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Abstract: Healthcare systems worldwide generate vast amounts of data from many different sources.
Although of high complexity for a human being, it is essential to determine the patterns and minor
variations in the genomic, radiological, laboratory, or clinical data that reliably differentiate pheno-
types or allow high predictive accuracy in health-related tasks. Convolutional neural networks (CNN)
are increasingly applied to image data for various tasks. Its use for non-imaging data becomes feasible
through different modern machine learning techniques, converting non-imaging data into images
before inputting them into the CNN model. Considering also that healthcare providers do not solely
use one data modality for their decisions, this approach opens the door for multi-input/mixed data
models which use a combination of patient information, such as genomic, radiological, and clinical
data, to train a hybrid deep learning model. Thus, this reflects the main characteristic of artificial
intelligence: simulating natural human behavior. The present review focuses on key advances in
machine and deep learning, allowing for multi-perspective pattern recognition across the entire
information set of patients in spine surgery. This is the first review of artificial intelligence focusing
on hybrid models for deep learning applications in spine surgery, to the best of our knowledge. This
is especially interesting as future tools are unlikely to use solely one data modality. The techniques
discussed could become important in establishing a new approach to decision-making in spine
surgery based on three fundamental pillars: (1) patient-specific, (2) artificial intelligence-driven,
(3) integrating multimodal data. The findings reveal promising research that already took place to
develop multi-input mixed-data hybrid decision-supporting models. Their implementation in spine
surgery may hence be only a matter of time.

Keywords: mixed data; deep learning; deep neural networks; hybrid networks; multi-input; artificial
intelligence; prediction; healthcare; machine learning; spine; degeneration

1. Introduction

Low back pain is one of the most frequently observed clinical conditions, and de-
generative spine disease seems to be a leading driver of low back pain [1]. The global
prevalence of low back pain increased from 377.5 million in 1990 to 577.0 million in 2017 [2].
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The years lived with a disability increased globally from 42.5 million in 1990 to 64.9 million
in 2017, representing an increase of 52.7%. Degenerative spinal disease is a common and
impairing condition resulting in high socio-economic costs. Direct medical expenses spent
on low-back pain doubled to 102 billion USD between 1997 and 2005, and the number of
lumbar fusion procedures has quadrupled over the past 20 years, resulting in significantly
increased healthcare costs [2].

Interestingly, the increase in performed surgeries is not directly proportional to im-
proved patient outcomes. Impaired quality of life, persistent pain, and functional problems
are reported in up to 40% of patients undergoing low back pain surgery and 20–24% under-
going revision surgeries [3,4]. Indications influencing the decision as to whether a patient
should undergo surgery are not entirely based on guidelines but rather on discussions
between the surgeon and patient, as well as the expertise and skills of the surgeon. Fur-
thermore, there are no clear guidelines on surgical techniques for treating degenerative
spinal diseases; as such, it remains unclear as to whether one treatment approach might
perform better in particular cases than another. Overall, there is a considerable lack of
data-driven decision-making in low back pain patients, which is particularly concerning
when considering the global burden associated with low back pain.

Medical healthcare is driven by an incredible increase in the amount of data generated
through various diagnostic tools and nodes within the healthcare systems. Patient data are
the fundaments healthcare providers use to find the best fitting prognosis and diagnosis
for each patient. Decisions are based on patterns across these datasets that guide towards
the “right” diagnosis. Moreover, prognosis healthcare providers utilize these datasets to
justify a specific treatment approach. Therefore, the correct interpretation of these datasets
is crucial and directly impacts patient outcomes and the operations of healthcare systems.

Furthermore, improvements in treatment guidelines are mainly based on research
that has been performed on such datasets. Researchers using these data might not be
aware of the patterns hidden in their collected datasets. The process of finding patterns in
large datasets which specifically fall under the category of big-data research is called data
mining [5]. However, oftentimes, clinical researchers might not have profound knowledge
in (bio)statistics personally, nor access to biostatisticians, to apply the best available tools to
their datasets to extract all relevant pieces of information. Therefore, it is of high relevance
that such datasets are made public and anonymized so that data scientists can use them
and possibly determine these patterns using modern data-mining technologies.

The term “digital health” stands for the digitalization of healthcare data that was
previously only assessed in an unproductive way through paper-based forms. New health-
care applications have become increasingly relevant and available. Such applications can
range from mobile health applications, consumer techs, and telehealth for monitoring and
guiding patients to precision medicine utilizing patient-specific data in artificial intelligence
and bioinformatics models for individualized treatment approaches.

Machine learning is a subset of artificial intelligence and refers to computer techniques
that allow complex tasks to be solved in a reproducible and standardized way. Machine
learning combines biostatistics, mathematics, and computer science into one problem-
solving pathway. One advantage is its efficiency and effectiveness, as the underlying
programming code can be modified to enhance the accuracy of paths that solve a specific
task. In this way, it can be more controllable, cost-efficient, and less error-prone than
its “human template.” Although the number of publications and citations in artificial-
intelligence-related papers on healthcare topics is overwhelming, the technique is still at
the beginning of its maturity. The industry highly supports the progress because of the
great potential to improve medical research and clinical care, particularly as healthcare
providers increasingly establish electronic health records in their institutions.

Predictive analysis with classical statistical techniques, such as regression models,
applied on these datasets has been the gold standard to date. One may ask about the
advantages of advanced machine learning techniques over simple regression analysis using
widely available statistical software for predictive analysis. It is hard to draw a distinct
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line indicating where basic statistical methods end and machine learning begins. It is often
debated whether statistical techniques are somehow also considered as machine learning
techniques, as in these cases, computers are using mathematical models to test a specific
hypothesis. The primary differentiation might be the purpose of the application. Statis-
tical methods, such as regression models, aim to find associations between independent
variables (e.g., age, sex, body mass index) and dependent variables (e.g., patient-related
outcome measures). Contrastingly, machine learning models also use statistical methods
but aim to learn from training datasets, helping them to make more accurate predictions
on the validation dataset so that the model can be reliably used on other independent
datasets for predictive analysis. Hence, machine learning could be explained as focusing
on predictive results, whereas simple statistical models analyze significant relationships.
However, one further differentiation might be interpretability. The more complex a machine
learning technique gets, the more accurate it can become at the cost of interpretability. For
example, the lasso regression is a machine learning technique using regression analysis
for feature selection and prediction. It has the advantage that it is not necessary to find
the relevant independent variables first, as is required in linear regression modes. Its
application is quite simple, and the interpretability is high. In contrast, deep learning,
which is a subgroup of machine learning and will be discussed later, can get very complex
but also very accurate; however, this comes at the cost of interpretability. The general
principles of machine learning discussed in this review might help to differentiate between
the most utilized approaches.

One significant barrier of machine learning applications is that reliable learning pro-
cesses are very data-hungry. Machine learning is highly dependent on the premise that
a large dataset is available. As computers cannot process visual and textual information
the way human brains do, the algorithm needs to know what it is predicting or classifying
in order to make decisions. When classification tasks need to be solved or specific areas
need to be predicted, annotations are necessary. Data annotations help to make the in-
put data understandable for computers. The task of the data scientist is to reliably label
data such as text, audio, images, and video so it can be recognized by machine learning
models and used to solve prediction and classification tasks. However, this process can
be highly time-consuming, which might represent a major flaw in the implementation
of machine learning algorithms. Non-accurate labeling will ultimately lead to inaccurate
problem-solving. In previous research entitled “Deep Learning: A Critical Appraisal” [4],
Marcus et al. proposed ten concerns associated with machine learning research, and data
hungriness was listed as the top factor. He noted that “in problems where data are limited,
deep learning often is not an ideal solution” [6]. Data-hungriness was also considered an
unsolved problem in artificial intelligence (AI) research, described in Martin Ford’s book
“Architects of Intelligence: the Truth About AI From the People Building It” [7]. Most of
the researchers interviewed in his book encourage the development of more data-efficient
algorithms. Four pillars relevant for the implementation and interpretation of machine
learning algorithms were described by Cutillo et al. based on discussions at the National
Institute of Health (NIH) healthcare workshop in 2019 [8]. These were Trustworthiness,
Explainability, Usability, Transparency, and Fairness.

An increase in data efficiency cannot be made feasible only by increasing the number
of input samples but also by improving the machine learning architecture itself. One
way to do this is to consider that different data types might contribute differently to the
problem-solving task and that the connection between data types might also be relevant.
Discussing the data dependency of machine learning algorithms and different hybrid
models capable of processing different data types is, unfortunately, a research field that
has not received the necessary attention yet. In particular, the translation of such hybrid
algorithms to a clinical environment with real-world applications has not yet been reviewed.
Our workgroup is currently investigating novel hybrid machine learning algorithms for
applications in spine surgery. The search for comparable models in the literature while
building the architecture revealed an unexpected lack of research in this field. This review
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discusses hybrid algorithms for multimodal data processing and their implementation in
spine research to close the gap currently available in the literature. The findings could help
healthcare stakeholders plan and implement these promising algorithms in clinics.

