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Sleep disturbances, specifically decreases in total sleep time and sleep efficiency as

well as increased sleep onset latency and wakefulness after sleep onset, are highly

prevalent in patients with Parkinson’s disease (PD). Impairment of sleep significantly and

adversely impacts several comorbidities in this patient population, including cognition,

mood, and quality of life. Sleep disturbances and other non-motor symptoms of PD

have come to the fore as the effectiveness of advanced therapies such as deep brain

stimulation (DBS) optimally manage the motor symptoms. Although some studies have

suggested that DBS provides benefit for sleep disturbances in PD, the mechanisms

by which this might occur, as well as the optimal stimulation parameters for treating

sleep dysfunction, remain unknown. In patients treated with DBS, electrophysiologic

recording from the stimulating electrode, in the form of local field potentials (LFPs), has

led to the identification of several findings associated with both motor and non-motor

symptoms including sleep. For example, beta frequency (13–30Hz) oscillations are

associated with worsened bradykinesia while awake and decrease during non-rapid

eye movement sleep. LFP investigation of sleep has largely focused on the subthalamic

nucleus (STN), though corresponding oscillatory activity has been found in the globus

pallidus internus (GPi) and thalamus as well. LFPs are increasingly being recognized as a

potential biomarker for sleep states in PD, which may allow for closed-loop optimization

of DBS parameters to treat sleep disturbances in this population. In this review, we

discuss the relationship between LFP oscillations in STN and the sleep architecture

of PD patients, current trends in utilizing DBS to treat sleep disturbance, and future

directions for research. In particular, we highlight the capability of novel technologies to

capture and record LFP data in vivo, while patients continue therapeutic stimulation for

motor symptoms. These technological advances may soon allow for real-time adaptive

stimulation to treat sleep disturbances.
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INTRODUCTION

The cardinal motor features of Parkinson’s disease (PD) include
bradykinesia, rest tremor, and rigidity. Though non-motor
features have been recognized since the original description
of the disease by James Parkinson in 1817, only recently has
the prevalence and impact of non-motor symptoms become
the focus of intense study (1, 2). Disturbances of sleep are
among the most common non-motor manifestations of PD. In
a 2009 survey of more than one thousand PD patients across
55 clinical centers, ∼37% of patients reported experiencing
insomnia, 21% reported excessive daytime sleepiness, 15%
reported restless legs, and 30% reported rapid eye movement
(REM) sleep behavior disorder (RBD) (3). In all, 64% of PD
patients reported at least one symptom affecting sleep, which
was second in frequency only to psychiatric symptoms (the most
common being anxiety/nervousness, depression, and anhedonia,
prevalence 67%). Sleep disorders commonly occur prior to the
appearance of typical motor symptoms. The most well-known
prodromal sleep disorder is RBD, which may develop years
to decades prior to the onset of motor symptoms (4–6). The
presence of RBD is one of the most specific predictors for
developing a neurodegenerative disease, with a risk of over 90%.
The risk for developing PD specifically, when RBD is present,
may be as high as 65% (7–9).

Given that sleep contributes to the regulation of many
physiological homeostatic processes, sleep disturbance has a
significant impact on quality of life in PD (10–12), and places
high strain on caregivers, even predicting earlier transfer to a
nursing home (13–15). Thus, the ability to treat sleep disorders
represents an opportunity to make substantial improvements
in not only mood, cognition, and overall satisfaction, but also
significantly alleviate caregiver burden and relieve financial
strains associated with the need for nursing home care. Though
numerous symptomatic therapies exist, the treatment of sleep
disorders in PD is limited by a lack of adequately powered,
randomized studies providing high quality evidence (16). The
possibility of treating disorders of sleep with DBS is thus
an appealing one. Although, DBS is primarily used to treat
PD motor symptoms and reduce the need for dopaminergic
medications, several studies have shown that DBS provides
benefit for non-motor symptoms, including sleep disturbance
(17, 18). However, the optimal DBS target and stimulation
parameters to address sleep remain unknown. In recent years,
recording of LFPs primarily from STN has identified unique
spectral patterns in oscillatory activity between the awake, REM
sleep, and non-REM (NREM) sleep states, thereby providing
novel insights into sleep architecture and basal ganglia physiology
in patients with PD. STN LFPs may therefore be suitable
for use as a biomarker for sleep, allowing stimulation to
be tailored to ameliorate sleep disturbance. This article will
briefly discuss pathophysiology of sleep-wake disturbances in
PD, review existing literature on subcortical electrophysiology
in sleep, highlight the potential for novel DBS technologies to
address sleep, and describe future directions for investigating
the use of LFPs as a biomarker for treating sleep disturbance
with DBS.

