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Tractography is a non-invasive technique to investigate the brain’s structural pathways
(also referred to as tracts) that connect different brain regions. A commonly used
approach for identifying tracts is with template-based clustering, where unsupervised
clustering is first performed on a template in order to label corresponding tracts
in unseen data. However, the reliability of this approach has not been extensively
studied. Here, an investigation into template-based clustering reliability was performed,
assessing the output from two datasets: Human Connectome Project (HCP) and
MyConnectome project. The effect of intersubject variability on template-based
clustering reliability was investigated, as well as the reliability of both deep and
superficial white matter tracts. Identified tracts were evaluated by assessing Euclidean
distances from a dataset-specific tract average centroid, the volumetric overlap
across corresponding tracts, and along-tract agreement of quantitative values. Further,
two template-based techniques were employed to evaluate the reliability of different
clustering approaches. Reliability assessment can increase the confidence of a tract
identifying technique in future applications to study pathways of interest. The two
different template-based approaches exhibited similar reliability for identifying both deep
white matter tracts and the superficial white matter.

Keywords: tractography, diffusion MRI, white matter, template clustering, reliability

INTRODUCTION

The brain consists of numerous regions connected together by axonal bundles which form the
structural pathways (also referred to as tracts) (Sarwar et al., 2019; Sotiropoulos and Zalesky, 2019)
of a highly connected network that enables function and cognition (Mesulam, 1998; Klingberg et al.,
1999; Jbabdi et al., 2015; Filley and Fields, 2016). Although the gold standard for investigating
structural connectivity are chemical tracers, these techniques are invasive and performed only in
animal studies and post-mortem samples (Jbabdi et al., 2015; Sotiropoulos and Zalesky, 2019).
Alternatively, the brain’s connectivity can be studied non-invasively, in vivo with diffusion magnetic
resonance imaging (dMRI). Briefly, dMRI acquires directionally sensitive information about the
diffusion of water molecules (Conturo et al., 1999), which preferentially diffuses in parallel to the
axonal trajectory (Bammer, 2003). Using information from dMRI, an estimation of the pathway
trajectories can be reconstructed as a streamline with tractography by (1) estimating the diffusion
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orientation within all image voxels and (2) following along
an orientation voxel-to-voxel until a termination criterion
is met (Sotiropoulos and Zalesky, 2019). Past studies have
examined how long-range tracts connecting distant brain regions
(Bernasconi et al., 2004; Govindan et al., 2008; Riley et al., 2010;
Wu et al., 2018; Zhang et al., 2018a) and short-range, “U”-shaped
tracts comprising the superficial white matter (Yendiki et al.,
2011; Guevara et al., 2012, 2017; Tunç et al., 2014) are affected in
neurological or psychiatric disorders. Furthermore, quantitative
differences identified in the structural pathways of patient groups
have been correlated with clinical symptoms (Riley et al., 2010).
An understanding of how tracts are affected in patient cohorts
could provide key insights for diagnosis and improve treatment.

