kA/cm2 in uncooled
condition. When the coupling gap of the MRRs is reduced to 200 nm, the output power increases
to 7.5 mW while the threshold current density reduces to 0.8 kA/cm2. But the SMSR and tuning
smoothness are lowered as the coupling gap is reduced.

5. Mid-Infrared AWG Spectrometers in the 2–4 µm Wavelength Range

For spectroscopy applications involving broad absorption features such as liquids and solids, the
most cost-efficient solution includes a broadband light source and a suitable spectrometer to analyze
the spectral response as shown in Figure 1a. As an example, the typical 3 dB bandwidth of absorption
features of a liquid such as sesame oil at 3.4 µm and an organic solid such as PDMS in the 2.3 µm region
would be about 900 GHz (35 nm) and 1300 GHz (50 nm), respectively [68]. A spectrometer resolution
of 200 GHz would be adequate in both cases. In recent years, considerable effort has been devoted to
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develop novel spectrometers that are compact and can be integrated with photonic ICs [17,69,70]. It is
possible to realize different types of spectrometers in the SOI platform for the 2–4 µm wavelength range
such as spatial heterodyne spectrometers (SHS), planar concave gratings (PCGs) and AWGs [71–73].
AWGs are widely used as (de)multiplexers in wavelength division multiplexing (WDM) systems and
can also be used as spectrometers in spectroscopic sensors [74]. In addition, AWGs are also used as
multiplexers for DFB laser arrays. Combining a mid-infrared DFB laser array with an AWG allows
coupling the light from different lasers to a single diffraction limited output waveguide with low
loss [75].

The AWG consists of two free propagation regions (FPRs), connected together through an array
of delay waveguides with constant length increment between them. When the light enters the input
FPR through an input channel, it diverges and couples into the array of delay waveguides. The
constant length increment between delay waveguides introduces a constant change of phase between
the arms, which depends on the wavelength. As a result, light diffracted from each delay waveguide
interferes constructively and gets refocused in the output FPR at different output waveguides. Detailed
information about the AWG design can be found in [76].

Recently, compact AWG spectrometers in the SOI platform operating in the 2–4 µm wavelength
range were demonstrated [63,73,77]. A microscope picture of an SOI AWG operating in the 2.3 µm
wavelength range is shown in Figure 12a. The footprint of the device is 0.45 mm2. Figure 12b–d show
the measured transmission spectra of three AWG spectrometers operating at different wavelengths.
All of the devices are realized in the 400 nm silicon waveguide platform. The silicon waveguide
circuits are processed on 200 mm SOI wafers in IMEC’s CMOS pilot line. The waveguide loss is around
0.5 dB/cm in the 2–2.5 µm wavelength range and increases to 2.6 dB/cm at 3.3 µm and 3 dB/cm at
3.8 µm. Additionally, high-resolution AWGs at 3.3 µm are demonstrated in Figure 13 [77]. These can
potentially be used as DFB laser array multiplexers. Low insertion loss (2 to 3 dB) and low crosstalk
(−30 to −20 dB) are obtained in all of the AWG spectrometers. This state-of-the-art performance of the
AWG spectrometers indicates that the SOI waveguide platform is ideal for 2–4 µm wavelength range
photonic components and integrated circuits.
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the measured spectral responses of all the channels in three AWGs operating at different wavelengths:
(b) 2.3 µm; (c) 3.3 µm and (d) 3.8 µm.
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Figure 13. Transmission of four different SOI AWGs operating in the 3.3 µm wavelength range with
different channel spacing. The insertion loss (2–3 dB) and crosstalk levels (20–21 dB) are indicated
by the dashed lines. The high-resolution (50 GHz) AWG can be used as a mid-infrared DFB laser
array multiplexer.

For a spectroscopic sensor, the passive spectrometer should be integrated with photodetectors to
convert the optical signals to an electrical response. In addition, the photodetectors should connect
with electronic components such as trans-impedance amplifiers to realize a complete opto-electronic
system. Figure 14a displays a microscope image of the 2.3 µm AWG spectrometer integrated with
an adiabatically-coupled InP-based type-II quantum well photodetector array [63]. Every channel
of the AWG is integrated with a photodetector spaced 60 µm apart. In order to interface with the
electronic components, the III–V-on-silicon spectrometer is wire bonded to a printed circuit board
(PCB), as shown in Figure 14b. A reference photodetector is present on a reference silicon waveguide
to estimate the insertion loss of the AWG after heterogeneous integration. The performance of the
reference photodetector is identical to the one shown in Figure 8. Figure 14c shows the photo-response
of the 2.3 µm III–V-on-silicon spectrometer. During the measurement, the bias voltage is fixed at −0.5 V.
An insertion loss of 3 dB and crosstalk level of −27 dB is obtained by normalizing the responsivity
to the reference photodetector. This result indicates that the bonding of III–V material on silicon and
related post-processes do not degrade the performance of the AWG spectrometer.