SLEEP DISTURBANCES IN PD

Sleep is classified into NREM and REM stages based on
polysomnography (PSG), which is primarily comprised of
electroencephalogram (EEG), electrooculogram (EOG), and
electromyogram (EMG) recordings. NREM sleep is notable for
slow, rolling eye movements, prominent parasympathetic tone,
and rare dreaming (19, 20). NREM sleep is further divided into
stages N1–N3. In N1, the lightest sleep stage, the normal waking
posterior dominant alpha (8–12Hz) rhythm is lost (21). N2
sleep is characterized by the emergence of both sleep spindles
(brief oscillations of 12–14Hz) and K-complexes (sharp high
voltage biphasic waves lasting more than 0.5 s) (21). In N3 (slow-
wave) sleep, delta (0.5–2Hz) EEG waves make up at least 20%
of any given sleep epoch (21). REM sleep is characterized by
low-amplitude, mixed frequency, desynchronized EEG (similar
to wakefulness with the eyes open), rapid eye movements, and
suppressed chin EMG activity (21). Dreams typically occur
during REM sleep (22).

Nearly all aspects of sleep are affected in PD, though disorders
of sleep-wake transition/sleep architecture as well as parasomnias
(i.e., atypical/unusual behaviors during sleep) affecting both REM
and NREM sleep are more common (23–28). Understanding of
these sleep disturbances has been largely driven by studies using
formal PSG in case-control studies.

PSG studies of PD patients have demonstrated several
alterations in sleep architecture, including increased sleep onset
latency, reduced total sleep time, increased wakefulness after
sleep onset (WASO), and decreased sleep efficiency (defined as
the ratio of time asleep to time spent in bed) (29–33). Decreased
sleep efficiency has been demonstrated in studies involving both
treated and untreated PD patients (31, 34, 35). In investigating
NREM sleep stages, studies have demonstrated a trend toward
increased time spent in stage N1, an effect which seems to bemost
prominent in the early stages of PD (31, 35, 36). Alterations in the
architecture of NREM sleep seem largely to be driven by changes
during stages N2 and N3, both of which are reduced (37–39).
It should be noted that these changes have not been universally
reported, reflecting the likely heterogeneity of PD and resultant
sleep disturbances, as well as methodological differences between
studies (31, 35, 37, 40–42). However, a recent meta-analysis from
2020 did confirm a reduction in both N2 and N3 sleep in PD
patients vs. control subjects (43). The reduction in N3 sleep, in
particular, seems to be progressive in a manner that correlates
with disease duration (30, 37).

Aberrant REM sleep is a consistent feature of PD. In the same
recent meta-analysis mentioned above, the percentage of time
spent in REM sleep and duration of contiguous REM epochs
(i.e., REM density) were significantly reduced in PD patients
compared to controls, while REM latency was increased (43).
Decreased REM sleep has been found in de novo, untreated
PD patients, and the duration of REM sleep seems to shorten
with disease progression (30, 36). Furthermore, REM sleep is
characteristically affected by RBD, a parasomnia characterized
by abnormal behaviors, such as talking, laughing, shouting,
gesturing, grabbing, flailing, punching, or kicking during REM
sleep that are associated with dream content and enactment (44).
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Estimates of the prevalence of RBD in PD range from ∼30 to
60% (45–47).

Electrophysiological alterations in sleep in PD occur across
stages N2, N3, and REM. N2 sleep in PD seems primarily to
be affected by a reduction in K-complexes and sleep spindle
formation, a finding which has been replicated across several
studies (29, 39, 48–50). A reduction in sleep spindle density
has also been found in patients with idiopathic RBD (51). A
single study, in contrast to these results, found no difference in
the quantity of K-complexes or sleep spindles in PD patients
compared to controls, though it should be noted that PD patients
included in this study had lower Movement Disorders Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) scores
and lower levodopa doses, raising the possibility that reduction
in K-complexes and sleep spindles is not a feature of early,
mild disease (32). Slow wave activity (SWA), an EEG oscillatory
pattern of 0.5 to 4.0Hz that is a normal hallmark of stage N3
sleep, is reduced in PD (31, 43, 45, 52, 53). This reduction may
become more severe with advancing PD (52). REM sleep in PD
patients is marked by increased power in the high theta/alpha
frequency range (7.8–10.5Hz) (40, 54, 55). This alteration in
REM physiology has been mostly observed in early, untreated
patients or in those not taking dopaminergic medications, and
was not seen in a study of patients on dopaminergic therapy,
raising the possibility that antiparkinsonian medications may
modulate REM sleep (56). Further study of this hypothesis
is needed.

Further discussion of the spectrum of sleep disorders in PD
can be found in recent reviews by Chahine et al. (16) and Zhang
et al. (43).

SUBCORTICAL ELECTROPHYSIOLOGY
AND RELEVANT PATHWAYS OF
SLEEP—ANIMAL STUDIES

Our understanding of the electrophysiological activity of
subcortical structures has been greatly informed by studies
of normal animals as well as animal models of PD. These
studies have provided significant insight into mechanisms of, and
potential therapies for, sleep disturbance in PD.