To identify different tracts from tractography, either manual
or automated techniques can be employed. Manual techniques
require users to place inclusion and exclusion regions of interest
(ROI) to extract tracts for further investigation, a laborious
and time-consuming task requiring anatomical knowledge with
results that can vary between different users or sessions (Tunç
et al., 2014). An alternative to manual ROIs is to leverage
atlas-based ROIs, which require an adequate registration with
an individual’s data (Yendiki et al., 2011; Guevara et al., 2012,
2017; Tunç et al., 2014) to automate identification of ROIs to
extract tracts. However, this still requires anatomical knowledge
to select the ROIs needed to isolate each tract of interest. One
automated alternative that does not require ROIs is TRACULA,
which instead uses information of surrounding anatomical
structures to identify tracts (Yendiki et al., 2011). While the
described approaches can aid in tract identification with a high
degree of anatomical accuracy, they rely on and are limited
by a priori knowledge (Schilling et al., 2020). Other automated
techniques attempt to identify tracts with a data-driven approach,
employing unsupervised clustering algorithms that commonly
rely on the similarity of streamline trajectories (Tunç et al.,
2014). These clustering approaches, which are not dependent
on a priori knowledge, may identify previously unnamed or
unidentified tracts and have been shown to produce known
pathways with high confidence (Voineskos et al., 2009; Tunç
et al., 2014). To identify the same tracts across individuals,
a labeled template is first created from clustering together
streamlines by similarity. Clusters are arbitrarily labeled for
identification with no anatomical reference. The template is then
registered to different individuals to identify similar tracts in a
template-based clustering approach. While automated clustering
techniques may include incomplete or false positive streamlines
(Tunç et al., 2014), user biases from manual intervention are
avoided (Voineskos et al., 2009). A number of studies have
taken a template-based clustering approach to identify tracts of
interest, including O’Donnell and Westin (2007), Guevara et al.
(2012, 2017), Tunç et al. (2014), Román et al. (2017), Garyfallidis
et al. (2018), and Zhang et al. (2018b) to name a few. Although
both template-based and atlas-based approaches have been
used to identify tracts, the primary difference between the two
approaches is the use of predefined ROIs from anatomical atlases
and a priori anatomical knowledge for atlas-based approaches to
identify and name tracts, while template-based approaches uses
the similarity of tract features to identify corresponding tracts.

Reliability of template-based clustering approaches, that is,
the ability to extract corresponding tracts successfully when
applying the same methodology to multiple scans of the same
subject or multiple subjects, is critically important and increases
confidence applying the same approach to study of tracts
of interest. In the previously mentioned studies, Tunç et al.
(2014) used a template created from the same individuals
studied, while O’Donnell and Westin (2007) and Garyfallidis
et al. (2018) highlighted clustering techniques to identify tracts.
Zhang et al. (2019) used the same atlas previously developed
by their group to compare the performance of template-based
clustering against an ROI-based technique using three different
test-retest datasets across varying age groups, highlighting the
benefits of a template-based approach. Guevara et al. (2012)
proposed a template-based clustering method to extract “U”-
shaped tracts and created a superficial white matter atlas. Later,
Guevara et al. (2017) expanded the technique to examine “U”-
shaped tract reliability and produce a new superficial white
matter atlas containing tracts present in at least 30% of
the subjects within the dataset, producing the most common
“U”-shaped tracts across those individuals. Despite the use
of these techniques in studies of structural connectivity, in-
depth comparisons have yet to be performed to evaluate the
parallels between different template-based approaches. Further,
the effect of individual differences on reliably identifying tracts
has not yet been examined. Lastly, an investigation of the
use of template-based approaches to reliably identify and
examine superficial white matter, where individual differences
can be found due to varying cortical folding, has yet to be
extensively studied.

In this work, we evaluate the reliability of template-
based clustering of whole-brain tractography applied to
both different subjects and within a single subject using two
clustering approaches—spectral clustering and QuickBundles.
Both clustering approaches are applied to two open source
datasets of healthy individuals: (1) Human Connectome
Project, and (2) MyConnectome Project, examining all
identified tracts. While the goal of tract identification is to
enable investigations of tracts and study changes in patient
populations, reliable identification is a non-trivial task, even
amongst healthy individuals. Pathology can complicate the
ability to quantify reliability by introducing heterogenous
changes to the structural connectivity in different individuals.
First, we assess the reliability of template-based clustering
of whole-brain tractography. We follow-up by separately
assessing the reliability of clustering short-range, “U”-
shaped pathways, where greater intersubject variability is
expected than in long-range tracts due to differing cortical
folding patterns and different clustering parameters and
constraints are required.

MATERIALS AND METHODS

All processing and analysis was performed within containerized
environments on high performance compute clusters hosted
by Compute Canada. Environments contained installations of
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Nipype (Gorgolewski et al., 2011), for creating reproducible
pipelines, and MRtrix3 (Tournier et al., 2019) for tractography
processing1 and implementation of spectral clustering.2

Additionally, QuickBundles (Garyfallidis et al., 2012) clustering,
as implemented within the DIPY library (Garyfallidis et al.,
2014), was also used as a secondary clustering technique.