To extend the operation wavelength of the III–V-on-silicon AWG spectrometer beyond 3 µm,
a heterogeneously integrated InAsSb photodetector was developed [78]. By transferring InAs0.91Sb0.09

on silicon, a III–V-on-silicon photodetector was realized with a responsivity of 0.3 A/W at 3.8 µm
wavelength and a dark current of 170 µA under a bias of −10 mV and 600 µA at −50 mV at room
temperature. Figure 14d shows the measured photoresponse of the 3.8 µm AWG spectrometer
integrated with an InAsSb photodetector array. Due to the relatively large dark current, optical
measurements with a CW laser do not reveal the AWG response clearly. To characterize the device,
the light was mechanically chopped and the electrical response was detected with a lock-in amplifier.
A crosstalk of −16 dB was achieved. It is believed that the dark current can be reduced by adding
barriers in the epitaxial layer stack and by further optimizing the detector passivation.
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6. On-Chip Mid-Infrared Photothermal Spectroscopy

Over the past two decades, major advances in QCL and ICL technologies have opened the door
for highly demanding TDLAS applications such as trace gas detection at ppb levels in the mid-infrared.
The longer wavelength range promises better sensitivities and label-free selectivity due to the unique
and strong ro-vibrational resonances of each molecule at these frequencies. Miniaturization and
improvements of these sources is advancing rapidly [79]. However, sensitive detectors in the infrared
remain bulky, expensive and require cooling. One approach for further development of portable and
cheap systems is to move away from traditional TDLAS methods to others such as photoacoustic and
photo-thermal spectroscopy wherein the ro-vibrational resonance is excited optically and transduced
to a local change in pressure or temperature of the analyte. One of the main benefits is that the
photo-thermal signal is exactly zero when there is no optical absorption as opposed to traditional
transmission spectroscopy, where a small change in transmission needs to be detected. The latter is
also heavily affected by scattering and reflection losses which makes it less suitable for applications in
the field. Many different realizations of photoacoustic and photo-thermal systems have been shown
over the past decade which are extremely sensitive [19–25,80]. Integrating such systems on a chip
is therefore extremely valuable. In this section, a photo-thermal spectroscopy method is discussed
which utilizes the mature SOI technology in the telecommunication wavelength range to make a
photo-thermal transducer suitable for mid-infrared trace gas spectroscopy applications. A proof of
principle measurement was conducted on a polymer analyte in the 3.2–3.6 µm wavelength range to
good agreement with traditional Fourier-transform infrared spectroscopy (FTIR) measurements.

The photo-thermal method is schematically shown in Figure 15. A SOI microring resonator
operating at 1.55 µm acts in combination with the analyte as a bolometer. The analyte is placed in
the annular region of the MRR which is thermally connected to the ring waveguide through the
silicon device layer. A tunable mid-infrared pump laser beam at 3 µm wavelength is chopped and
flood illuminates the analyte. The optical absorption gives rise to a temperature change which shifts
the resonance wavelength of the MRR. By fixing the probe wavelength on the slope of the MRR
transmission, the shift in resonance wavelength is transduced to a power change on the near-infrared
probe detector. This power change is proportional to the absorption coefficient of the analyte. The
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mid-infrared absorption spectrum is recovered by scanning the mid-infrared pump beam while
recording the probe modulation amplitude.
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As an initial experiment, a 1.35 μm thick photoresist AZ5214 was lithographically patterned 
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Figure 15. Schematic of the photo-thermal sensing principle. A modulated mid-infrared pump beam
is absorbed by the analyte which causes a local temperature change of the microring waveguide.
The thermo-optic effect changes the effective index of the waveguide mode, hereby changing the
resonance wavelength λres of the microring. For a given fixed probe wavelength λprobe, the change
in λres produces a change in probe power ∆Pprobe which is measured using a near-infrared detector.
The absorption spectrum of the analyte can be reconstructed by scanning the pump wavelength and
recording the maximum probe modulation ∆Pprobe,max.