2. Relevance of Digitalization in Spine Surgery
2.1. The Need for Structured Decision Making in Spine Surgery

A step towards precision and data-driven spine surgery can be achieved by meeting
the significant requirement of developing informative outcomes in assessments. These
include regular outcome assessments of patients, preferably utilizing digital app-based
assessment forms, and the necessity to implement these outcomes as dependent variables
in future risk assessment tools. Notably, the improvement of patient-related outcome
measures (PROMs) should be the primary goal of decision-making. The value of such
outcome measures is more critical in clinics than surrogate markers such as laboratory
markers and classical clinical variables such as revision surgery, readmission, or absence
of surgical infections. Our previous research has shown that patient-related outcome
measures do not necessarily correlate with the factors a surgeon might consider relevant.
For example, we could show that patient-related outcome measures were more correlated
with the length of hospital stay than with postoperative complication rates [9]. Therefore,
patient-related outcome measures should be an integral part of every predictive tool in
spine surgery. In spine surgery, commonly utilized patient-related outcome measures
include the Oswestry Disability Index, Core Outcome Measure Index (COMI), the eq-
5D, SF-36 form, Numeric Rating Scale of pain, and the Visual Analogue Scale of pain, in
addition to others [10]. Notably, Breakwell et al. reported in their publication entitled
“Should we all go to the PROM? The first two years of the British Spine Registry” that a
significant amount of PROMs forms were entered by the patients themselves [11]. Hence,
an app-based tool transferring the results from the PROMs to a central database could
be more time-efficient for spine surgeons. An additional benefit would be that outcomes
could be compared considering all contributing institutes, and necessary quality-control
steps could be performed in an early phase. This could also be very cost-efficient for
healthcare institutes.

The integration of these patient-related outcome measures as dependent variables
in clinical decision support tools would allow outcomes to be predicted during prospec-
tive follow-ups based on a set of several textual independent variables such as surgical
technique, preoperative markers, as well as other data modalities such as imaging. This
approach could reliably analyze large volumes of data based on previous data input and
suggest next steps for treatment, flag potential problems, and enhance care team efficiency.
Furthermore, this PROMs-including approach allows surgeons to discuss the possible out-
come with patients and therefore improves the communication with patients. Contrastingly,
a communication style in which the surgeon advises against surgery based on his subjective
experience might lead to a negative surgeon-patient relationship. Such data-driven support
tools might also be better to help surgeons communicate with patients.

2.2. Database Repositories for Machine Learning Applications in Spine Surgery

Databases are repositing data for future research. They are dedicated to housing data
related to scientific research on a platform that can be restricted for access or publicly
available. One often-used approach is to limit access to all contributors of the database. In
this way, the database integrates a simple reward system: the contribution of data allows
contributors to use the gathered data. Databases can collect and store a heterogeneous
set of patient data and large datasets that fall under the category of big data. Usually,
data in online medical databases are stored anonymously, maintaining that data cannot
be linked to the patients’ personal information. In such cases, radiological images can be
stored with genetic and clinical data, all having a unique identification number linking
the different datatypes of the case. These databases cover a wide range of data, including
those related to cancer research, disease burden, nutrition and health, and genetics and the
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environment. Researchers can apply for access to data based on the scope of the database
and the application procedures required to perform relevant medical research.

For machine learning purposes, these data can also be labeled/annotated before being
uploaded, allowing for utilization via data scientists. Although impactful machine learning
models published to date might deal with a well-annotated dataset, the annotation process
requires the necessary infrastructure, expertise, and resources, as it is very time-consuming
depending on the number of data points. Considering the complexity of data annotation,
crowdsourcing platforms are currently emerging. In this crowdsourcing model, the data are
annotated by multiple crowdsourcing workers. One advantage is that the labeling can be
checked against the consensus label using statistical parameters such as the inter-annotator
agreement. Furthermore, this approach could lead to a more generalizable annotation style
within the dataset. Therefore, the model might better predict future datasets coming from
other workgroups. Crowdsourcing applications introduced were, for example, applications
to database curation, the identification of medical terms in patient-authored texts, and the
diagnosis of diseases from medical images [12–14]. Such platforms could also be applied
by institutes in spine surgery. Although recent studies have shown that the accuracy
performed by crowd workers is mainly similar to the individual annotation considering a
given task, crowdsourcing is more resource-oriented and reliable [15–17]. The workflow of
machine learning applications in spine surgery is shown in Figure 1.
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Several databases are available that house an impressive number of global biomedical
data. Notably, these repositories are regularly updated and extended using new image sets
and data types provided by multiple institutions. Thus, they are often used by machine
learning research studies, which is essential for progress in the field and exemplary for
upcoming databases. For example, the GDC data portal [18] can provide RNA-sequencing,
whole-genome, whole-exome sequencing, targeted sequencing, genotype, tissue and diag-
nostic slides, and ATAC-seq data. These data types could also be used as an input in hybrid
machine learning models along with imaging and clinical data types to solve prediction
tasks related to spinal oncology. Access to these platforms can be obtained from researchers
but only for subsets of the whole dataset. The general principle of these platforms is that
only data that will be used can be extracted. However, all mentioned databases do not
contain data labeling and annotations. Considering that there can be vast amounts of data
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depending on the research question, this might be a significant limitation for using these
data for machine learning purposes. Several sources of public databases are accessible by
anyone who wants to train and test their machine learning models. One such example
is the Kaggle Dataset collection, which contains several algorithms and datasets in spine
surgery [19,20]. These datasets are often used for competitions and training novel machine
learning methods to determine whether they outperform existing models. This allows for a
peer-review process as the algorithms are publicly available and commented on by other
data scientists, validating the algorithm on the dataset provided and external datasets. How-
ever, since journal peer-reviewers may not have the resources to retest provided datasets
with the algorithm code, often uploaded in GitHub repositories [21], such open peer-review
processes meet crucial research goals, including validity, objectivity, and reliability. Fur-
thermore, provided datasets and codes from the workgroups may not be available after
some time. This represents a significant flaw in the assessment and development process
of machine learning algorithms for healthcare applications. Publications are not the only
relevant output of research; research data should also be considered. This is particularly
true when considering that more accurate analysis pathways might not have developed
when the study was conducted. This paradigm led to the emergence of data journals, such
as Scientific Data from Nature [22] or GigaScience from Oxford Academic [23] in which the
data can remain available for future analysis and validity assessments.

Notably, in surgical fields, such databases are still scarce. One of the largest and most
intuitive databases in orthopedic surgery is the Osteoarthritis Initiative (OAI) database [24]
from the National Institute of Health, which includes ten-year multi-center observational
data of knee osteoarthritis cases. It includes DICOM images, clinical data, and laboratory
data, and it is one of the few and most extensive repositories in orthopedic surgery capable
of integrating multimodal data. Unfortunately, to the best of our knowledge, the only
database that seems to include multimodal data in spine surgery is the Austrian Spinal
Cord Injury Study [25]. The database contains longitudinal data on spinal cord injury cases
in Austria and includes clinical data with patient-related outcome measures and imaging
data. Other databases in spine surgery, which mainly include tabular clinical data, are the
American College of Surgeon National Surgical Quality Improvement Project (ASC-NSQIP)
database, the National Inpatient Sample (NIS) database, the Medicare and Private Insurance
Database, the American Spine Registry, and the British Spine Registry [11,26,27]. The SORG
(“Sorg Orthopaedic Research Group”) has introduced the most recognized and cited pre-
dictive machine learning models, which can be accessed for free on their website [28]. They
were already externally validated several times and include mortality prediction algorithms
in spinal oncology, PROMs, and postoperative opioid use predictions after spine surgery, as
well as discharge disposition for lumbar spinal surgery. Validation and external validation
studies are both accessible on the website.

Another emerging field aiming to address the data handling problem in machine
learning is privacy-first federated learning [29]. Federated learning [30,31] aims to train
machine learning algorithms collaboratively without the need to transfer medical datasets.
This approach would address the data governance and privacy politics, often limiting the
use of medical data depending on the country where the research is conducted. Federated
learning was extensively applied in mobile and edge device applications and is currently
increasingly applied in healthcare environments [32,33]. It enables the assessment and
development of models collaboratively using peer-review techniques without transferring
the medical data out of the institutions where the data were obtained. Instead, machine
learning training and testing take place on an institutional level, and only model archi-
tecture information and parameters are transferred between the collaborators. Recent
studies have shown that machine learning models trained by Federated Learning can
achieve similar accuracies to models that were implemented using central databases and
are even superior to those processed on a single-institution-level [34,35]. Successful im-
plementation of Federated Learning approaches could thus hold significant potential for
enabling resource-oriented precision healthcare at a large scale, with external validation
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to overcome selection bias in model parameters and to promote the optimal processing of
patients’ data by respecting the necessary governance and privacy policies of the partici-
pants [33]. Nevertheless, this approach still requires essential infrastructure and quality
management processes to ensure that the applications perform well and do not impair
healthcare processes or violate patient privacy rules.

Despite the advantages of Federated Learning, this method still has some disadvan-
tages. For example, as described above, the integration of medical datasets in public
databases could lead to more extensive research, and the investigation would not be limited
to the collaborators. Furthermore, successful model training still depends on factors such
as data labeling, data quality, bias, and standardization [36]. These issues would be better
targeted when databases are accessible by more researchers and crowdfunding workers
dealing with data annotation. This would be the case for both Federated and non-Federated
Learning techniques. Appropriate protocols would be required, focusing on well-designed
studies, standardized data extractions, standardized labeling and annotation of data, ac-
curacy assessments and quality management, and regularly updated techniques to assess
bias or failures. Considering this, Federated Learning would be a feasible approach to
overcome data transfer limitations between institutions.

3. Hybrid Machine Learning Models for Classification and Prediction Tasks
3.1. Textual Data Conversion Methods for Deep Learning Approaches

Deep learning is a subset of machine learning utilizing artificial neural networks for
information processing. Artificial neural networks were applied in various fields, includ-
ing image analysis, natural language processing, and video or speech recognition [37].
The technique is based on information processing, similar to how humans process visual
inputs. Artificial neurons are the units of the network, are organized in layers, and transmit
the information from layer to layer depending on the predefined neural network architec-
ture. Receptive fields, convolution kernels, and hierarchical feature abstraction are used in
multiple layers to analyze data between the input and output layers [38]. The technique is
used to process information with spatial or temporal dependencies, such as images where
the spatial arrangement of pixels contains information about each image’s content. Image
processing through network layers is performed whereby the flow through the layers that
are applying different mathematical functions leads to the desired pattern recognition.
The architectures can be very heterogeneous, and the model is built depending on the task
that needs to be solved. In healthcare data processing, these models are usually feedforward
architectures where the information is processed from the input to the output layer. Tasks
can, for example, be solved through classification or multi-classification models (i.e., for
predicting categorical variables such as disease and health) or regression models (i.e., for
predicting a continuous variable, such as a score) [39].