An overview of the general workflow applied is shown in
Figure 1. Briefly, a labeled population template was created
from minimally preprocessed data and template-based clustering
was applied to two separate datasets. Subsequent analysis was
performed on the identified tracts, assessing the metrics across
identified tracts within each dataset.

Data Acquisition and Pre-processing
Template Dataset
Minimally pre-processed dMRI data, as described in Glasser et al.
(2013), from the HCP1200 release of the Human Connectome
Project (HCP) (Van Essen et al., 2013) of 100 unrelated
subjects (46 male, 54 female; aged 22–35), here-on defined as
HCPUR100, was used to first create a clustered tractography
template. Structural T1w data of these subjects were also used
to create an anatomical template for cortical parcellation and
lobular assignment lobes via FreeSurfer (Fischl et al., 2004).
dMRI data was acquired on a customized Siemens Skyra 3T
scanner (Van Essen et al., 2012; Sotiropoulos et al., 2013) with
the following scanning parameters: repetition time/echo time
(TR/TE) = 5520/89.50 ms; resolution = 1.25 × 1.25 ×1.25 mm3;
b-values = 1,000, 2,000, 3,000 s/mm2 (90 directions each) with 18
b-value = 0 s/mm2 images. Full acquisition details can be found
in the HCP1200 subject reference manual.3

Analysis Datasets
Two separate datasets from HCP and the MyConnectome Project
(Poldrack et al., 2015) were used to assess reliability of template-
based clustering, here-on referred to as the analysis datasets.
From the HCP analysis dataset, an additional 15 subjects (8
male, 7 female; aged 22–35) were randomly selected from
the HCP1200 release for analysis, matching the number of
available sessions available in the MyConnecotome analysis
dataset. Acquisition parameters were previously described in the
template dataset subsection.

From the MyConnectome Project, a single male subject (aged
45 at onset of data acquisition), scanned on multiple occurrences
acquired over a 3 year period as a part of the MyConnectome
Project was used for analysis. Data acquisition was performed
on a separate Siemens Skyra 3T scanner. Out of 94 production
sessions, 15 had dMRI acquisitions available for assessment,
excluding a follow-up session acquired on a separate imaging
system. Scanning parameters are as follows: repetition time/echo
time (TR/TE) = 5,000/108 ms; resolution = 1.74 × 1.74 × 1.7
mm3; b-values = 1,000, 2,000 s/mm2 (30 directions each) with
4 b-value = 0 s/mm2 images. Detailed information on data

1www.github.com/khanlab/mrtpipelines
2www.github.com/khanlab/neurobeer
3https://humanconnectome.org/study/hcp-young-adult/document/1200-
subjects-data-release

collection can be found in the study protocol.4 Using an in-
house developed pipeline, prepdwi (Khan et al., 2021), dMRI
acquisitions were pre-processed. Briefly, principal component
analysis based denoising (Veraart et al., 2016a,b) was performed
followed by unringing of the dMRI data to minimize the effects
of Gibbs ringing (Kellner et al., 2016). Afterward, FSL’s topup
(Andersson et al., 2003; Smith et al., 2004) and eddy (Andersson
and Sotiropoulos, 2016) were applied to correct for distortions
induced by susceptibility, eddy currents, and subject motion.

Tractography Processing
The following sections describe the processing steps performed
for generated tractography, including clustering and assignment
of labels to streamlines.

Fiber Orientation Distribution
A fiber orientation distribution (FOD) template was created with
the HCPUR100 using the MRtrix3 software suite (Tournier et al.,
2019). Briefly, a tissue-specific (white matter, gray matter, and
cerebrospinal fluid) response function was estimated for each
HCPUR100 subject using the Dhollander algorithm (Dhollander
et al., 2016), before averaging the computed response functions.
Utilizing the average response function, FODs were estimated
for each HCPUR100 subject using a multi-shell, multi-tissue
constrained spherical deconvolution (MSMT-CSD) algorithm
(Jeurissen et al., 2014) and normalized with a multi-tissue
informed log-domain intensity normalization (Raffelt et al.,
2017). Normalized FODs were transformed using a multi-
resolution pyramid structure to create an FOD template (Raffelt
et al., 2011). Registrations were optimized with six iterations
of rigid and affine transformations each, and 15 iterations of
non-linear transformation. The FOD template was utilized to
transform analysis data to a common midway space (defined as
the template space).