Studies in rodents using single-neuronal as well as multi-
unit activity (MUA) recordings have demonstrated a rhythmic
bursting pattern in STN neurons during slow-wave sleep, while
globus pallidus neurons exhibited a slowing in firing rate during
slow wave sleep compared to both wakefulness and REM (57, 58).
During slow-wave sleep, medium spiny neurons of the striatum
display brisk firing resulting from rhythmic membrane potential
fluctuations, unlike the irregular and disorganized firing seen
during wakefulness (59).

Recent animal studies exploring the generation and
maintenance of sleep at the single neuron and circuit levels
have revealed a multi-nodal brain-wide network contributing
to the sleep-wake transition. These studies posit that control
of sleep requires the integration and coordination of both
autonomic and somatomotor control networks, with distinct
circuits, including the basal ganglia, contributing to this global

brain state (60). Several regions of the basal ganglia, specifically
within the indirect pathway [inhibition of gamma-aminobutyric
acid (GABA)-ergic neurons of the GPe, leading to disinhibition
of glutaminergic neurons of the STN and thus activation of
GABAergic substantia nigra pars reticulata (SNr) neurons
projecting to the thalamus], have been implicated in different
stages of sleep. Both the nucleus accumbens and dorsal striatum
have been shown to promote NREM sleep via activation
of adenosine A2A receptor (A2AR)-expressing GABAergic
neurons (61, 62). In particular, the A2AR neurons of the dorsal
striatum were found to innervate the globus pallidus externus
(GPe) in a topographical pattern synapsing onto parvalbumin
(PV)-expressing neurons, and ablation of these PV neurons
abolished the NREM-promoting effect of A2AR activation (62).
In addition to these findings in GPe, glutamatergic neurons
of STN projecting to the SNr, when activated via optogenetic
manipulation, significantly prolong NREM states (63). Even
within the zona incerta (ZI), which lies dorsal and posterior
to the STN, LIM homeodomain factor (Lhx6)-expressing
GABAergic neurons within the ventral ZI promote NREM sleep
via selective activation, and decrease both NREM and REM
sleep when selectively ablated (64). Finally, the substantia nigra,
which is a basal ganglia output structure and a critical node
within the indirect pathway, also contributes to sleep regulation:
Optogenetic activation of glutamate decarboxylase 2 (Gad2)
neurons within the medioventral region of SNr both terminates
movement during wake periods and significantly enhances the
initiation of sleep (65).

Mizrahi-Kliger et al. (66) studied the activity of single neurons
in the basal ganglia in a pair of vervet monkeys. They found
that the firing rate of basal ganglia neurons was significantly
lower and more irregular (burst-like) during slow wave sleep
than during REM and wakefulness. This was particularly true
in GPi, GPe, and SNr. Basal ganglia neurons also exhibited
slow oscillations in firing rate during slow wave sleep, similar
to those observed in cortical neurons in both humans and
non-human primates. LFP recordings in the basal ganglia
demonstrate dramatically reduced slow oscillations compared
with thalamocortical networks. Furthermore, unlike in the
thalamus and cortex, basal ganglia LFPs were noted to be
desynchronized between individual neurons. Proposed causes
for this inter-neuronal desynchronization include the highly
convergent nature of input to the basal ganglia, wherein a
single GPi or GPe neuron may receive input from numerous
striatal cells, each of which, in turn, is receiving input from
numerous cortical cells (67). Thus, the basal ganglia are uniquely
placed in brain-wide sleep physiology, by virtue of receiving
slow oscillatory activity from vast cortical areas and, via
dyssynchronous firing, capable of activating multiple disparate
cortical areas at any one time.

In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
primate model of parkinsonism, increased power in an LFP
frequency band that encompassed alpha and low beta (10–
17Hz) activity during NREM was seen in GPe, GPi, and
STN (68). This increase in alpha and low beta activity was
associated with a decrease in the power of slow oscillatory
firing of the basal ganglia. Epochs with higher average beta
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power were associated with a decreased propensity for sleep
and an increased frequency of awakenings. Furthermore, the
authors demonstrated a temporal association between beta
activity and sleep-wake cycles, in that falling asleep was associated
with a gradual decrease in LFP beta activity across the basal
ganglia, and beta oscillations became more prominent in the
approach to awakenings. Thus, given the results of these studies,
a potential mechanism for sleep disturbance in PD emerges,
whereby synchronized beta oscillations from the basal ganglia
are relayed to the cortex, disrupting cortical slow oscillations
that are characteristic of NREM sleep (66, 68). Of course,
non-human animal studies should not provide the sole basis
for informing conclusions about human physiology. Although
MPTP does produce an excellent model of parkinsonism, the
disease course is more fulminant in the model—both in rapidity
of onset and in severity—than in idiopathic PD. Additionally,
sleep in PD is almost certainly affected by degeneration of several
different brain nuclei and neurochemical pathways not targeted
by MPTP, which is highly selective for dopaminergic neurons
(69). Collectively, these shortcomings of the MPTP model may
preclude a faithful recapitulation of the progressive nature of
sleep dysfunction in patients with PD.