Deep neural networks have several benefits: finding hidden structures in the provided
data, data augmentation, feature extraction, dimension reduction, optimum action selection
in time-series data, and semi-supervised learning, including non-labeled data [40]. These
neural networks are supposed to process imaging data; however, a large amount of health-
care data are textual (e.g., laboratory data, clinical data, genomic data). One way of using
the strengths and advantages of convolutional neural networks to process such information
is to rearrange tabular data into a 2-D shape that considers the relationship between the
feature variables. Feature variables, in this case, are all variables that might be relevant for
the task that has to be solved (e.g., outcome score prediction). To the best of our knowledge,
four methods have been proposed for transforming non-image data into images shaped for
use in convolutional neural networks. All transform the feature vector to a feature matrix
using different transformation schemes. Ma et al. presented OmicsMapNet, a conversion
method that arranges features based on annotations [41]. Hence, OmicsMapNet could be
applied to RNA-Seq expression data of TCGA glioma samples. The functional hierarchical
structure of the genes based on treemaps was used to construct 2-D images considering
the function of genes. Consequently, gene functions could be learned for future functional
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analysis of independent RNA-seq datasets [41]. The implementation of such conversions
and inclusions of RNA-Seq data within hybrid models could allow researchers to analyze
survival parameters (such as mortality or time to recurrence) in spinal oncology and better
plan the follow-up of patients.

The second method was published by Sharma et al. in 2019 to convert genetic data and
other textual data into images [40]. Their DeepInsight method uses similarity measurement
or linear dimensionality reduction techniques, such as t-SNE or kernel principal component
analysis, for data transformation [42]. The advantage of DeepInsight is that it can construct
images where similar features are put together in neighboring elements, which is proposed
to be beneficial for data processing through the convolutional neural network [40]. Another
method was described by Baszir et al. in 2020, who introduced REFINED, which also
considers similarities between features to generate 2-D feature maps in which the distance
is reduced utilizing the Bayesian Metric Multidimensional Scaling Approach [43]. Both
methods could have particular relevance for the analyses of gene phenotypes in spine
research. For example, there is increasing evidence suggesting that there are genetic
architectures of low back pain [44]. The use of more precise algorithms could help to
classify patients according to their genetic architecture; in doing so, surgeons could plan
therapeutical management according to the principles of precision medicine.

Recently, Kanber et al. [45] published another approach that compared five different
conversion schemes for transforming sparse data into structured image sets. The trans-
formation either applied for linear filling order strategies, keeping the initial ordering of
the spatial feature intact (ASIS), random ordering with a randomized ordering of spatial
features (RAND), and linear (SDIC) or circular (SDIC_c) orderings combined with mathe-
matical calculations using the Pearson product-moment correlation coefficients to construct
the image sets. They then compared the accuracy of the CNN application on the con-
verted images to Random Forest decision tree classifier and the DeepInsight transformation
scheme introduced by Sharma et al. [40] The highest accuracy of all mentioned transfor-
mation schemes was achieved by SDIC when applied to two public databases of textual
data. The algorithm could be used to convert clinical information and surgery-specific
parameters (such as operation time) into 2D shaped images which can be applied in deep
learning models. This broadens the number of possible methods that could be applied to
the initial dataset and allows for comparison between multiple techniques to obtain more
precise prediction models in spine surgery clinics. Other published methods might not
transform the textual data into images first. Still, they process textual information with
imaging data in different ways to pass the layers of the CNN for classification or regres-
sion tasks. For example, the Dynamic Affine Feature Map Transform (DAFT), published
by Pölsterl et al. in 2021, fuses information of high-dimensionality 3D MRI images and
tabular data without first combining converted tabular features and images before feeding
them into the network [46]. Specifically, DAFT rescales and shifts the feature maps of a
convolutional layer conditional on a patients’ tabular data in the CNN. Especially when
considering the complexity and resource intensity of 3D images used in spine surgery (MRI,
CT), this approach helps to effectively process such large datasets for prediction tests. Other
published techniques were the processing of microscopic images, clinical data, and genomic
data by Hao et al. (PAGE-Net) for survival analysis [47], and the processing of histological
images and genomic biomarkers by Mobadersany et al. [48] Several other authors also
used a multilayer perceptron (MLP) prior to the concatenation of image and tabular data
before processing the information in the CNN (“early concatenation”) [49–51]. The use
of histological images and genomic biomarkers analyzed by these techniques could be
routinely implemented in spine clinics. For example, blood from patients is usually taken
for analysis before and after surgery on a routine basis. Meanwhile, the tissue taken in disc
herniation surgery, for example, is considered biological waste and discarded. When more
effective, cost-efficient, and fast diagnostic methods, such as in vivo reflectance confocal
microscopy [52], are available in the future, the prediction could be made intraoperatively,
and further management can be translated directly from the available data sets of each
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patient (“precision medicine”). Overall, the extensive amount of research that has been per-
formed within the last few years indicates the possibility of reliable textual data processing
for multimodal hybrid deep learning models.

3.2. Multi-Input Mixed Data Deep Learning Models

The first applications performed on healthcare datasets were mainly focused on image
data, such as the classification of skin cancer types, diabetic retinopathy, or pneumonitis in
chest x-rays [53,54]. Multiple features in a dataset might contribute to a specific outcome of
interest. These features are often not only relevant within a particular data type. A standard
convolutional neural network architecture can consider multiple factors for prediction
tasks while evaluating the impact of every factor on the target variable. Combining various
data types for deep learning algorithms, which can require multiple inputs, can be seen
as a multi-input mixed data deep learning approach based on a hybrid machine learning
model pre-processing multiple data types. However, different data types can often not
be processed within a single CNN. As discussed in the previous section, tabular data
can be converted into image sets utilizing various techniques. The converted dataset can
then be fed into the neural network via a separate input along with the non-converted
dataset. The information can then be concatenated for feature processing and computing
the prediction of these inputs. This approach is illustrated in Figure 2.
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The inputs used can be images, audio, text, and videos, for example. They can have
multiple dimensions and are not restricted to specific variable types (e.g., continuous or
categorical variables). This would allow surgeons to also implement text, audio, and videos
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from patients’ clinical data obtained during spine examinations in such models. Usually,
the textual variables are normalized and scaled in pre-processing steps for better handling
in the CNN. There are typically the following primary strategies for concatenating the
multiple inputs [54]: 1. early concatenating strategies where the concatenation is performed
in the input layer; 2. intermediate concatenating strategies, where the concatenation is
also performed at the input layer, but backpropagation is used to propagate loss from the
prediction model to the feature extracting networks; 3. concatenating strategies where the
concatenation is performed at the output layers of different CNN branches. However, the
pre-processing steps of converting the textual data into images for multi-input models are
highly variable. The combination of both is currently not reported in the literature to the best
of our knowledge. Textual inputs which have not been converted with techniques shown
in the previous section could then be handled through a separate input along with the
CNN input of the images. This can be, for example, done via Multilayer Perceptron, which
handles one input before concatenation [55]. The Perceptron is able to solve classification
tasks by the Stochastic Gradient Descent, which is used to minimize the distance between
misclassified points and the decision boundary, and an activation function. Multilayer
perceptron, a feedforward algorithm, can have multiple hidden layers and can also handle
non-linear data. The structure of such an approach is shown in Figure 3.
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It is also possible to construct random forests, support vector machines, and
variations of CNN models which can handle multiple inputs. For example, Li et al.
introduced a concatenation framework capable of handling various data types enabling
shortcut connections to the fully-connected layer, which is then directly fed into the
output layer for predictions [56]. They reported satisfying accuracies across multiple
datasets. This would allow researchers to integrate clinical data, radiological images,
and genetic architectures from patients obtained in diagnostic examinations. Addi-
tional efforts were made by authors combining deep learning models with the help of
ensemble methods using ultrasound images and x-ray images as data inputs [57,58].
Vasile et al., for example, used x-ray images, symptoms, and clinical and biological vari-
ables within an ensemble of deep learning models to predict the severity of COVID-19
diagnosis [57]. In combination with imaging techniques such as in vivo or ex vivo
reflectance confocal microscopy or ultrasound imaging, this multimodal approach
could solve prediction tasks in real-time, such as chairside applications [52,59]. Fur-
thermore, Yuan et al. recently introduced a general architecture for Hybrid deep neural
networks supporting mixed inputs reporting that the Hybrid model reached higher
accuracies with classical MLP and CNN models [60]. Notably, the majority of studies
published to date using multi-input models applied early concatenating strategies [54].
The techniques applied in these studies ranged from simply concatenating image and
clinical features [61–63], applying dimensionality reduction techniques before early
concatenation [64], to medical image feature extraction using automated or manual
feature extraction methods before concatenation with textual data [65–67]. Interest-
ingly, the fourth possible strategy of converting textual data into images for feeding
them into multi-input models is not published to date, to the best of our knowledge.
Our workgroup is currently constructing a hybrid multi-input mixed data model that
converts the textual data of spine surgery patients into image datasets before feeding
them into the hybrid model. It would be highly interesting to evaluate whether this
strategy would result in higher accuracy than using the tabular data or imaging data
of patients alone. This would open the door for an algorithm that could be easily
integrated into clinical software for supported decision-making.