Similar steps were taken to compute FODs for data
from the MyConnectome Project and HCP datasets. For
each session/subject, a response function was estimated with
the Dhollander algorithm, however, as acquisition protocols
differed between the two datasets, no average response function
was derived. FODs were again estimated with MSMT-CSD,
using the individual response functions and followed by
FOD normalization. Normalized FODs were transformed and
reoriented to the template space.

Streamline Tracking and Quantification
Whole-brain probabilistic tractography was performed for the
template and analysis datasets with MRtrix3, using the iFOD2
probabilistic algorithm (Tournier et al., 2010) with default
parameters. Random seeding of tractography was performed
throughout the brain until targets of 100,000 and 10,000,000
streamlines have been selected for the template and analysis
datasets, respectively. Tractography was then filtered to fit
the amplitudes of the associated FODs using spherical-
deconvolution informed filtering of tractograms (SIFT) (Smith
et al., 2013) until streamline counts of 50,000 and 1,000,000

4http://myconnectome.org/wp/53-2
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FIGURE 1 | General diffusion processing workflow using minimally preprocessed HCP and unprocessed MyConnectome data. (A) HCP unrelated subjects were
used to create the population-based FOD template. Whole-brain and “U”-shaped tractography was created from the FOD template and streamlines were assigned
labels via clustering, creating labeled tractography templates. A subset of each identified tract is extracted and used to propagate labels to the analysis datasets.
(B) MyConnectome data was first preprocessed using in-house pipelines. Together with minimally preprocessed the HCP dataset, individual FODs were computed
and warped to the previously created template. Tractography was performed for each subject/session in the template space. Additionally, DTI fitting was performed
and mapped along the generated streamlines. Labels from the tractography template were propagated to subject/session’s tractography. (C) Analysis was
performed on the identified tracts, evaluating Euclidean distances and tract overlaps both within each dataset and against the labeled template. In addition,
streamline counts and along-tract agreement of FA were assessed within each dataset.

remained for template and analysis datasets, respectively. The
combination of constrained spherical deconvolution (CSD),
iFOD2 generated tractography, and SIFTing has previously been
shown to improve tracking of streamlines, particularly in regions
of multiple fiber orientations, while preserving tract densities
reflective of the underlying diffusion signal.

Tensor images were additionally computed on intensity
normalized diffusion weighted images (DWI) of the analysis
datasets, which had also been transformed to template space.
Diffusion tensor images (DTI) were estimated using an iteratively
reweighted linear least squares estimation (Veraart et al., 2013).
Fractional anisotropy (FA) measurements were derived from
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DTI and mapped to corresponding streamlines, enabling further
quantitative analysis following clustering.

Spectral Clustering (Method 1)
Using spectral clustering (von Luxburg, 2007), bundles of
streamlines (tracts) were initially identified on the SIFTed
tractography template before propagating cluster labels to
tractography from analysis datasets based on similarity of
streamline trajectory. First, individual streamline similarity was
assessed with comparisons to all other streamlines of the
template. Twenty equispaced samples, inclusive of endpoints,
were taken along the length of each streamline and a minimum
average, direct-flip (MDF) distance was used to compute between
corresponding samples across streamlines (Visser et al., 2011;
Garyfallidis et al., 2012; Guevara et al., 2012; Siless et al., 2013)
and generate a distance matrix. Streamlines whose distances
were greater than two standard deviations from the average
whole-brain streamline distance were deemed to be outliers and
discarded, similar to O’Donnell et al. (2017). An affinity matrix,
characterizing similarity between streamlines, was created with
the application of a Gaussian kernel with a width of 8 mm to the
distance matrix.