SUBCORTICAL ELECTROPHYSIOLOGY
AND RELEVANT PATHWAYS OF
SLEEP—HUMAN STUDIES

In PD patients, early studies using MUA demonstrated slow
oscillations in the globus pallidus and caudate during slow
wave sleep, similar to those identified in primates (70). These
oscillations were similarly attenuated during wakefulness and
REM sleep. In a study of PD patients with STN DBS, single-
unit recordings demonstrated a decrease in firing rate during
sleep, and that neuronal firing developed a grouped or bursting
pattern (71).

More recently, electrophysiological studies have focused on
LFP recordings rather than on single or multi-unit data (Table 1).
This was largely driven by several important characterizations
of LFPs, primarily in PD patients: First, LFP activity is strongly
correlated with several PD disease states, in particular the
OFF state, in which power in the beta band (typically 13–
30Hz) is prominent in both STN and GPi (76–80). Specifically,
increased beta frequency band power is associated with worsened
bradykinesia and rigidity, but not with tremor (79–81). After
administration of dopaminergic medications, beta activity
attenuates and other frequencies, for instance 4–10 and 60–
90Hz, become more prominent (76, 78, 79, 82, 83). Not all
studies, however, have demonstrated the 60–90Hz peak after
administration of medication (84). There is also an association
between specific LFP bands and specific PD symptoms. For
instance, decreased power in the high beta range (20–30Hz) and
increased power at <10Hz have been reported in PD patients
with dyskinesia (85). Furthermore, LFPs are an appealing target
of study as they reflect synchronous changes in large populations
of neurons, are locally generated (rather than conducted from the

cortex), and are suppressed by both behaviorally relevant stimuli
and voluntary movement (81).

In the first study using LFPs to assess sleep, Urrestarazu et al.
(72) recorded LFPs from STN in 10 PD patients undergoing
DBS implantation. Recording was performed between 2 and 4
days after macroelectrode implantation. Notably, in five subjects,
sleep recordings were acquired during nap periods in the early
afternoon, and in the remaining five subjects, were acquired
during nighttime sleep. For each subject, analysis was conducted
on a total of 6min accumulated from 18 artifact-free segments,
each of 10-s duration and drawn from each sleep and awake
period (i.e., 3min acquired during periods of wakefulness and
3min acquired during sleep). During NREM sleep, power in
the beta frequency band was significantly reduced compared
to OFF-state wakefulness. In five patients from whom REM
sleep was recorded, beta activity, particularly at 20–30Hz, again
became more prominent and in fact occurred at a slightly
higher power than in wakefulness (Table 2). Low beta (13–
20Hz) power was lower in REM compared to wakefulness.
Four of the five patients additionally showed a peak at 10–
15Hz, which was not seen during other sleep stages nor during
wakefulness. In three patients who exhibited REM sleep without
atonia (RSWA), power in the beta band was higher during
RSWA episodes compared with episodes of REM with atonia.
No video assessment of movement was made, so it is unknown if
these episodes of RSWA were associated with dream enactment
behaviors suggestive of RBD.

Subsequent studies have demonstrated the feasibility of
using LFPs to determine sleep stage. Thompson et al. (73)
recorded LFPs from the STN of 10 patients 3 weeks after
implantation of a DBS macroelectrode for a single, full night
of sleep (∼9 h per subject), and compared these to formal PSG
obtained concurrently. Polysomnography was scored according
to the 2007 American Academy of Sleep Medicine (AASM)
guidelines (86). These investigators found significant band-
power differences in all NREM states compared with REM and
wakefulness, in a manner that corroborates typical EEG findings.
Delta (0–3Hz), theta (3–7Hz), and alpha (7–13Hz) all increased
in NREM sleep compared to REM, while beta and gamma (30–
90Hz) power decreased (Figure 1). In contrast to the findings
of Urrestarazu et al., beta power during REM sleep was lower
than in wakefulness. Importantly, there was significant between-
subject variability in the relative power of each frequency band
during each sleep stage, suggesting that an individualized analysis
for each subject is likely necessary to accurately monitor and
treat sleep dysfunction. To this end, the authors used a support
vector machine (SVM) model to predict sleep stage based on LFP
power spectra. SVM models accurately predicted sleep stage for
the subject on which they were trained, but performed poorly for
other subjects. This work was then improved by development of
a feedforward artificial neural network (ANN) to predict sleep
stage based on 30-s epochs of LFP data (Figure 2) (75). In a leave-
one-group-out analysis, the ANN was able to predict sleep stage
(awake, NREM, or REM, without breaking down NREM into
component stages N1–3) with an overall accuracy of 91%, though
accuracy was lower (77%) for REM sleep—likely a consequence
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TABLE 1 | Summary of pertinent studies of LFPs in sleep in PD patients.