The photo-thermal signal scales with the pump and probe powers, optical Q-factor of the MRR
and the effective thermal resistance of the MRR waveguide [18,81].

As an initial experiment, a 1.35 µm thick photoresist AZ5214 was lithographically patterned
inside the MRR ring area as a mock-up analyte. A MRR with a Q-factor of ~100 k was fabricated
and the backside silicon substrate was locally etched in KOH to improve the thermal isolation by
a factor of ~40 to approximately 104 K/W, see also Figure 16 [80]. The recovered photo-thermal
spectrum was obtained by scanning the wavelength of an optical parametric oscillator (OPO) system
operating in the 3 µm wavelength range, but the source could be replaced by a faster and cheaper
QCL/ICL operating in a relevant wavelength range. At each mid-infrared wavelength, the pump
beam is mechanically chopped and the resulting maximal photo-thermal probe signal is recorded.
The pump power exiting the fiber in this experiment was between 0.1 and 1 mW. The signal is scaled
with the setup parameters to estimate the absorption coefficient of the analyte to good agreement with
a benchmark FTIR measurement, see also Figure 16c. From the measurements, a normalized noise
equivalent absorption coefficient NNEA of 7.6 × 10−6 cm−1 W/Hz1/2 was derived.

For real applications, the photoresist could be replaced by a gas-adsorbing porous coating that
would capture trace gas amounts [5]. These coatings can have large pre-concentration factors that
would boost the Limit of Detection (LOD) for this type of transducers to competitive values. With
pre-concentration factors equal to one, these type of transducers are estimated to already have LOD
values of a few ppm for trace gases in the 3–4 µm wavelength range.

The proposed transducer could be used as a cheap non-contact all-optical interrogator which is
desired in some applications such as trace gas analysis of food packages for early spoilage detection.
Furthermore, collimated probe and pump beams in free space can be used, as opposed to fibers, to
flood illuminate the transducer from a small distance, see also Figure 17. The optical power budget
can be traded for more tolerance on the beam alignment. The diminished optical power could be
compensated by the coating pre-concentration factor. The probe signal is collected by a near-IR
camera. Alternatively, for a fully integrated sensor solution, the near-infrared laser/photodetector and
mid-infrared pump source can be integrated as well, similar to the devices described in Section 4.
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reflective or absorbing second layer (e.g., gold-coated silicon) with spacers (not shown in schematic). 
Small apertures (uncoated areas of the capping layer) are aligned on top of the MRR and the 
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Figure 16. Microscope image of the SOI MRR suspended on BOX membrane with AZ5214 photoresist
as mock-up analyte: (a) top and (b) bottom view; (c) The measured photo-thermal signal is scaled to
calculate the absorption coefficient of the analyte and is compared to FTIR measurement. The FTIR
signal is collected in reflection at the Brewster angle and TM polarization and is used with the formula
in the inset to estimate the absorption coefficient; (d) A tilted SEM image with false coloring shows the
various regions of the PIC; (e) A schematic cross section of the suspended MRR is given.
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Figure 17. Schematic of a possible free-space measurement configuration. The probe and pump sources
flood-illuminate the chip from a certain distance, e.g., 30 cm. The SOI-chip is capped with a reflective
or absorbing second layer (e.g., gold-coated silicon) with spacers (not shown in schematic). Small
apertures (uncoated areas of the capping layer) are aligned on top of the MRR and the input/output
ports of the probe. The probe signal is collected by a near-IR camera.

7. Conclusions

We have reviewed our recent results on mid-infrared silicon photonic integrated circuits for
spectroscopic sensing applications in the 2 to 4 µm wavelength range. Low-loss and ultra-compact
waveguide circuits can be realized for this wavelength range using the well-established silicon
photonics platform. Fully integrated 2.3-µm-wavelength photonic circuits consisting of silicon
waveguides, DFB lasers, photodetectors and AWG spectrometers are achieved by integrating InP-based
type-II epitaxial layer stack on silicon. In CW regime, the 2.3 µm range III–V-on-silicon DFB operates
up to 25 ◦C and shows an output power of 3 mW in a single mode. By varying the silicon grating
pitch, a DFB array with broad wavelength coverage from 2.28 µm to 2.43 µm is realized. Besides, a
continuous current-tuning range of more than 10 nm can be achieved by fabricating four DFB lasers
with different waveguide widths. Heterogeneously integrated photodetectors with the same epitaxial
layer stack exhibit a responsivity of 1.6 A/W near 2.35 µm and dark current of 10 nA at −0.5 V.
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Besides heterogeneous integration, butt-coupling a GaSb-based gain chip with a silicon photonic IC
also provides a solution to realize a compact 2 µm range silicon photonic light source. In this way, a
GaSb/silicon external cavity laser with a 58 nm tunable range and SMSR better than 52 dB over the
whole range is realized. The high-index-contrast SOI platform also enables ultra-compact 2–4 µm
wavelength range AWG spectrometers. Low insertion loss (2–3 dB) and low-crosstalk (20–30 dB) AWG
spectrometers were demonstrated for 2–4 µm wavelength range. Integrating these AWGs with III–V
photodetectors does not degrade the performance of the spectrometers.