4. Available Artificial Intelligence-Based Models and Classical Statistical Prediction
Models Utilized in Spine Surgery

References in this section were researched in Pubmed (Medline) and Web of Science
utilizing the following search terms connected by Boolean operators: (“spine surgery”)
AND (“machine learning” OR “artificial intelligence”) using both “MeSH terms” and “All
fields” searches. An additional search in Google Scholar was conducted for grey literature.
Furthermore, reference lists of the extracted works were screened.

Artificial intelligence-based approaches in spine surgery can help to improve the
accuracy currently reported using traditional statistical modeling. Our literature search,
which aimed to find predictive studies (prediction of clinically relevant outcomes, such
as PROMs, complications, and mortality) utilizing machine learning methods in spine
research, revealed that most of the work on this topic has been completed within the last
few years. A list of these spine surgery outcome prediction algorithms published to date is
shown in Table 1. Seventeen studies predicted PROMs [68–84], fifteen predicted complica-
tions [85–98], seven examined the discharge disposition after spine surgery [99–105], seven
predicted the length of hospital stay [81,87,92,102,105–107], six predicted readmission or
re-herniation after spine surgery [100,108–112], four predicted mortality rates [113–117],
three predicted prolonged opioid use after spine surgery [118–120], two predicted the need
for blood transfusions [121,122], one focused on the duration until “return to work“ [123],
one focused on 3D spinal alignment [124], and one predicted the future fracture probability
after spine surgery [125]. Twenty-six of the studies included artificial neural networks
within their prediction models, whereas thirty-seven utilized machine learning methods
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without the use of artificial neural networks. None of the studies applied multi-input mixed
data models for prediction modelling.

One of the most prominent applications of machine learning in spine surgery for
prediction modeling was performed by Ogink et al. in 2019 [103]. They used the Amer-
ican College of Surgeons National Surgical Quality Improvement Program database
to predict the non-home discharge after lumbar spinal stenosis surgery applying a
convolutional neural network. They reported an area under the curve (a measure of
accuracy in diagnostic tests, ranging from 0 (inaccurate) to 1 (perfect accuracy)) of 0.74,
which was confirmed by another study validating the model [105]. Although they only
used non-imaging data for their prediction, the results reveal the potential of machine
learning approaches in predicting spine surgery outcomes. Another study published
by Khan et al. in 2021 applied several machine-learning algorithms, including a classifi-
cation tree, support vector machine, partial least squares, generalized boosted models,
and multivariable adaptive regression splines to predict the health-related quality of
life using the SF-36 form in patients who underwent surgery for degenerative cervi-
cal myelopathy. The results achieved an area under the curve of up to 0.78 for the
multivariable adaptive regression spline, indicating a good degree of accuracy [74].
However, the sample size was small, with 130 samples for the training set. Moreover,
no multi-input model was applied to handle patient data. Nevertheless, the approach
reached considerable accuracy considering that tabular data was used solely. Varghese
et al. reported an accuracy of 99% when using a random forest regression model to
predict the pull-out strength of pedicle screws in osteoporotic and normal bone con-
sidering the density, insertion depth, and insertion angle feature variables [126]. This
highlights that simple non-neural network-based modeling of simple tabular data can
also lead to high accuracy in prediction tasks.

Hoffman et al. applied traditional statistical techniques (multivariate linear re-
gression) and machine learning techniques (support vector machines) to predict the
Oswestry disability index (ODI) and the modified Japanese Orthopaedic Association
questionnaire [71]. They reported that both outcome measures could be more accurately
predicted using a support vector machine compared to the t-test statistical method.
Support vector machines seem to be a well-performing approach in spine surgery when
no imaging data are processed because it performs well in cases where the sample sizes
are limited and the number of features is large [127]. However, the predictability may be
a severe limitation in cases where the sample size is small. In these cases, the classical
statistical approach might be better suited [128].

One advantage of deep learning techniques over simple machine learning tech-
niques is that they allow for in-depth processing of imaging data, which can lead to
more accurate predictions. Kim et al., for example, applied artificial neural networks
to predict complications following posterior lumbar spine fusion [91]. They reported
that artificial neural networks outperformed the American Society of Anesthesiology
classification and logistic regression as a classical statistical technique in predictive ac-
curacy for several complication types. Several open-access web applications have been
introduced and allow surgeons to predict the prolonged opioid prescription [119,129],
postoperative failure [98], in-hospital and postoperative mortality [113,114,116], and
discharge disposition [101,103,104] using a simple online application platform, where
predefined variables can be filled in. They allow for external validation and might be
improved in the future to be more precise based on increasing data collection, which is
currently being seen in spine surgery.
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Table 1. List of spine surgery outcome prediction studies. ANN: artificial neural networks; DTL: de-
cision tree learning; LOR: logistic regression; elastic-net-LOR: elastic-net penalized logistic regression;
MLOR: multivariate logistic regression; MLIR: multivariate linear regression; MARS: multivari-
able adaptive regression splines; MLP: multilayer perceptron; LASSO: least absolute shrinkage and
selection operator; k-NN: k-nearest neighbor; BN: Bayesian network; EL: ensemble learning; NB:
Naïve Bayes; RF: random forest; GLM: generalized linear model; GLMnet: elastic-net generalized
linear model; GBM: gradient boosting machine; GAM: generalized additive model; PLS: partial least
squares; XGBoost: extreme gradient boosting; NLP: natural language processing; pLDA: penalized
linear discriminant analysis; RBF: radial basis function network; SVM: support vector machine;
SVR: support vector regression; SGB: stochastic gradient boost; PROMs: patient-reported outcome
measures; LOS: length of hospital stayS.

Author (Year) Number of Datapoints Algorithm Intervention/Diagnosis Outcome

Aldebeyan et al. (2016) [99] 15.092 MLOR lumbar spine fusion surgery discharge disposition

Andre et al. (2020) [85] 60 ANN lumbar decompression complications

Arvind et al. (2018) [86] 20.879 ANN, LOR, RF, SVM cervical discectomy
and fusion complications

Babaee et al. (2018) [69] 480 MLP, RBF, LOR posterior spinal
fusion surgery PROMs

Bekelis et al. (2014) [87] 2732 MLOR corpectomy; spinal fusion complications; LOS

Berjano et al. (2021) [68] 1243 RF spinal lumbar arthrodesis PROMs

Dong et al. (2021) [121] 152 SVM, DTL, MLP, NB,
k-NN, RF spinal fusion blood transfusion

Durand et al. (2018) [122] 1029 RF, DTL spinal deformity blood transfusion

Finkelstein et al. (2021) [70] 122 LASSO, bootstrapping
spinal

decompression/fusion
surgery

PROMs

Goyal et al. (2019) [100] 59.145 ANN, GLM, GLMnet,
GBM, NB, pLDA spinal fusion discharge disposition;

readmission

Han et al. (2019) [88] 1.106.234 LASSO-R; LOR spine surgery (various
diagnoses and procedures) complications

Harada et al. (2021) [130] 2630 XGBoost lumbar microdiscectomy disc re-herniation

Hoffmann et al. (2015) [71] 27 MLIR; SVR cervical
spondylotic myelopathy PROMs

Hopkins et al. (2019) [108] 23.263 ANN spinal fusion surgery 30-day
hospital readmission

Hu et al. (2022) [118] 1316 SORG-algorithm (SGB) lumbar disc herniation prolonged postoperative
opioid prescription

Janssen et al. (2021) [72] 77 RF lumbar spinal fusion PROMs

Kalagara et al. (2018) [109] 26.869 GBM lumbar laminectomy readmission

Karhade et al. (2019) [131] 2737 ANN, elastic-net-LOR,
SGB, SVM, RF

cervical discectomy
and fusion

sustained
opioid prescription

Karhade et al. (2018) [101] 26.364 ANN, BN, DTL, SVM lumbar disc surgery discharge disposition

Karhade et al. (2019) [115] 1053 ANN, elastic-net-LOR,
SGB, SVM, RF spinal epidural abscess in-hospital and 90-day

post-charge mortality

Karhade et al. (2019) [114] 1790 ANN, DTL, BN, SVM spinal metastasis surgery 30-day-mortality
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Table 1. Cont.

Author (Year) Number of Datapoints Algorithm Intervention/Diagnosis Outcome

Karhade et al. (2019) [113] 732 ANN, elastic-net-LOR,
SGB, SVM, RF

spinal metastatic
disease management

90-day-mortality and
1-year-mortality

Karnuta et al. (2019) [102] 3807 NB lumbar spinal fusion discharge disposition
and LOS

Karhade et al. (2021) [89] 1035 XGBoost
(NLP algorithm)

anterior lumbar
spine surgery complications

Karhade et al. (2022) [110] 708 XGBoost
(NLP algorithm) posterior lumbar fusion readmission

Khan et al. (2021) [74] 193

SVM, GAM
(LogitBoost), MARS

(earth), GBM, DTL, RF,
LOR, PLS

degenerative
cervical myelopathy PROMs

Khan et al. (2021) [73] 757

SVM, GAM
(LogitBoost), MARS

(earth), GBM, DTL, RF,
LOR, PLS

degenerative
cervical myelopathy PROMs

Khor et al. (2018) [75] 1583 MLOR lumbar spine surgery PROMs

Kim et al. (2018) [90] 4073 ANN, LOR adult spinal deformity complications

Kim et al. (2018) [91] 22.629 ANN, LOR lumbar spine fusion complications

Kuo et al. (2018) [127] 532 ANN, SVM, DTL, BN spinal fusion cost prediction

Kuris et al. (2021) [111] 63.533 ANN posterior lumbar
interbody fusion readmission