Study Sample

size, n

Age,

mean

(range)

PD

duration,

mean

(range)

MDS-

UPDRS part

III*, mean

(range)

Location Timing (after

DBS

implantation)

Medications Recording period

analyzed

Major findings

Urrestarazu

et al. (72)

10 62.2

(56–72)

12.3

(8–25)

34.4 (26–46) Bilateral

STN

2–4 days Off (timing not

specified)

3min sleep + 3min

wakefulness (5

afternoon naps, 5

nocturnal sleep)

NREM: beta power reduced

compared to OFF-period

wakefulness

REM: high beta (20–30Hz)

power slightly higher power

than wakefulness; low beta

(13–20Hz) lower than

wakefulness

RSWA: beta power higher

than REM with atonia

Thompson

et al. (73)

10 58.4

(39–70)

UA 40.4 (15–62) Unilateral

STN

3 weeks Off several

hours

24-h recording;

average 7.5 h nocturnal

sleep

NREM: increased power in

delta, theta, alpha range,

decreased beta, and

gamma power compared to

wakefulness

REM: beta power increased

but lower than wakefulness

Beta power increased over

the course of the night

Subject-specific models

able to classify sleep stage

based on LFP signature

Chen et al.

(74)

12 54.8

(40–67)

10.2

(7–20)

UA Bilateral

STN

1 month Off at least 8 h 4–6 h nocturnal sleep;

6min wakefulness prior

to sleep

NREM: increased power in

delta, theta, alpha range,

decreased beta, gamma

power compared to

wakefulness

REM: beta, gamma power

increased, similar to

wakefulness

Subject-specific models

able to classify sleep stage

based on LFP signature

*Before DBS, off medication.

PD, Parkinson’s disease; MDS-UPDRS, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; STN, subthalamic nucleus; DBS, deep brain stimulation; NREM,

non-rapid eye movement sleep; REM, rapid eye movement sleep; RSWA, REM sleep without atonia; UA, unavailable; ANN, artificial neural network.

of diminished REM in these PD study subjects. This represents
a significant improvement in performance over the SVM, in that
the ANN was able to accurately stage sleep in subjects it had not
previously encountered.

Chen et al. (74) studied 12 PD patients undergoing STN DBS.
LFPs were recorded at 1 month after electrode implantation
and compared to PSG, staged according to AASM guidelines.
They again demonstrated that delta, theta, and alpha band
power significantly increased from wakefulness to N2 and
decreased in REM sleep. Beta and gamma power decreased from
wakefulness to N2. In REM sleep, beta band power was similar
to wakefulness. As with Thompson et al., there was significant
between-subject variability in relative power across frequency
bands during each sleep stage. Machine learning algorithms were
then applied to classify sleep stage based on LFP power spectra.
Subject-specific models performed significantly better than a

study-wide model. Classification accuracy was over 90% for
distinguishing wakefulness from N1, wakefulness from N2/N3,
wakefulness from REM, N1 from N2/N3, N2/N3 from REM, and
wakefulness from sleep overall. Performance was lower (73%) for
distinguishing N1 from REM sleep. A predictive model achieved
similar accuracies.

Several important limitations to these studies should be noted:
sample sizes were small, relatively heterogenous populations
were included, and control groups were lacking for comparison.
Given that the studies cited above involved externalized DBS
leads for recording, data collection was restricted to a single
night, thus limiting our knowledge of the significance of
between-night differences in individuals. Recordings were also
acquired in a hospital or sleep laboratory setting, creating an
unfamiliar environment that likely affected naturalistic sleep
behavior. Experiments were carried out between 2 days and 1
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TABLE 2 | Characteristic LFP signatures of sleep and wakefulness in PD.

State LFP characteristics Notes

Wakefulness—OFF state ↑ Beta frequency power Beta frequency power more closely linked with bradykinesia, rigidity than tremor

Wakefulness—ON state ↓ Beta frequency power Emergence of gamma frequency not consistent across studies

↑ Theta, gamma frequency power Dyskinesia may be associated with increased theta and decreased high beta

(20–30Hz) power

NREM sleep ↑ Delta, theta, and alpha frequency power Significant between-patient variability in relative power across frequencies

↓ Beta frequency power Most studies do not differentiate between stage N1, N2, and N3 sleep

REM sleep ↑ Beta frequency power Beta frequency power may be lower, similar to, or greater than in wakefulness

↓ Delta, theta, and alpha frequency power Beta power may be higher in periods of REM without atonia than in REM with atonia

NREM, non-rapid eye movement sleep; REM, rapid eye movement sleep.

Canonical frequency bands are as follows: delta (0–3Hz), theta (3–7Hz), alpha (7–13Hz), beta (13–30Hz), and gamma (30–90 Hz). ↑, Increased; ↓, decreased.