A novel photothermal spectroscopic transducer is discussed. By using a high-Q factor SOI MRR
operating at 1.55 µm which probes the heat generated through optical absorption, we circumvent the
need of using a cooled mid-infrared detector for spectroscopy applications at longer wavelengths.
Initial results show good agreement with benchmark FTIR measurements in the 3–4 µm wavelength
range. By suspending the MRR on the BOX layer, the thermal isolation of the transducer is increased
and a NNEA of 7.6 × 10−6 cm−1 W/Hz1/2 is estimated. Integration of this type of transducer with
gas adsorbing porous coatings is a promising approach for sub-ppm trace gas detection. For a
comprehensive overview on different spectroscopic sensing measurements we refer the reader to [13].

Acknowledgments: This work was supported by FP7-ERC-MIRACLE, FP7-ERC-PoC-FireSpec and FP7-ERC-
InSpectra project funded by European Research Council and CheckPack IWT project funded by the Flemish
government. Anton Vasiliev also thanks the Research Foundation Flanders (FWO) for a research grant.

Author Contributions: R.W. wrote Sections 1–4, and part of Sections 5 and 7 of the paper; A.V. wrote Section 6,
and part of Sections 5 and 7; M.M. and A.M. contributed some results; S.S., G.B. and M.-C.A. contributed the
InP-based materials; I.S., A.V. and K.V. contributed the GaSb-based gain chip; R.B. and G.R. supervised the project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vivien, L.; Pavesi, L. (Eds.) Handbook of Silicon Photonics; Taylor & Francis: Didcot, UK; Abingdon, UK, 2013.
2. Miller, D.A.B. Device requirements for optical interconnects to silicon chips. IEEE Proc. 2009, 97, 1166–1185.

[CrossRef]
3. Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008,

16, 4296–4301. [CrossRef] [PubMed]
4. Stievater, T.H.; Pruessner, M.W.; Park, D.; McGill, R.R.A.; Kozak, D.A.; Furstenberg, R.; Holmstrom, S.A.;

Khurgin, J.B. Trace gas absorption spectroscopy using functionalized microring resonators. Opt. Lett. 2014,
39, 969–972. [CrossRef] [PubMed]

5. Yebo, N.A.; Sree, S.P.; Levrau, E.; Detavernier, C.; Hens, Z.; Martens, J.A.; Baets, R. Selective and reversible
ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt.
Express 2012, 20, 11855–11862. [CrossRef] [PubMed]

6. Kindt, J.T.; Luchansky, M.S.; Qavi, A.J.; Lee, S.H.; Bailey, R.C. Subpicogram per milliliter detection of
interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy.
Anal. Chem. 2013, 85, 10653–10657. [CrossRef] [PubMed]

7. Lai, W.; Chakravarty, S.; Zou, Y.; Chen, R.T. Silicon nano-membrane based photonic crystal microcavities for
high sensitivity bio-sensing. Opt. Lett. 2012, 37, 1208–1210. [CrossRef] [PubMed]

8. Li, Y.; Segers, P.; Dirckx, J.; Baets, R. On-chip laser Doppler vibrometer for arterial pulse wave velocity
measurement. Biomed. Opt. Express 2013, 4, 1229–1235. [CrossRef] [PubMed]

9. Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose sensing by waveguide-based absorption
spectroscopy on a silicon chip. Biomed. Opt. Express 2014, 5, 1636–1648. [CrossRef] [PubMed]

10. Zhang, E.J.; Tombez, L.; Orcutt, J.; Kamlapurkar, S.; Wysocki, G.; Green, W.M. Silicon Photonic On-chip
Trace-gas Spectroscopy of Methane. In Proceedings of the 2016 Conference on Lasers and Electro-Optics
(CLEO), San Jose, CA, USA, 5–10 June 2016; p. SF2H.1.