Lewandrowski et al.
(2020) [76] 383 ANN, LOR lumbar spinal

decompression PROMs

Li et al. (2021) [132] 385 LOR, GBM, XGBoost,
RF, DTL, MLP

osteoporotic vertebral
compression fracture bone cement leakage

Maki et al. (2021) [133] 478 GBM, XGBoost, RF, LOR
cervical ossification of the

posterior
longitudinal ligament

PROMs

Massaad et al. (2022) [92] 484 k-means clustering
analysis, LOR spinal metastases surgery complications,

LOS, mortality

McGirt et al. (2015) [77] 1803 BN, LOR lumbar spine surgery PROMs

Merali et al. (2019) [78] 757 ANN, LOR, DTL,
RF, SVM

degenerative
cervical myelopathy PROMs

Nunes et al. (2022) [112] 215.999 ANN, Cox-Regression,
XGBoost, DTL, NB, RF thoracolumbar fractures 30-day readmission

Ogink et al. (2019) [104] 9338 ANN, DTL, BN, SVM Spondylolisthesis discharge disposition

Ogink et al. (2019) [103] 28.600 ANN, DTL, BN, SVM lumbar spinal stenosis discharge disposition

Oh et al. (2017) [79] 234 DTL adult spinal deformity PROMs

Papić et al. (2016) [123] 153 DTL, SVM, MLP lumbar microdiscectomy return to work

Pasha et al. (2021) [124] 371 EL adult idiopathic scoliosis 3D spinal alignment

Passias et al. (2018) [134] 101 DTL cervical deformity surgery distal junctional kyphosis

Pedersen et al. (2020) [80] 1968 ANN, DTL, RF, SVM lumbar disc herniation PROMs

Ratliff et al. (2016) [93] 279.135 LASSO, LOR spine surgery (various
diagnoses and procedures) complications

Russo et al. (2021) [106] 1516 MLOR, LASSO cervical discectomy LOS
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Table 1. Cont.

Author (Year) Number of Datapoints Algorithm Intervention/Diagnosis Outcome

Shah et al. (2019) [98] 367 ANN, RF, SVM, SGB,
elastic-net-LOR spinal epidural abscess complications

Shah et al. (2021) [116] 298 SORG-algorithm (SGB) spinal metastasis surgery 90-day and
1-year mortality

Shah et al. (2021) [94] 6822 LOR, RF, GBM, XGBoost posterior cervical
spinal fusion complications

Siccoli et al. (2019) [81] 635 ANN, RF, XGBoost,
DTL, GLM, k-NN lumbar spinal stenosis PROMs,

reoperations, LOS

Staartjes et al. (2019) [82] 422 ANN, LOR lumbar discectomy PROMs

Staartjes et al. (2022) [83] 817 GLM,
elastic-net-LOR, k-NN lumbar spinal fusion PROMs

Stopa et al. (2019) [105] 144 ANN lumbar disc surgery discharge disposition, LOS

Veeramani et al. (2022) [95] 54.502 ANN, LOR, MVR, DTL,
RF, GBM, XGBoost

anterior cervical discectomy
and fusion complications

de Vries et al. (2021) [125] 7578 ANN, RF,
Cox-regression

fracture patients with
osteopenia and osteoporosis future fracture

Wang et al. (2021) [96] 13.500 XGBoost posterior lumbar fusion complications

Wang et al. (2021) [135] 184 SVM
posterior laminectomy and

fusion with
cervical myelopathy

complications

Wong et al. (2020) [136] 1164 SVM anterior cervical discectomy
and fusion complications

Wirries et al. (2021) [84] 60 ANN lumbar disc herniation PROMs

Yang et al. (2021) [117] 427 SORG-algorithm (SGB) spinal metastasis surgery 90-day and
1-year mortality

Zhang et al. (2021) [107] 1281 LOR, DTL, RF,
XGBoost, GM spinal fusion surgery LOS

Zhang et al. (2020) [120] 19.317 ANN, LASSO, LOR,
RF, SGB

thoracic or lumbar spine
surgery (low back pain) prolonged opioid use

One of the main advantages of using deep learning algorithms is that training can be
performed without predefining the variables and features that need to be included. This
is especially advantageous for high-volume, multidimensional, and complex data types,
including genomic or sequencing data, which require high computational resources and
time-consuming annotations. These also require experts for feature selection or feature
engineering [137]. However, images can also be taken in 3D, such as computed tomography
scans or magnetic resonance images, and would need extensive pre-processing or complex
strategies for multi-input processing [19]. One way to deal with such multi-slice data is
to split them into multiple 2D images per patient or apply 3D neural networks for multi-
input mixed-data hybrid data processing to overcome the applicable selection bias [138].
Notably, the generalizability of images is limited because the data are obtained through
different methods (e.g., different MRI models), which might be particularly problematic
when obtaining genomic data that are also dependent on the platform [139]. Especially for
genomic data, for example, to classify cell types of intervertebral discs based on sequencing
data, the large number of data points are better processed through more time-efficient
methods. Combining the findings from such datasets with histopathological data can also
be used for survival predictions during cancer research, which may also extend to many
spinal diseases [140]. Furthermore, artificial intelligence can be applied to assess molecular
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markers of spine tumors, predicting the survival of primary spine tumors or metastatic
recurrence rates [140]. In summary, the impressive amount of research performed on the
applicability of artificial intelligence in clinically highly relevant prediction tasks is opening
the door for a new kind of decision-making, which is currently on the rise in spine surgery.

5. Future Perspectives and Limitations

The combination of different datatypes allows for a multi-perspective view of patients’
data. This approach can reveal more information than the inclusion of one datatype alone.
The clinical information is especially relevant for the interpretation of radiological images.
Not having access to the laboratory or clinical data has been shown to significantly impact
the interpretability of radiological images [141,142]. This was demonstrated in a survey
where most radiologists reported that the availability of clinical information highly affected
their reports [143]. Thus, this can also be assumed to be relevant for artificial intelligence
models simulating human behavior. Notably, the volume of workload in surgery is very
high. As such, when considering that spine surgeons often have to perform interpretation
tasks during night shifts or at times of high workloads, the interpretation of multiple data
types can be prone to errors. An automated assessment could help integrate an alert system
for spine surgeons who can then take further care of their patients in cases whereby artificial
intelligence indicates some sort of attention regarding the prediction of outcomes.

The growth in the number of publications focusing on deep learning for images is
enormous, whereas hybrid models are only just beginning to grow [54]. Several factors
have impacted their development and implementation. These factors range from data-
sharing limitations in healthcare institutions currently to the integration of machine learning
algorithms in clinical settings considering the “good machine learning principles” [8].
It would be advantageous to consider these limitations before the implementation is
planned. Following this strategy may allow healthcare specialists to learn from previously
reported difficulties in the implementation phase. Consequently, the implementation will
be more time-efficient and resource-oriented. Hence, the full potential of machine learning
applications in healthcare settings can be maximized while avoiding problems that may
arise due to the inherent privacy governance in healthcare [8].

Reliable data and algorithms are necessary but insufficient for implementing machine
learning techniques in clinical settings. The application of machine learning requires
comprehension and assessment of its implications to clinicians, patients, and other nodes
in the healthcare system while developing the algorithms in real-time based on patient data
in rapidly changing clinical environments. Increased collaboration among researchers and
healthcare providers is needed regarding the development of machine learning workflow
and data training, with outputs reflecting the needs of patients, to ensure that these systems
are feasible, trustworthy, and usable in clinical settings. Providing datasets in repositories
is highly encouraged. However, even if data deposition is made mandatory for research
performed in spine surgery, there are several challenges to making the data in these
repositories useful for machine learning and deep learning tasks. One must obtain ethics
approval which, depending on the relevant government policies, may be a somewhat
complicated process. Then, proper and careful labeling of the data is a critical task that can
limit usability when not performed in a standardized way by experts [144]. As such, in
cases whereby the researcher could not validate the labeling, the “failure” in data labeling
and annotations would still exist in the database.

Furthermore, imaging plays a crucial role in spine surgery; however, processing 3D
images such as MRI and CT can be very time-consuming. In addition, different machines
used to obtain the images might introduce selection bias [145]. Consequently, this can
affect the translation of data to other institutes. In this case, it is particularly warranted to
provide multi-center data in such repositories or combine similar datasets from different
institutes utilizing standardized techniques. The more data the algorithm processes, the
more applicable it can be regarding unseen data. Notably, unsupervised machine learning
techniques do not need any labeling of data [146]. Instead, these techniques identify
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patterns in the dataset through dimension reduction techniques and are mainly exploratory.
However, they still do not perform well on non-qualitative small datasets and require
more computational power than large datasets. Overall, they can be more complex than
supervised learning methods and are mainly intended for clustering tasks, such as disease
taxonomy, based on their pathophysiology [147]. In this case, the validation is limited as
there are no labels and, therefore, no “ground truths” to confirm the obtained results of
the task performed by the unsupervised learning algorithm [148]. Thus, experts need to
validate the performance afterward, which can also be time-consuming.

Finally, data in spine surgery is collected at an institutional level. The anonymization
and transfer of large datasets might require specialist infrastructure, along with a dedicated
team of data scientists to handle such large data volumes [149] Implementation of reposito-
ries that lower the barriers for large volume data transfer, such as 3D images from clinics
to the database without compromising data privacy, might increase the efficiency of data
transfer and thus could help increase the amount of data provided by surgeons [26].