Spectral clustering, which has been previously employed in
tractography clustering (O’Donnell and Westin, 2007; Siless
et al., 2018; Zhang et al., 2018b), utilizes Laplacian matrices as
one of the primary tools (von Luxburg, 2007). Following the
implementation described by Ng et al. (2002), spectral clustering
was performed on the template tractography to label and assign
streamlines to a cluster. A selection of k = 800 clusters was
chosen following qualitative assessment of clusters ranging from
k = 400 to k = 1,400. The qualitative assessment involved visual
inspection of identified tracts for each chosen number of clusters
and was performed to assess the ability to discern tracts with
noticeably different trajectories. This selection of 800 clusters
was also determined to be the optimal number of clusters by
O’Donnell and Westin (2007), and later employed by Zhang
et al. (2018b). Established clusters were colored according to the
coordinates of the cluster centroids, as described by Brun et al.
(2003).

QuickBundles (Method 2)
For comparison, the template tractography was also clustered
utilizing QuickBundles (Garyfallidis et al., 2012) before sub-
sampling and propagating labels to tractography of analysis
datasets as before to establish tract correspondence. Briefly,
QuickBundles computes the MDF distance between unassigned
streamlines with a centroid streamline from existing clusters,
updating the cluster centroid as new streamlines are added. The
computed distance is compared against a user-chosen distance
threshold and if the distance is within the threshold, it is assigned
to the cluster with the smallest distance, otherwise it is assigned as
a new cluster. Garyfallidis et al. (2012), utilizing lower thresholds
result in more detailed representations of underlying trajectories,
while higher thresholds result in the merging of bundles which
may have similar trajectories. Additionally, the user can choose
to set the maximum number of clusters, such that once the

maximum number of clusters is reached, new streamlines are
only assigned to existing clusters.

As was done for spectral clustering, streamlines were
resampled to 20 equispaced samples in order to compute the
MDF distance for QuickBundles, selecting a maximum of k = 800
clusters and a distance threshold of 8 mm was chosen to match
the number of clusters and kernel width, respectively, from
spectral clustering. Following cluster assignment, streamlines
were colored using the cluster centroid as was done for
spectral clustering.

Labeling Analysis Datasets
Both spectrally clustered and QuickBundles clustered methods
used a labeled sub-sample containing 20,000 streamlines of the
template tractography to assign labels to streamlines identified in
the analysis datasets. A sub-sample of the labeled template was
required due to computational memory limitations. Streamline
similarity between the sub-sampled tractography template and
the tractography from analysis datasets was also computed
using the MDF method as previously described. Labels from
template streamlines were propagated to the tractography from
analysis datasets based on maximum similarity, establishing
correspondence between the most similar tracts.

Short Range, “U”-Shaped Streamlines
Streamlines comprising short-range, “U”-shaped tracts were
identified and extracted from whole-brain tractography using
adapted parameters (Guevara et al., 2017; O’Halloran et al.,
2017) to extract from whole-brain tractography. Identification of
“U”-shaped streamlines utilized the Euclidean distance between
streamline endpoints (D), computed as the Euclidean distance
between the terminal ends of a streamline, and streamline length
(L), computed as the arc length of the sample points (si).

L =
N∑

i = 1

|Si − Si−1|

D = |SN − S1|

To extract streamlines with the expected “U”-shaped
curvature, the end point distance was constrained to
approximately one-third of the streamline length (D < L

π
), as

employed by O’Halloran et al. (2017). Additional streamline
length constraints of 20 mm (minimum) and 80 mm (maximum)
were imposed (20 mm ≤ D ≤ 80 mm). Streamlines which
crossed across brain hemispheres were removed.