11. Rothman, L.; Gordon, I.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.; Birk, M.; Bizzocchi, L.; Boudon, V.;
Brown, L.; et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013,
130, 4–50. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2009.2014298
http://dx.doi.org/10.1364/OE.16.004296
http://www.ncbi.nlm.nih.gov/pubmed/18542525
http://dx.doi.org/10.1364/OL.39.000969
http://www.ncbi.nlm.nih.gov/pubmed/24562254
http://dx.doi.org/10.1364/OE.20.011855
http://www.ncbi.nlm.nih.gov/pubmed/22714172
http://dx.doi.org/10.1021/ac402972d
http://www.ncbi.nlm.nih.gov/pubmed/24171505
http://dx.doi.org/10.1364/OL.37.001208
http://www.ncbi.nlm.nih.gov/pubmed/22466197
http://dx.doi.org/10.1364/BOE.4.001229
http://www.ncbi.nlm.nih.gov/pubmed/23847745
http://dx.doi.org/10.1364/BOE.5.001636
http://www.ncbi.nlm.nih.gov/pubmed/24877021
http://dx.doi.org/10.1016/j.jqsrt.2013.07.002


Sensors 2017, 17, 1788 18 of 21

12. Geiser, P. New Opportunities in Mid-Infrared Emission Control. Sensors 2015, 15, 22724–22736. [CrossRef]
[PubMed]

13. Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24. [CrossRef]
14. Petrich, W. Mid-infrared and Raman spectroscopy for medical diagnostics. Appl. Spectrosc. Rev. 2001, 36,

181–237. [CrossRef]
15. Mizaikoff, B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 2013, 42, 8683–8699.

[CrossRef] [PubMed]
16. Singh, V.; Lin, P.T.; Patel, N.; Lin, H.; Li, L.; Zou, Y.; Deng, F.; Ni, C.; Hu, J.; Giammarco, J.; et al. Mid-infrared

materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014, 15. [CrossRef]
[PubMed]

17. Mashanovich, G.Z.; Gardes, F.Y.; Thomson, D.J.; Hu, Y.; Li, K.; Nedeljkovic, M.; Soler Penades, J.;
Khokhar, A.Z.; Mitchell, C.J.; Stankovic, S.; et al. Silicon photonic waveguides and devices for near- and
mid-IR applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21. [CrossRef]

18. Hu, J. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Opt. Express
2010, 18, 22174–22186. [CrossRef] [PubMed]

19. Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P.V.; Orrit, M. Room-temperature detection of a single molecule’s
absorption by photothermal contrast. Science 2010, 330, 353–356. [CrossRef] [PubMed]

20. Stievater, T.H.; Papanicolaou, N.A.; Bass, R.; Rabinovich, W.S.; McGill, R.A. Micromechanical photothermal
spectroscopy of trace gases using functionalized polymers. Opt. Lett. 2012, 37, 2328–2330. [CrossRef]
[PubMed]

21. Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic
range. Nat. Commun. 2015, 6. [CrossRef] [PubMed]

22. Vermeulen, P.; Cognet, L.; Lounis, B. Photothermal microscopy: Optical detection of small absorbers in
scattering environments. J. Microsc. 2014, 254, 115–121. [CrossRef] [PubMed]

23. Heylman, K.D.; Knapper, K.A.; Goldsmith, R.H. Photothermal microscopy of nonluminescent single particles
enabled by optical microresonators. J. Phys. Chem. Lett. 2014, 5, 1917–1923. [CrossRef] [PubMed]

24. Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy: A review.
Sensors 2014, 14, 6165–6206. [CrossRef] [PubMed]

25. Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Part-per-trillion level SF6
detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled
quantum cascade laser excitation. Opt. Lett. 2012, 37, 4461–4463. [CrossRef] [PubMed]

26. Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, C.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Liow, T.-Y. Review of silicon
photonics foundry effects. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [CrossRef]

27. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [CrossRef]
28. Xia, Y.; Qiu, C.Y.; Zhang, X.Z.; Gao, W.L.; Shu, J.; Xu, Q.F. Suspended Si Ring Resonator for Mid-IR

Application. Opt. Lett. 2013, 38, 1122–1124. [CrossRef] [PubMed]
29. Lin, P.T.; Singh, V.; Cai, Y.; Kimerling, L.C.; Agarwal, A. Air-clad silicon pedestal structures for broadband

mid-infrared microphotonics. Opt. Lett. 2013, 7, 1031–1033. [CrossRef] [PubMed]
30. Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure

waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [CrossRef]
31. Miller, S.; Griffith, A.; Yu, M.; Gaeta, A.; Lipson, M. Low-Loss Air-Clad Suspended Silicon Platform for

Mid-Infrared Photonics. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO),
San Jose, CA, USA, 5–10 June 2016; p. STu3Q.6.