Furthermore, researchers developing machine learning algorithms must also consider
model updates when larger or novel datasets are made publicly available or if algorithms
need to be improved based on more recent research. As a result, continuous monitoring of
machine learning applications becomes a necessity. This can result in high maintenance
costs and can also be time-consuming. Failures to comply can have far-reaching conse-
quences for the patients. After implementing such algorithms, continuous monitoring can
ensure that the algorithms are working as expected, disregarding the data type that is used.
However, as in other automated applications, such as self-driving cars, the applications
should not be the only pillar decisions are based on [150,151]. Clinicians should consider
these applications as decision-supporting tools, which should be questioned every time
they are applied. Finally, the workflow should be explainable to maintain safety, which is
particularly complicated in complex machine learning models involving artificial neural
networks. While these uprising decision-supporting techniques can add significant value
to healthcare systems, they still have substantial challenges that need to be considered
by all clinicians aiming to implement these in their daily practices. Poorly implemented
tools that generate unnecessary alerts can not only be a threat to patients and lead to worse
outcomes, but they could also significantly increase healthcare costs.

Furthermore, accurate models require large data sets to sufficiently perform in various
clinical environments and enable them to generalize well to new and unseen data [36].
As such, conclusions drawn from machine learning in healthcare applications are depen-
dent on the quality of the training dataset with which the algorithm was initially trained.
Hence, the deposition of research data can be considered an essential step in research as
this ensures that models can be tested against new unseen datasets for external validation
before evaluating whether the applications prove themself in clinical settings. As computer
technologies develop, machine learning processes can be tested against a vast amount
of high-quality medical data to evaluate outcome predictions. While the application of
machine learning in healthcare is still in an early phase, the lack of data preventing its inte-
gration and implementation into the health care system might slow down the development
process. Encouraging data deposition by researchers helps to take advantage of such algo-
rithms towards patient care in the near future. Hence, we encourage researchers to make
their data available publicly, particularly when the data set is multimodal, considering that
such datasets are currently scarce regarding spine surgery specifically. This severely limits
the progress of machine learning implementation in spine surgery.

6. Conclusions

As artificial-intelligence-based decision-making tools develop, the availability of
databases and modern hybrid algorithms can accomplish intricate and highly complex
tasks to help clinicians with their daily practice. The various models published to date can
assist spine surgeons in predicting the outcomes of treatments, estimating the probability
of failure, and detecting disease patterns in multimodal data. Implementing “good ma-
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chine learning principles” and strengthening cooperation between healthcare providers
and industries will be beneficial for the use of modern machine learning algorithms in
clinics. The integration of multimodal data in novel machine learning hybrid models might
better reflect patient information, and more research in this field is highly warranted. Data
repositories containing data from different institutes can help researchers develop such
algorithms better. Various techniques, including Federated Learning and crowdsourcing,
can be beneficial for an unbiased implementation. However, although these algorithms
might be developed using large-scale data, they need to be still questioned and only con-
sidered as decision-supporting tools in clinics. Continuous updates are necessary that
integrate new data and research into existing algorithms. Following these recommenda-
tions could hasten the development process and lead to a safer integration of artificial
intelligence in healthcare environments. This narrative literature review highlighted the
benefits of machine learning implementations in spine surgery, focusing on multimodal
data. The findings reveal promising prior research to develop multi-input mixed-data
hybrid decision-supporting models. As such, their implementation into clinics seems to be
only a matter of time.
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A.I.; Gruionu, L.G.; et al. Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods.
Medicina 2021, 57, 395. [CrossRef] [PubMed]

58. Udris, toiu, A.L.; Ghenea, A.E.; Udris, toiu, S, .; Neaga, M.; Zlatian, O.M.; Vasile, C.M.; Popescu, M.; T, ieranu, E.N.; Salan, A.-I.;
Turcu, A.A.; et al. COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis. Life 2021, 11, 1281.
[CrossRef]

59. Shavlokhova, V.; Sandhu, S.; Flechtenmacher, C.; Koveshazi, I.; Neumeier, F.; Padrón-Laso, V.; Jonke, Ž.; Saravi, B.; Vollmer, M.;
Vollmer, A.; et al. Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility
Study. J. Clin. Med. 2021, 10, 5326. [CrossRef]

60. Yuan, Z.; Jiang, Y.; Li, J.; Huang, H. Hybrid-DNNs: Hybrid Deep Neural Networks for Mixed Inputs. arXiv 2020, arXiv:2005.08419.
61. Kharazmi, P.; Kalia, S.; Lui, H.; Wang, Z.J.; Lee, T.K. A Feature Fusion System for Basal Cell Carcinoma Detection through

Data-Driven Feature Learning and Patient Profile. Ski. Res. Technol. 2018, 24, 256–264. [CrossRef]
62. Yap, J.; Yolland, W.; Tschandl, P. Multimodal Skin Lesion Classification Using Deep Learning. Exp. Dermatol. 2018, 27, 1261–1267.

[CrossRef]
63. Purwar, S.; Tripathi, R.K.; Ranjan, R.; Saxena, R. Detection of Microcytic Hypochromia Using Cbc and Blood Film Features

Extracted from Convolution Neural Network by Different Classifiers. Multimed. Tools Appl. 2020, 79, 4573–4595. [CrossRef]
64. Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning

for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [CrossRef]
65. Hyun, S.H.; Ahn, M.S.; Koh, Y.W.; Lee, S.J. A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological

Subtypes of Lung Cancer. Clin. Nucl. Med. 2019, 44, 956–960. [CrossRef] [PubMed]
66. Bhagwat, N.; Viviano, J.D.; Voineskos, A.N.; Chakravarty, M.M. Alzheimer’s Disease Neuroimaging Initiative Modeling

and Prediction of Clinical Symptom Trajectories in Alzheimer’s Disease Using Longitudinal Data. PLoS Comput. Biol. 2018,
14, e1006376. [CrossRef] [PubMed]

http://doi.org/10.1038/s41467-020-18197-y
http://doi.org/10.1097/j.pain.0000000000001514
http://www.ncbi.nlm.nih.gov/pubmed/30747904
http://doi.org/10.1007/978-3-030-87240-3_66
http://www.ncbi.nlm.nih.gov/pubmed/31797610
http://doi.org/10.1073/pnas.1717139115
http://doi.org/10.1016/j.neucom.2020.05.087
http://doi.org/10.1109/EMBC44109.2020.9176360
http://doi.org/10.1016/j.neuroimage.2019.01.031
http://doi.org/10.21037/atm-21-3462
http://doi.org/10.1001/jama.2018.11029
http://doi.org/10.1038/s41746-020-00341-z
http://doi.org/10.4161/bioe.26997
http://www.ncbi.nlm.nih.gov/pubmed/24335433
http://doi.org/10.3390/medicina57040395
http://www.ncbi.nlm.nih.gov/pubmed/33921597
http://doi.org/10.3390/life11111281
http://doi.org/10.3390/jcm10225326
http://doi.org/10.1111/srt.12422
http://doi.org/10.1111/exd.13777
http://doi.org/10.1007/s11042-019-07927-0
http://doi.org/10.1038/s41598-018-37387-9
http://doi.org/10.1097/RLU.0000000000002810
http://www.ncbi.nlm.nih.gov/pubmed/31689276
http://doi.org/10.1371/journal.pcbi.1006376
http://www.ncbi.nlm.nih.gov/pubmed/30216352


J. Pers. Med. 2022, 12, 509 21 of 24

67. Liu, J.; Chen, Y.; Lan, L.; Lin, B.; Chen, W.; Wang, M.; Li, R.; Yang, Y.; Zhao, B.; Hu, Z.; et al. Prediction of Rupture Risk in Anterior
Communicating Artery Aneurysms with a Feed-Forward Artificial Neural Network. Eur. Radiol. 2018, 28, 3268–3275. [CrossRef]
[PubMed]

68. Berjano, P.; Langella, F.; Ventriglia, L.; Compagnone, D.; Barletta, P.; Huber, D.; Mangili, F.; Licandro, G.; Galbusera, F.;
Cina, A.; et al. The Influence of Baseline Clinical Status and Surgical Strategy on Early Good to Excellent Result in Spinal Lumbar
Arthrodesis: A Machine Learning Approach. JPM 2021, 11, 1377. [CrossRef]

69. Babaee, M.; Soleimani, P.; Zali, A. A Predictive Model for Assessment of Successful Outcome in Posterior Spinal Fusion Surgery.
Int. Clin. Neurosci. J. 2018, 4, 143–151. [CrossRef]

70. Finkelstein, J.A.; Stark, R.B.; Lee, J.; Schwartz, C.E. Patient Factors That Matter in Predicting Spine Surgery Outcomes: A Machine
Learning Approach. J. Neurosurg. Spine 2021, 35, 127–136. [CrossRef]

71. Hoffman, H.; Lee, S.I.; Garst, J.H.; Lu, D.S.; Li, C.H.; Nagasawa, D.T.; Ghalehsari, N.; Jahanforouz, N.; Razaghy, M.;
Espinal, M.; et al. Use of Multivariate Linear Regression and Support Vector Regression to Predict Functional Outcome after
Surgery for Cervical Spondylotic Myelopathy. J. Clin. Neurosci. 2015, 22, 1444–1449. [CrossRef]

72. Janssen, E.R.; Osong, B.; van Soest, J.; Dekker, A.; van Meeteren, N.L.; Willems, P.C.; Punt, I.M. Exploring Associations of
Preoperative Physical Performance With Postoperative Outcomes After Lumbar Spinal Fusion: A Machine Learning Approach.
Arch. Phys. Med. Rehabil. 2021, 102, 1324–1330.e3. [CrossRef]

73. Khan, O.; Badhiwala, J.H.; Akbar, M.A.; Fehlings, M.G. Prediction of Worse Functional Status After Surgery for Degenerative
Cervical Myelopathy: A Machine Learning Approach. Neurosurgery 2021, 88, 584–591. [CrossRef]

74. Khan, O.; Badhiwala, J.H.; Witiw, C.D.; Wilson, J.R.; Fehlings, M.G. Machine Learning Algorithms for Prediction of Health-Related
Quality-of-Life after Surgery for Mild Degenerative Cervical Myelopathy. Spine J. 2021, 21, 1659–1669. [CrossRef]