Clustering techniques were separately employed to identify
bundles of “U”-shaped streamlines after extraction. Both spectral
clustering and QuickBundles were applied, using a 6 mm
Gaussian kernel and distance for both techniques (smaller than
what was previously employed for whole-brain tractography. For
short-range, “U”-shaped tracts, k = 500 was determined to be
optimal to identify individual “U”-shaped tracts after qualitative
assessment of clusters from k = 200 to k = 700. As before,
qualitative assessment involved visual inspection of clusters for
the ability to discern unique tract trajectories. Endpoints of
identified “U”-shaped tracts were used to identify connectivity
between cortical parcellations of the Desikan-Killiany atlas
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(Desikan et al., 2006), assigning tract endpoints to the nearest
parcels within a 4 mm radius (Smith et al., 2015). If a tract was
determined to connect multiple parcels (e.g., one end of the tract
terminates within two parcels), assignment was determined by
maximum streamline count. Cortical parcellations were mapped
to lobes by the given approximate Freesurfer mapping (Klein and
Tourville, 2012). Streamlines determined to be in the cerebellum
were not considered to be part of the superficial white matter of
interest and excluded from subsequent analysis.

Analysis
In the following subsection, we describe the metrics used to assess
reliability of template-based tractography clustering. Briefly, we
computed the centroid distances between the average dataset
centroid and individual subject or session centroid within the
respective datasets, compared the voxel-wise spatial overlap of
identified tracts, and examined the streamline counts of identified
tracts. Analysis was performed on corresponding tracts within
each dataset. An unpaired t-test was also performed to determine
whether there was a difference in the resulting metrics from the
two cluster algorithms.

Distance From Average Centroid
Tract centroids were computed for all tracts identified in
both analysis datasets by averaging spatial components of
corresponding sample points across streamlines. A dataset
average tract centroid (here-on referred to as the average
centroid) was also computed by averaging the centroids
computed across the subjects and sessions within the respective
analysis datasets. An Euclidean distance was computed for
corresponding tracts between the average centroid and centroids
from the analysis datasets by employing the MDF distance
previously described.

Voxel-Wise Spatial Overlap of Tracts
First, a tract density map for each cluster was created by
identifying streamline counts passing through each voxel. Then,
the fraction of each tract (a value between 0 and 1) passing
through a voxel was determined from the tract density map
to assess the weighted Dice similarity coefficient (wDSC)
(Cousineau et al., 2017b). Briefly, the wDSC is a modified version
of the conventional Dice similarity coefficient (Dice, 1945) for
assessing overlap of tractography, weighting more heavily the
denser regions of a tract instead of penalizing streamlines further
from the core as is done by conventional Dice (Cousineau et al.,
2017b). The wDSC was computed with the following equation
(Eq. 3), where Av and Bv represent the fraction of streamlines
passing through a voxel of two corresponding tracts and v’
represents a voxel within the intersection of A and B.

wDSC (A,B) =
∑

v′ Av′ +
∑

v′ Bv′∑
v Av +

∑
v Bv

Average wDSC within the analysis datasets were computed
across corresponding tracts.

Along-Tract Fractional Anisotropy Similarity
To assess reliability of quantitative scalar metrics along identified
tracts, intraclass correlation (ICC) of along-tract fractional
anisotropy (FA) was computed. Here, FA was chosen due to
its widespread use and interpretation in a number of diffusion
studies. Cousineau et al. (2017a) previously highlighted the
benefits of examining quantitative metrics along the length of a
tract for examining reliability . A two-way, random effects model
(McGraw and Wong, 1996) was employed to evaluate absolute
agreement of FA at corresponding samples along the length of a
tract. Utilizing this model, the column factor (“raters”) were the
samples along the tract, and the row factor (“targets”) were the
individual subjects or sessions of the analysis dataset.

Streamline Count and Variation
Streamline counts comprising each tract were extracted and
compared across corresponding tracts and the subjects and
sessions within the respective analysis datasets. Streamline
counts enabled assessment of reconstruction consistency and
importantly, may be used to determine tracts which may not
be reliably identified. The extent of streamline count variability
of each identified tract was also evaluated by computing the
coefficient of variation (CV). Here, the CV was calculated as
the standard deviation of the streamline count (σ) over the
average streamline count (µ) for corresponding tracts within
each analysis dataset (CV = σ

µ × 100%).