32. Penades, J.S.; Ortega-Moñux, A.; Nedeljkovic, M.; Wangüemert-Pérez, J.G.; Halir, R.; Khokhar, A.Z.;
Alonso-Ramos, C.; Qu, Z.; Molina-Fernández, I.; Cheben, P.; et al. Suspended silicon mid-infrared waveguide
devices with subwavelength grating metamaterial cladding. Opt. Express 2016, 24, 22908–22916. [CrossRef]
[PubMed]

33. Miller, S.; Yu, M.; Ji, X.; Griffith, A.; Cardenas, J.; Gaeta, A.; Lipson, M. Low-loss silicon platform for
broadband mid-infrared photonics. Optica 2017, 7, 707–712. [CrossRef]

34. Lin, P.T.; Kwok, S.W.; Lin, H.-Y.G.; Singh, V.; Kimerling, L.C.; Whitesides, G.M.; Agarwal, A. Mid-Infrared
Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing. Nano Lett.
2014, 14, 231–238. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s150922724
http://www.ncbi.nlm.nih.gov/pubmed/26371003
http://dx.doi.org/10.1088/0957-0233/24/1/012004
http://dx.doi.org/10.1081/ASR-100106156
http://dx.doi.org/10.1039/c3cs60173k
http://www.ncbi.nlm.nih.gov/pubmed/23995692
http://dx.doi.org/10.1088/1468-6996/15/1/014603
http://www.ncbi.nlm.nih.gov/pubmed/27877641
http://dx.doi.org/10.1109/JSTQE.2014.2381469
http://dx.doi.org/10.1364/OE.18.022174
http://www.ncbi.nlm.nih.gov/pubmed/20941119
http://dx.doi.org/10.1126/science.1195475
http://www.ncbi.nlm.nih.gov/pubmed/20947760
http://dx.doi.org/10.1364/OL.37.002328
http://www.ncbi.nlm.nih.gov/pubmed/22739897
http://dx.doi.org/10.1038/ncomms7767
http://www.ncbi.nlm.nih.gov/pubmed/25866015
http://dx.doi.org/10.1111/jmi.12130
http://www.ncbi.nlm.nih.gov/pubmed/24749905
http://dx.doi.org/10.1021/jz500781g
http://www.ncbi.nlm.nih.gov/pubmed/26273873
http://dx.doi.org/10.3390/s140406165
http://www.ncbi.nlm.nih.gov/pubmed/24686729
http://dx.doi.org/10.1364/OL.37.004461
http://www.ncbi.nlm.nih.gov/pubmed/23114329
http://dx.doi.org/10.1109/JSTQE.2013.2293274
http://dx.doi.org/10.1038/nphoton.2010.171
http://dx.doi.org/10.1364/OL.38.001122
http://www.ncbi.nlm.nih.gov/pubmed/23546264
http://dx.doi.org/10.1364/OL.38.001031
http://www.ncbi.nlm.nih.gov/pubmed/23546233
http://dx.doi.org/10.1038/nphoton.2013.241
http://dx.doi.org/10.1364/OE.24.022908
http://www.ncbi.nlm.nih.gov/pubmed/27828358
http://dx.doi.org/10.1364/OPTICA.4.000707
http://dx.doi.org/10.1021/nl403817z
http://www.ncbi.nlm.nih.gov/pubmed/24328355


Sensors 2017, 17, 1788 19 of 21

35. Scullion, M.G.; Krauss, T.F.; di Falco, A. Slotted photonic crystal sensors. Sensors 2013, 13, 3675–3710.
[CrossRef] [PubMed]

36. Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared
gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108. [CrossRef]

37. Chen, Y.; Lin, H.; Hu, J.; Li, M. Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and
Spectroscopic Sensing. ACS Nano 2014, 8, 6955–6961. [CrossRef] [PubMed]