75. Khor, S.; Lavallee, D.; Cizik, A.M.; Bellabarba, C.; Chapman, J.R.; Howe, C.R.; Lu, D.; Mohit, A.A.; Oskouian, R.J.; Roh, J.R.; et al.
Development and Validation of a Prediction Model for Pain and Functional Outcomes After Lumbar Spine Surgery. JAMA Surg.
2018, 153, 634–642. [CrossRef] [PubMed]

76. Lewandrowski, K.-U.; Muraleedharan, N.; Eddy, S.A.; Sobti, V.; Reece, B.D.; Ramírez León, J.F.; Shah, S. Artificial Intelligence
Comparison of the Radiologist Report With Endoscopic Predictors of Successful Transforaminal Decompression for Painful
Conditions of the Lumber Spine: Application of Deep Learning Algorithm Interpretation of Routine Lumbar Magnetic Resonance
Imaging Scan. Int. J. Spine Surg. 2020, 14, S75–S85. [CrossRef] [PubMed]

77. McGirt, M.J.; Sivaganesan, A.; Asher, A.L. Prediction Model for Outcome after Low-Back Surgery: Individualized Likelihood of
Complication, Hospital Readmission, Return to Work, and 12-Month Improvement in Functional Disability. Neurosurg. Focus.
2015, 39, E13. [CrossRef]

78. Merali, Z.G.; Witiw, C.D.; Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Using a Machine Learning Approach to Predict Outcome
after Surgery for Degenerative Cervical Myelopathy. PLoS ONE 2019, 14, e0215133. [CrossRef] [PubMed]

79. Oh, T.; Scheer, J.K.; Smith, J.S. Potential of Predictive Computer Models for Preoperative Patient Selection to Enhance Overall Qual-
ityadjusted Life Years Gained at 2-Year Follow-up: A Simulation in 234 Patients with Adult Spinal Deformity. Neurosurg. Focus.
2017, 43, E2. [CrossRef]

80. Pedersen, C.F.; Andersen, M.Ø.; Carreon, L.Y.; Eiskjær, S. Applied Machine Learning for Spine Surgeons: Predicting Outcome for
Patients Undergoing Treatment for Lumbar Disc Herniation Using PRO Data. Glob. Spine J. 2020, 11, 219256822096764. [CrossRef]

81. Siccoli, A.; de Wispelaere, M.P.; Schröder, M.L. Machine Learning– Based Preoperative Predictive Analytics for Lumbar Spinal
Stenosis. Neurosurg. Focus 2019, 46, 5. [CrossRef]

82. Staartjes, V.E.; de Wispelaere, M.P.; Vandertop, W.P. Deep Learning-Based Preoperative Predictive Analytics for Patient-Reported
Outcomes Following Lumbar Discectomy: Feas9ibility of Center-Specific Modeling. Spine J. 2019, 19, 853–861. [CrossRef]

83. Staartjes, V.E.; Stumpo, V.; Ricciardi, L.; Maldaner, N.; Eversdijk, H.A.J.; Vieli, M.; Ciobanu-Caraus, O.; Raco, A.; Miscusi, M.;
Perna, A.; et al. FUSE-ML: Development and External Validation of a Clinical Prediction Model for Mid-Term Outcomes after
Lumbar Spinal Fusion for Degenerative Disease. Eur. Spine J. 2022. [CrossRef]

84. Wirries, A.; Geiger, F.; Hammad, A.; Oberkircher, L.; Blümcke, I.; Jabari, S. Artificial Intelligence Facilitates Decision-Making in
the Treatment of Lumbar Disc Herniations. Eur. Spine J. 2021, 30, 2176–2184. [CrossRef]

85. André, A.; Peyrou, B.; Carpentier, A.; Vignaux, J.-J. Feasibility and Assessment of a Machine Learning-Based Predictive Model of
Outcome After Lumbar Decompression Surgery. Glob. Spine J. 2020, 11, 219256822096937. [CrossRef] [PubMed]

86. Arvind, V.; Kim, J.S.; Oermann, E.K. Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discec-
tomy and Fusion Using Machine Learning. Neurospine 2018, 15, 329–337. [CrossRef] [PubMed]

87. Bekelis, K.; Desai, A.; Bakhoum, S.F.; Missios, S. A Predictive Model of Complications after Spine Surgery: The National Surgical
Quality Improvement Program (NSQIP) 2005–2010. Spine J. 2014, 14, 1247–1255. [CrossRef]

88. Han, S.S.; Azad, T.D.; Suarez, P.A.; Ratliff, J.K. A Machine Learning Approach for Predictive Models of Adverse Events Following
Spine Surgery. Spine J. 2019, 19, 1772–1781. [CrossRef] [PubMed]

89. Karhade, A.V.; Bongers, M.E.R.; Groot, O.Q.; Cha, T.D.; Doorly, T.P.; Fogel, H.A.; Hershman, S.H.; Tobert, D.G.; Srivastava, S.D.;
Bono, C.M.; et al. Development of Machine Learning and Natural Language Processing Algorithms for Preoperative Prediction
and Automated Identification of Intraoperative Vascular Injury in Anterior Lumbar Spine Surgery. Spine J. 2021, 21, 1635–1642.
[CrossRef] [PubMed]

http://doi.org/10.1007/s00330-017-5300-3
http://www.ncbi.nlm.nih.gov/pubmed/29476219
http://doi.org/10.3390/jpm11121377
http://doi.org/10.15171/icnj.2017.05
http://doi.org/10.3171/2020.10.SPINE201354
http://doi.org/10.1016/j.jocn.2015.04.002
http://doi.org/10.1016/j.apmr.2021.02.013
http://doi.org/10.1093/neuros/nyaa477
http://doi.org/10.1016/j.spinee.2020.02.003
http://doi.org/10.1001/jamasurg.2018.0072
http://www.ncbi.nlm.nih.gov/pubmed/29516096
http://doi.org/10.14444/7130
http://www.ncbi.nlm.nih.gov/pubmed/33208388
http://doi.org/10.3171/2015.8.FOCUS15338
http://doi.org/10.1371/journal.pone.0215133
http://www.ncbi.nlm.nih.gov/pubmed/30947300
http://doi.org/10.3171/2017.9.FOCUS17494
http://doi.org/10.1177/2192568220967643
http://doi.org/10.3171/2019.2.FOCUS18723
http://doi.org/10.1016/j.spinee.2018.11.009
http://doi.org/10.1007/s00586-022-07135-9
http://doi.org/10.1007/s00586-020-06613-2
http://doi.org/10.1177/2192568220969373
http://www.ncbi.nlm.nih.gov/pubmed/33207969
http://doi.org/10.14245/ns.1836248.124
http://www.ncbi.nlm.nih.gov/pubmed/30554505
http://doi.org/10.1016/j.spinee.2013.08.009
http://doi.org/10.1016/j.spinee.2019.06.018
http://www.ncbi.nlm.nih.gov/pubmed/31229662
http://doi.org/10.1016/j.spinee.2020.04.001
http://www.ncbi.nlm.nih.gov/pubmed/32294557


J. Pers. Med. 2022, 12, 509 22 of 24

90. Kim, J.S.; Arvind, V.; Oermann, E.K. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity
Procedures Using Machine Learning. Spine Deform. 2018, 6, 762–770. [CrossRef] [PubMed]

91. Kim, J.S.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Vargas, L.; Osman, N.S.; Oermann, E.K.;
Caridi, J.M.; et al. Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict
Complications Following Posterior Lumbar Spine Fusion. Spine 2018, 43, 853–860. [CrossRef]

92. Massaad, E.; Williams, N.; Hadzipasic, M.; Patel, S.S.; Fourman, M.S.; Kiapour, A.; Schoenfeld, A.J.; Shankar, G.M.; Shin, J.H.
Performance Assessment of the Metastatic Spinal Tumor Frailty Index Using Machine Learning Algorithms: Limitations and
Future Directions. Neurosurg. Focus 2021, 50, E5. [CrossRef]

93. Ratliff, J.K.; Balise, R.; Veeravagu, A. Predicting Occurrence of Spine Surgery Complications Using “Big Data” Modeling of an
Administrative Claims Database. J. Bone Jt. Surg. 2016, 98, 824–834. [CrossRef]

94. Shah, A.A.; Devana, S.K.; Lee, C.; Bugarin, A.; Lord, E.L.; Shamie, A.N.; Park, D.Y.; van der Schaar, M.; SooHoo, N.F. Machine
Learning-Driven Identification of Novel Patient Factors for Prediction of Major Complications after Posterior Cervical Spinal
Fusion. Eur. Spine J. 2021, 11, 1–8. [CrossRef]

95. Veeramani, A.; Zhang, A.S.; Blackburn, A.Z.; Etzel, C.M.; DiSilvestro, K.J.; McDonald, C.L.; Daniels, A.H. An Artificial Intelli-
gence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion. Glob. Spine J. 2022,
11, 21925682211053590. [CrossRef]

96. Wang, K.Y.; Ikwuezunma, I.; Puvanesarajah, V.; Babu, J.; Margalit, A.; Raad, M.; Jain, A. Using Predictive Modeling and
Supervised Machine Learning to Identify Patients at Risk for Venous Thromboembolism Following Posterior Lumbar Fusion.
Glob. Spine J. 2021, 11, 21925682211019360. [CrossRef]

97. Wong, D.J.N.; Oliver, C.M.; Moonesinghe, S.R. Predicting Postoperative Morbidity in Adult Elective Surgical Patients Using the
Surgical Outcome Risk Tool (SORT). Br. J. Anaesth. 2017, 119, 95–105. [CrossRef] [PubMed]