FIGURE 1 | (A) Relative frequency contribution of each spectral band to different sleep stages. There exist shared sleep-stage dependent spectral patterns across

subjects, although with some notable across-subject variability. Each individual plot highlights the distribution of the power of a given frequency band to different

stages of sleep for 10 different subjects. In the awake state (red), power is highest in the beta and gamma frequencies, while NREM sleep (blue) is dominated by lower

frequencies (delta, theta, and alpha). REM sleep (green) exhibits the greatest variability in representation across the frequency spectra [adapted from (73)]. (B)

Distribution of frequency band power contribution to sleep stage for a cohort of nine subjects. AWM, awake with movement; AWOM, awake without movement; REM,

rapid eye movement; N1–3, non-rapid eye movement stages 1–3 [adapted from (75)].

month following DBS implantation, making it difficult to know
with certainty whether microlesional effects remaining from
surgery or other peri-procedural factors influenced the results.
However, it has been shown that the correlation between beta
oscillations and parkinsonian syndromes during wakefulness
remains present months and even years post-operatively, making
it at least plausible that the same holds true for sleep (87, 88).

Though these studies provide support for a relationship
between basal ganglia LFPs and sleep disturbance, important
questions remain unanswered. First, it is unclear how to
reconcile the increase in beta activity during REM sleep with
the observation that motor control might actually be improved
during REM (89). This increase in beta activity during REM

would be unexpected given the otherwise akinetic nature of
beta activity and may suggest a yet-undiscovered relationship
between basal ganglia oscillations and movement. An alternate
explanation for this apparent paradox might stem from the
hypothesis that movement during REM sleep (i.e., dream
enactment behavior) may bypass extrapyramidal pathways
entirely (89). Additionally, the variability in beta power observed
both between studies and within individuals over the course of
a single night requires further exploration. As mentioned above,
while some studies have found beta power in REM sleep to be
similar to or slightly lower than during wakefulness, others have
actually reported increased beta power during REM (72, 73, 75).
In individuals, there does seem to be a reliable increase in
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FIGURE 2 | (A) Representative spectrogram of a LFP recording acquired over

the course of one full night’s sleep from a DBS electrode implanted into the

STN. A PSG-informed hypnogram assessed by a sleep expert is aligned with

the LFP recordings (red line). AWM, awake with movement; AWOM, awake

without movement; REM, rapid eye movement; N1–3, non-rapid eye

movement stages 1–3. (B) Comparison of hypnogram assessed by a sleep

expert (top; black) and ANN-predicted hypnogram (bottom; red) from a single

patient. R, rapid eye movement; N, non-rapid eye movement; A, awake

[adapted from (75)].

beta activity as the night goes on, across all sleep stages (73).
Thompson et al. speculate that these findings might be explained
by the wearing-off of dopaminergic medications from last dose
before bedtime until first dose of the morning. There might also
be a relationship with REM atonia, as the study by Urrestarazu
et al. (72) found a difference in beta power between episodes of
RSWA and times of normal REM atonia. This finding should
be interpreted with caution, as not all studies have corroborated
it, and other mechanistic explanations, such as interaction with
subcortical pontogeniculo-occipital (PGO) waves, have been
posited (20, 90). Finally, the significance of LFPs in other
subcortical structures, particularly in relation to sleep, is largely
unknown. LFPs recorded from the centromedian-parafascicular
nucleus of the thalamus in PD patients show a prominent band of
gamma activity in the ON-state that disappears in the OFF-state,
but there is as yet no known correlation with arousal state (91).
The GPi also displays beta frequency oscillations that modulate
with volitional movement, though again studies of GPi LFPs in
sleep are lacking (92, 93).

IMPACT OF CONVENTIONAL DBS ON
SLEEP

The ability to record and stage sleep via STN LFPs raises
the exciting possibility of using DBS to optimize treatment
of not only the motor symptoms of PD during sleep (when
patients are between medication doses), but also the disordered
sleep itself. This possibility is bolstered by the observation