38. Hattasan, N.; Kuyken, B.; Leo, F.; Ryckeboer, E.; Vermeulen, D.; Roelkens, G. High-Efficiency SOI
Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared. IEEE Photonics
Technol. Lett. 2012, 24, 1536–1538. [CrossRef]

39. Nedeljkovic, M.; Khokhar, A.Z.; Hu, Y.; Chen, X.; Penades, J.S.; Stankovic, S.; Chong, H.M.H.; Thomson, D.J.;
Gardes, F.Y.; Reed, G.T.; et al. Silicon photonic devices and platforms for the mid-infrared. Opt. Mater.
Express 2013, 3, 1205–1214. [CrossRef]

40. Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.;
et al. Electrically Pumped Continuous-Wave III–V Quantum Dot Lasers on Silicon. Nat. Photonics 2016, 10,
307–311. [CrossRef]

41. Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D.
Room-Temperature InP Distributed Feedback Laser Array Directly Grown on Silicon. Nat. Photonics 2015, 9,
837–842. [CrossRef]

42. Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A.
High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 2015, 23,
27213–27220. [CrossRef] [PubMed]

43. Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Fu, X.; Gassenq, A.; Hattasan, N.;
Huang, Q.; et al. III–V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015,
2, 969–1004. [CrossRef]

44. Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.;
Zhang, C.; Bowers, J.E. Heterogeneous Silicon Photonic Integrated Circuits. J. Lightwave Technol. 2016, 34,
20–35. [CrossRef]

45. Ohashi, K.; Nishi, K.; Shimizu, T.; Nakada, M.; Fujikata, J.; Ushida, J.; Torii, S.; Nose, K.; Mizuno, M.;
Yukawa, H.; et al. On-chip optical interconnect. Proc. IEEE 2009, 97, 1186–1198. [CrossRef]

46. Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-Infrared Quantum Cascade Lasers. Nat. Photonics 2012, 6, 432–439.
[CrossRef]

47. Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J.R.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Merritt, C.D.;
Abell, J.; et al. Interband cascade lasers. J. Phys. D Appl. Phys. 2015, 48, 123001. [CrossRef]

48. Ye, N.; Gleeson, M.R.; Sadiq, M.U.; Roycroft, B.; Robert, C.; Yang, H.; Zhang, H.; Morrissey, P.E.;
Mac Suibhne, N.; Thomas, K.; et al. InP-based active and passive components for communication systems at
2 µm. J. Lightwave Technol. 2015, 33, 971–975. [CrossRef]

49. Sprengel, S.; Grasse, C.; Wiecha, P.; Andrejew, A.; Gruendl, T.; Boehm, G.; Meyer, R.; Amann, M.-C. InP-Based
Type-II Quantum-Well Lasers and LEDs. IEEE J. Sel. Top. Quantum Electron. 2013, 19. [CrossRef]

50. Gaimard, Q.; Triki, M.; Nguyen-Ba, T.; Cerutti, L.; Boissier, G.; Teissier, R.; Baranov, A.; Rouillard, Y.; Vicet, A.
Distributed feedback GaSb based laser diodes with buried grating: A new field of single-frequency sources
from 2 to 3 µm for gas sensing applications. Opt. Express 2015, 23, 19118–19128. [CrossRef] [PubMed]

51. Spott, A.; Peters, J.; Davenport, M.L.; Stanton, E.J.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Kim, C.S.;
Meyer, J.R.; Kirch, J.; et al. Quantum cascade laser on silicon. Optica 2016, 3, 545–551. [CrossRef]

52. Spott, A.; Davenport, M.L.; Peters, J.; Bovington, J.; Heck, M.J.R.; Stanton, E.J.; Vurgaftman, I.; Meyer, J.R.;
Bowers, J. Heterogeneously integrated 2.0 µm CW hybrid silicon lasers at room temperature. Opt. Lett. 2015,
40, 1480–1483. [CrossRef] [PubMed]

53. Volet, N.; Spott, A.; Stanton, E.J.; Davenport, M.L.; Chang, L.; Peters, J.D.; Briles, T.C.; Vurgaftman, I.;
Meyer, J.R.; Bowers, J. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon. Laser Photonics Rev.
2017, 11. [CrossRef]