98. Shah, A.A.; Karhade, A.V.; Bono, C.M. Development of a Machine Learning Algorithm for Prediction of Failure of Nonoperative
Management in Spinal Epidural Abscess. Spine J. 2019, 19, 1657–1665. [CrossRef]

99. Aldebeyan, S.; Aoude, A.; Fortin, M. Predictors of Discharge Destination after Lumbar Spine Fusion Surgery. Spine 2016, 41,
1535–1541. [CrossRef] [PubMed]

100. Goyal, A.; Ngufor, C.; Kerezoudis, P. Can Machine Learning Algorithms Accurately Predict Discharge to Nonhome Facility and
Early Unplanned Readmissions Following Spinal Fusion? Analysis of a National Surgical Registry. J. Neurosurg. Spine 2019, 31,
568–578. [CrossRef] [PubMed]

101. Karhade, A.V.; Ogink, P.; Thio, Q. Development of Machine Learning Algorithms for Prediction of Discharge Disposition after
Elective Inpatient Surgery for Lumbar Degenerative Disc Disorders. Neurosurg. Focus. 2018, 45, E6. [CrossRef]

102. Karnuta, J.M.; Golubovsky, J.L.; Haeberle, H.S. Can a Machine Learning Model Accurately Predict Patient Resource Utilization
Following Lumbar Spinal Fusion? Spine J. 2019, 20, 329–336. [CrossRef]

103. Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S.; Gormley, W.B.; Oner, F.C.; Verlaan, J.J.; Schwab, J.H. Predicting Discharge Placement
after Elective Surgery for Lumbar Spinal Stenosis Using Machine Learning Methods. Eur. Spine J. 2019, 28, 1433–1440. [CrossRef]
[PubMed]

104. Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S. Development of a Machine Learning Algorithm Predicting Discharge Placement after
Surgery for Spondylolisthesis. Eur. Spine J. 2019, 28, 1775–1782. [CrossRef]

105. Stopa, B.M.; Robertson, F.C.; Karhade, A.V.; Chua, M.; Broekman, M.L.D.; Schwab, J.H.; Smith, T.R.; Gormley, W.B. Predicting
Nonroutine Discharge after Elective Spine Surgery: External Validation of Machine Learning Algorithms. J. Neurosurg. Spine 2019,
31, 742–747. [CrossRef] [PubMed]

106. Russo, G.S.; Canseco, J.A.; Chang, M.; Levy, H.A.; Nicholson, K.; Karamian, B.A.; Mangan, J.; Fang, T.; Vaccaro, A.R.; Kepler, C.K.
A Novel Scoring System to Predict Length of Stay After Anterior Cervical Discectomy and Fusion. J. Am. Acad. Orthop. Surg.
2021, 29, 758–766. [CrossRef]

107. Zhang, A.S.; Veeramani, A.; Quinn, M.S.; Alsoof, D.; Kuris, E.O.; Daniels, A.H. Machine Learning Prediction of Length of Stay in
Adult Spinal Deformity Patients Undergoing Posterior Spine Fusion Surgery. J. Clin. Med. 2021, 10, 4074. [CrossRef] [PubMed]

108. Hopkins, B.S.; Yamaguchi, J.T.; Garcia, R. Using Machine Learning to Predict 30-Day Readmissions after Posterior Lumbar Fusion:
An NSQIP Study Involving 23,264 Patients [Published Ahead of Print. Neurosurg. Spine 2019, 32, 399–406. [CrossRef] [PubMed]

109. Kalagara, S.; Eltorai, A.E.M.; Durand, W.M.; DePasse, J.M.; Daniels, A.H. Machine Learning Modeling for Predicting Hospital
Readmission Following Lumbar Laminectomy. J. Neurosurg. Spine 2018, 30, 344–352. [CrossRef]

110. Karhade, A.V.; Lavoie-Gagne, O.; Agaronnik, N.; Ghaednia, H.; Collins, A.K.; Shin, D.; Schwab, J.H. Natural Language Processing
for Prediction of Readmission in Posterior Lumbar Fusion Patients: Which Free-Text Notes Have the Most Utility? Spine J. 2022,
22, 272–277. [CrossRef]

111. Kuris, E.O.; Veeramani, A.; McDonald, C.L.; DiSilvestro, K.J.; Zhang, A.S.; Cohen, E.M.; Daniels, A.H. Predicting Readmission
After Anterior, Posterior, and Posterior Interbody Lumbar Spinal Fusion: A Neural Network Machine Learning Approach.
World Neurosurg. 2021, 151, e19–e27. [CrossRef]

112. Nunes, A.A.; Pinheiro, R.P.; Costa, H.R.T.; Defino, H.L.A. Predictors of Hospital Readmission within 30 Days after Surgery for
Thoracolumbar Fractures: A Mixed Approach. Health Plan. Manag. 2022, 11, 2192568220969373. [CrossRef]

113. Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T. Predicting 90-Day and 1-Year Mortality in Spinal Metastatic Disease: Development and
Internal Validation. Neurosurgery 2019, 85, 671–681. [CrossRef]

http://doi.org/10.1016/j.jspd.2018.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30348356
http://doi.org/10.1097/BRS.0000000000002442
http://doi.org/10.3171/2021.2.FOCUS201113
http://doi.org/10.2106/JBJS.15.00301
http://doi.org/10.1007/s00586-021-06961-7
http://doi.org/10.1177/21925682211053593
http://doi.org/10.1177/21925682211019361
http://doi.org/10.1093/bja/aex117
http://www.ncbi.nlm.nih.gov/pubmed/28974065
http://doi.org/10.1016/j.spinee.2019.04.022
http://doi.org/10.1097/BRS.0000000000001575
http://www.ncbi.nlm.nih.gov/pubmed/27010996
http://doi.org/10.3171/2019.3.SPINE181367
http://www.ncbi.nlm.nih.gov/pubmed/31174185
http://doi.org/10.3171/2018.8.FOCUS18340
http://doi.org/10.1016/j.spinee.2019.10.007
http://doi.org/10.1007/s00586-019-05928-z
http://www.ncbi.nlm.nih.gov/pubmed/30941521
http://doi.org/10.1007/s00586-019-05936-z
http://doi.org/10.3171/2019.5.SPINE1987
http://www.ncbi.nlm.nih.gov/pubmed/31349223
http://doi.org/10.5435/JAAOS-D-20-00894
http://doi.org/10.3390/jcm10184074
http://www.ncbi.nlm.nih.gov/pubmed/34575182
http://doi.org/10.3171/2019.9.SPINE19860
http://www.ncbi.nlm.nih.gov/pubmed/31783353
http://doi.org/10.3171/2018.8.SPINE1869
http://doi.org/10.1016/j.spinee.2021.08.002
http://doi.org/10.1016/j.wneu.2021.02.114
http://doi.org/10.1002/hpm.3437
http://doi.org/10.1093/neuros/nyz070


J. Pers. Med. 2022, 12, 509 23 of 24

114. Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality after
Surgery for Spinal Metastasis. Neurosurgery 2019, 85, 83–91. [CrossRef]

115. Karhade, A.V.; Shah, A.A.; Bono, C.M. Development of Machine Learning Algorithms for Prediction of Mortality in Spinal
Epidural Abscess. Spine J. 2019, 19, 1950–1959. [CrossRef] [PubMed]

116. Shah, A.A.; Karhade, A.V.; Park, H.Y.; Sheppard, W.L.; Macyszyn, L.J.; Everson, R.G.; Shamie, A.N.; Park, D.Y.; Schwab, J.H.;
Hornicek, F.J. Updated External Validation of the SORG Machine Learning Algorithms for Prediction of Ninety-Day and One-Year
Mortality after Surgery for Spinal Metastasis. Spine J. 2021, 21, 1679–1686. [CrossRef]

117. Yang, J.-J.; Chen, C.-W.; Fourman, M.S.; Bongers, M.E.R.; Karhade, A.V.; Groot, O.Q.; Lin, W.-H.; Yen, H.-K.; Huang, P.-H.;
Yang, S.-H.; et al. International External Validation of the SORG Machine Learning Algorithms for Predicting 90-Day and One-Year
Survival of Patients with Spine Metastases Using a Taiwanese Cohort. Spine J. 2021, 21, 1670–1678. [CrossRef] [PubMed]

118. Hu, M.-H. A Machine Learning Algorithm for Predicting Prolonged Postoperative Opioid Prescription after Lumbar Disc
Herniation Surgery. An External Validation Study Using 1,316 Patients from a Taiwanese Cohort. Spine J. 2022. [CrossRef]
[PubMed]

119. Karhade, A.V.; Ogink, P.T.; Thio, Q.C.B.S. Development of Machine Learning Algorithms for Prediction of Prolonged Opioid
Prescription after Surgery for Lumbar Disc Herniation. Spine J. 2019, 19, 1764–1771. [CrossRef] [PubMed]

120. Zhang, Y.; Fatemi, P.; Medress, Z.; Azad, T.D.; Veeravagu, A.; Desai, A.; Ratliff, J.K. A Predictive-Modeling Based Screening
Tool for Prolonged Opioid Use after Surgical Management of Low Back and Lower Extremity Pain. Spine J. 2020, 20, 1184–1195.
[CrossRef] [PubMed]

121. Dong, S.; Li, W.; Tang, Z.-R.; Wang, H.; Pei, H.; Yuan, B. Development and Validation of a Novel Predictive Model and Web
Calculator for Evaluating Transfusion Risk after Spinal Fusion for Spinal Tuberculosis: A Retrospective Cohort Study. BMC
Musculoskelet. Disord. 2021, 22, 825. [CrossRef]

122. Durand, W.M.; DePasse, J.M.; Daniels, A.H. Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery: A
Tree-Based Machine Learning Approach. Spine 2018, 43, 1058–1066. [CrossRef]
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