that DBS, although not directly targeted nor programmed to
improve sleep dysfunction, may confer some benefit on sleep
in PD patients (94, 95). The evidence is most robust for
STN DBS, where studies using subjective measures (validated
sleep questionnaires) as well as objective measures (PSG or
actigraphy) have demonstrated improvements in multiple sleep
architecture outcomes including increased total sleep time and
sleep efficiency, reduced wakefulness after sleep onset, and in
some studies, an increase in REM sleep (18, 96–101). These
improvements in subjective and objective measures seem to be
an effect of stimulation, as studies examining sleep both on and
off stimulation have demonstrated significant improvement in
sleep when stimulation is on vs. off (17, 102). In addition to
improvements in sleep architecture, STN DBS likely improves
sleep via amelioration of nocturnal motor symptoms and may
also improve symptoms of RLS, even when levodopa equivalent
doses are reduced post-operatively (103–105). Current evidence
does not suggest that STN DBS has any impact on RBD, though
studies are limited (106). Evidence for the benefit of GPi DBS
on sleep disturbance is sparse, though a few studies using
subjective outcomes have suggested an improvement in sleep
quality and daytime sleepiness with GPi DBS (107–109). A single
study using objective sleep data in five PD patients with GPi
DBS demonstrated a non-statistically significant increase sleep
quality and efficiency, with decreasedWASO, sleep onset latency,
and REM latency (110). In a recent, double-blind, prospective,
single-case report investigating the efficacy of GPe DBS for
the treatment of insomnia, a PD patient with prolonged (7
years), severe insomnia, refractory to three hypnotic treatments,
was implanted with one DBS lead in GPi and a second DBS
lead in GPe. The patient exhibited improved sleep quality
and decreased insomnia when GPe was selectively stimulated
vs. co-stimulation of GPi and GPe (111). The study authors
prospectively targetedGPe to ameliorate sleep disturbances based
on prior animal studies that indicated activation of GPe resulted
in increased REM and NREM duration (112, 113). Other targets
have been suggested as possibly beneficial for sleep, particularly
the pedunculopontine nucleus (PPN), given its role in sleep-
wake modulation (114). In a series of five patients with both
STN and PPN DBS, PPN stimulation improved sleep onset and
maintenance insomnia compared to STN DBS. At 3 and 12
months, daytime sleepiness was improved by PPN DBS, but
not by STN DBS (115). Further studies with larger numbers of
patients are needed to accurately determine the efficacy of PPN
DBS for sleep. Potential DBS targets for the modulation of sleep
are highlighted in Figure 3. A recent review of these targets is
provided by Sharma et al. (95).

UTILIZING LFPS FOR ADAPTIVE DBS TO
TREAT SLEEP DISTURBANCE

Adaptive DBS (aDBS) refers to a system wherein stimulation
parameters are modulated in response to an inferred state
of pathophysiological activity (119). A current challenge for
adaptive DBS is inferring the pathological state, which currently
relies on either peripheral measures, for instance tremor
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FIGURE 3 | Potential DBS targets for treatment of sleep dysfunction in PD.

STN DBS may increase total sleep time and sleep efficiency, reduce

wakefulness after sleep onset, and in some studies, increase REM duration.

GPi DBS may improve sleep quality and daytime sleepiness. A single study in

five PD patients with GPi DBS demonstrated a non-statistically significant

increase sleep quality and efficiency, with decreased WASO, sleep onset

latency, and REM latency. GPe DBS may improve insomnia and improve sleep

efficiency. PPN DBS may improve sleep efficiency, REM duration, and daytime

sleepiness, and decrease WASO. The ascending arousal system (orange

arrows) sends projections from the brainstem and posterior hypothalamus

throughout the forebrain (116). Neurons of the laterodorsal tegmental nuclei

and PPN send cholinergic fibers to many forebrain targets, including the

thalamus, which then regulate cortical activity. Aminergic nuclei diffusely

project throughout much of the forebrain, regulating the activity of cortical and

hypothalamic targets directly. These include neurons of the tuberomammillary

nucleus containing histamine, neurons of the dorsal raphe nuclei containing

5-HT, and neurons of the locus coeruleus containing noradrenaline. TMN,

tuberomammillary nucleus; DRN, dorsal raphe nucleus; LC, locus coeruleus

(117, 118).

amplitude in a limb, or direct recording of brain activity. aDBS
is an active area of research as these proxy pathophysiological
measures are either imprecise (peripheral measures) or lack
evidence (i.e., direct recordings from the brain). aDBS has
primarily been pursued in an effort to widen the therapeutic
window for treating motor symptoms and also to reduce power
consumption of the implanted pulse generator (IPG). However,
given the ability to accurately record sleep-wake cycles with
basal ganglia LFPs (overcoming the evidence challenge) and the
plausibility of treating sleep with DBS, sleep disturbance may be
an ideal target for aDBS. A schematic illustration is shown in
Figure 4.

A few important factors must be considered in the effort to
use LFPs as a biomarker for treating sleep with aDBS. First, for
any biomarker to be useful in the long term, it must be durable,
that is, present for the duration of the disease or as long as the
aDBS system is to be used. Little is known about any change or
diminution of LFPs over time, though a small number of studies
have demonstrated that LFPs can reliably be detected through

FIGURE 4 | Schematic illustration of an adaptive closed-loop DBS system

used to treat sleep dysfunction. LFPs are detected by the DBS lead. With

integrated classifiers, sleep stages are predicted, and closed-loop algorithms

can adjust the DBS pulses. For example, stimulation amplitude may be

decreased during certain sleep stages where beta frequency power is lower

[modified from (74)].

implanted DBS leads as far as 7 years after DBS implantation
(88, 120). Further studies will be needed to verify these results
and to ensure that LFPs remain present during both wakefulness
and sleep.