54. Boehm, G.; Grau, M.; Dier, O.; Windhorn, K.; Roenneberg, E.; Rosskopf, J.; Shau, R.; Meyer, R.; Ortsiefer, M.;
Amann, M.C. Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 µm. J. Cryst.
Growth 2007, 301, 941–944. [CrossRef]

http://dx.doi.org/10.3390/s130303675
http://www.ncbi.nlm.nih.gov/pubmed/23503295
http://dx.doi.org/10.1063/1.4945667
http://dx.doi.org/10.1021/nn501765k
http://www.ncbi.nlm.nih.gov/pubmed/24884013
http://dx.doi.org/10.1109/LPT.2012.2208452
http://dx.doi.org/10.1364/OME.3.001205
http://dx.doi.org/10.1038/nphoton.2016.21
http://dx.doi.org/10.1038/nphoton.2015.199
http://dx.doi.org/10.1364/OE.23.027213
http://www.ncbi.nlm.nih.gov/pubmed/26480381
http://dx.doi.org/10.3390/photonics2030969
http://dx.doi.org/10.1109/JLT.2015.2465382
http://dx.doi.org/10.1109/JPROC.2009.2020331
http://dx.doi.org/10.1038/nphoton.2012.143
http://dx.doi.org/10.1088/0022-3727/48/12/123001
http://dx.doi.org/10.1109/JLT.2014.2383492
http://dx.doi.org/10.1109/JSTQE.2013.2247572
http://dx.doi.org/10.1364/OE.23.019118
http://www.ncbi.nlm.nih.gov/pubmed/26367575
http://dx.doi.org/10.1364/OPTICA.3.000545
http://dx.doi.org/10.1364/OL.40.001480
http://www.ncbi.nlm.nih.gov/pubmed/25831364
http://dx.doi.org/10.1002/lpor.201600165
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.098


Sensors 2017, 17, 1788 20 of 21

55. Sprengel, S.; Veerabathran, G.; Andrejew, A.; Köninger, A.; Boehm, G.; Grasse, C.; Amann, M.C. InP-based
type-II heterostructure lasers for wavelengths up to 2.7 µm. Proceedings of SPIE Photonics West, Novel
In-Plane Semiconductor Lasers XIV (SPIE, 2015), San Francisco, CA, USA, 7–12 February 2015; p. 93820U.

56. Grasse, C.; Wiecha, P.; Gruendl, T.; Sprengel, S.; Meyer, R.; Amann, M.C. InP-based 2.8–3.5 µm resonant-cavity
light emitting diodes based on type-II transitions in GaInAs/GaAsSb heterostructures. Appl. Phys. Lett. 2012,
101. [CrossRef]

57. Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. 2 µm wavelength range
InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated
circuits. Opt. Express 2015, 23, 26834–26841. [CrossRef] [PubMed]

58. Wang, R.; Sprengel, S.; Boehm, G.; Muneeb, M.; Baets, R.; Amann, M.C.; Roelkens, G. 2.3 µm range InP-based
type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.
Opt. Express 2016, 24, 21081–21089. [CrossRef] [PubMed]

59. Wang, R.; Sprengel, S.; Malik, A.; Vasiliev, A.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G.
Heterogeneously integrated III–V-on-silicon 2.3× µm distributed feedback lasers based on a type-II active
region. Appl. Phys. Lett. 2016, 109. [CrossRef]

60. Zeller, W.; Naehle, L.; Fuchs, P.; Gerschuetz, F.; Hildebrandt, L.; Koeth, J. DFB Lasers between 760 nm and 16
µm for Sensing Applications. Sensors 2010, 10, 2492–2510. [CrossRef] [PubMed]

61. Morthier, G.; Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes; Artech House: Norwood, MA,
USA, 1997.

62. Wang, R.; Sprengel, S.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. Broad wavelength coverage 2.3 µm
III–V-on-silicon DFB laser array. Optica 2017, in press.

63. Wang, R.; Muneeb, M.; Sprengel, S.; Boehm, G.; Malik, A.; Baets, R.; Amann, M.C.; Roelkens, G.
III–V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated
InP-based type-II photodetectors. Opt. Express 2016, 24, 8480–8490. [CrossRef] [PubMed]

64. Li, C.B.; Mao, R.W.; Zuo, Y.H.; Zhao, L.; Shi, W.H.; Luo, L.P.; Cheng, B.W.; Yu, J.Z.; Wang, Q.M. 1.55 µm Ge
islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror. Appl. Phys. Lett. 2005, 85,
2697–2699. [CrossRef]
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