Second, the biomarker should correlate with symptom
severity. Though beta activity is reliably present during certain
sleep stages, as well as in times of increased bradykinesia and
rigidity during wakefulness, it remains unknown whether beta
activity is causally related. In the case of motor symptoms
there is evidence that the severity of bradykinesia and rigidity,
though not the presence or severity of tremor, correlate with
LFP power in the beta band (79, 121). Thus, although a causal
link is not fully established, it can at least be reasoned that
reducing beta LFP power via the delivery of stimulation will
lead to symptom improvement. The same correlation between
symptom severity and LFP power has not been established for
sleep disturbance, though in a nonhuman primate MPTP model
of PD, a correlation between insomnia severity and beta power
has been demonstrated (68). If also present in humans, this
correlation might help explain the significant variability in beta
frequency power between subjects observed in studies thus far
(73, 74). Establishing a correlation between LFP power and
insomnia severity in humans would be greatly facilitated by
recording several continuous nights of sleep in individuals, so
that between-night differences in LFP signature and symptoms
could be examined. The development and recent FDA approval
of the Medtronic PerceptTM PC device now allows for the
capturing and recording of LFPs simultaneously with the delivery
of therapeutic stimulation for up to 60 days of stored data. This
eliminates the need to obtain LFPs from an externalized DBS lead
and will allow data to be collected in the home environment.

When considering aDBS for the treatment of sleep
dysfunction, an optimal measure for efficacymust be determined.
Should PSG studies be undertaken to examine changes in sleep
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architecture? This would provide the most robust evidence
of a benefit from aDBS, though it would also be the most
time-consuming and expensive. Furthermore, a single night
of recording may be insufficient, especially as the mechanism
by which DBS exerts its therapeutic effect remains unknown,
but may involve changes in synaptic plasticity and long-
term anatomical reorganization (119, 122). Validated sleep
questionnaires would be much easier to administer, although
these do not provide direct information on changes in sleep
architecture. Care must be taken to ensure that outcomes
of interest, such as insomnia and daytime sleepiness, are
differentiated from other sleep-related symptoms which may
not as clearly respond to DBS, such as restless legs syndrome
(RLS) and obstructive or central sleep apnea (95). Actigraphy
or other wearable devices may represent a useful intermediary
between PSG and questionnaires. These technologies provide an
objective measure of movement which may correlate to actual
sleep. They are less expensive than PSG and can be used home
setting. They have also been validated in both healthy controls
and PD patients, to record accurately several sleep parameters
including total sleep time, sleep efficiency, WASO, and nocturnal
motor activity (123–126).

Finally, other contributors to sleep disturbance may pose
significant challenges in using DBS, either through adaptive or
conventional stimulation, to treat sleep. While DBS may be able
to suppress or alter pathological oscillations in the basal ganglia,
degeneration in other brain areas not amenable to DBS may
play a role in sleep disturbance. Synuclein pathology is more
prevalent in brainstem and hypothalamic sleep/wake centers,
including the locus coeruleus, raphe nuclei, paramammillary
nuclei, and posterior hypothalamus, in PD patients with sleep
disorders compared to those without, suggesting that these areas
likely play a critical role in sleep dysfunction (127). A myriad of
other comorbidities may also contribute to sleep fragmentation.
These include depression, pain, nocturia, and RLS, all of which
are found in higher frequency in PD patients compared to
controls (16, 128). The influence of dopaminergic medications
adds another layer of complexity to sleep disturbances in PD.
As mentioned above, wearing off of medications during the
night may contribute to higher beta power over the duration of
nocturnal sleep. Other medications may contribute to daytime
sleepiness, as with dopamine agonists, or may worsen insomnia,
as in the case of the monoamine oxidase inhibitor selegiline
(16, 129). The potential confounding effect of these treatments

will need to be carefully considered in designing future studies,
particularly as greater emphasis is placed on studying sleep in the
home setting over several nights.

CONCLUSION

DBS is a highly effective therapy for the motor symptoms of PD.
In recent years, the effect of DBS on non-motor PD symptoms
has been investigated with increasing interest. Disorders of
sleep are among the most prevalent non-motor symptoms of
PD and come at a great cost to quality of life. The available
evidence suggests that DBS does have a beneficial effect on sleep,
specifically increased total sleep time and sleep efficiency, with
reduced wakefulness after sleep onset. Subjective sleep measures
are also improved by DBS. However, the optimal stimulation
target and parameters to treat sleep, as well as the mechanisms
by which DBS exerts its influence on sleep, remain largely
unknown. Utilizing DBS to treat sleep disturbance will likely
only be possible if a reliable biomarker for sleep exists. The
most likely candidate biomarkers are LFPs. LFPs can reliably
be recorded from the STN of PD patients, and multiple studies
have proven the feasibility of using LFPs to determine sleep
stage. Thus, LFPs would likely provide an excellent signal for
an adaptive DBS system which targets sleep disturbance by
varying stimulation in response to changes in sleep-wake state
throughout the night. Additional research is needed to better
define between-night differences in LFP signatures in individuals,
establish a correlation between LFP power and symptom severity,
and to develop and test aDBS systems aimed at treating sleep. If
successful, these systems would likely have a profound impact on
not only sleep, but also mood, cognition, and quality of life.
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