Relationship Between Metrics
To determine whether a relationship existed between
the different reliability metrics examined, a Spearman
correlation is computed between the described metrics
used for reliability analysis. After computing the Spearman
correlation between all metrics, false discovery rate correction
was performed following the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995).

RESULTS

Distance From Average Centroid
The mean Euclidean distances were observed to be
2.16 ± 1.10 mm and 2.51 ± 0.90 mm for the MyConnectome
and HCP datasets, respectively, when compared against the
average centroid identified from the spectrally clustered
template. From the QuickBundle clustered template, an average
Euclidean distance of 1.96 ± 0.73 mm and 2.31 ± 0.62 mm
was observed for the MyConnectome and HCP datasets when
compared against the average centroid. Across datasets, the
average Euclidean distances of tracts to the corresponding
average centroid was around two voxels (about 2.5 mm). In
both datasets, a difference was observed in the computed
Euclidean distance for tracts identified using the two clustering
algorithms. Figure 2A displays a boxplot with individual points
indicating the observed Euclidean distances for a given tract for
each dataset. Distributions of Euclidean distances were similar
across datasets, with the MyConnectome dataset exhibiting
a lower Euclidean distance against the average centroid for
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both clustering methods than the HCP dataset. Supplementary
Table 1 details the average Euclidean distances and standard
deviations for all tracts identified.

Weighted Voxel-Wise Spatial Overlap
Spatial overlap of identified tracts were computed between
corresponding tracts identified with both spectrally clustered and
QuickBundles clustering algorithms within the analysis datasets.
Overlap within analysis datasets demonstrated good overlap in
both datasets with wDSC of 0.729 ± 0.129 and 0.661 ± 0.115 for
spectral clustering identified tracts in MyConnectome and HCP
analysis datasets, respectively. As with the computed overlaps
computed in tracts identified via spectral clustering, QuickBundle
clustered identified tracts also demonstrated good overlap in
both datasets with an average wDSC of 0.683 ± 0.174 and
0.639 ± 0.141 for MyConnectome and HCP analysis datasets,
respectively. A difference in resulting tract-overlaps observed for
both datasets when using the two different clustering algorithms.
Figure 2B displays for each dataset, a box plot with individual
points indicating the observed average overlap for a given tract.
Full details of computed wDSCs for identified tracts within
analysis datasets are provided in Supplementary Table 1 (see
Supplementary Videos 1, 2 for their respective algorithms).

Along-Tract Fractional Anisotropy
Agreement
Intraclass correlation (ICC) was computed for each analysis
dataset by comparing the along-tract FA at corresponding
samples across subjects and sessions. For tracts identified from
the spectral clustered template, good absolute agreement was
observed with computed average ICCs of 0.792 ± 0.218 and
0.742 ± 0.207 for the MyConnectome and HCP analysis
datasets, respectively. The QuickBundle clustered template
also demonstrated high agreement of along-tract FA, with
average ICCs of 0.841 ± 0.190 and 0.769 ± 0.190 in the
MyConnectome and HCP datasets, respectively. For both
datasets, ICCs demonstrated a difference when using the two
different clustering algorithms. However, with both clustering
algorithms, the MyConnectome dataset demonstrated better
along-tract agreement. Figure 2C displays for each dataset, a
box plot with individual points indicating the observed along-
tract FA agreement for a given tract. Supplementary Table 1
provides full details of computed ICC for all tracts, including 95%
confidence intervals.

Streamline Count and Variation
Within the analysis datasets, streamline counts were determined
for each subject or session and averaged across corresponding
tracts. Tracts lacking streamlines for at least one subject or
session of the analysis datasets were identified. Thirteen of
800 (spectral clustering) and 5 of 800 (QuickBundles) tracts
of the MyConnectome dataset contained no streamlines across
the available sessions, while all tracts of the HCP dataset
contained at least a single streamline for the analyzed subjects. No
difference in streamline count variability was observed between
the two algorithms for either dataset. Figure 2D displays for

each dataset, a box plot with individual points indicating the
observed streamline count variance of a given tract. Full details
regarding streamline counts for each tract and associated dataset
information can be found in Supplementary Table 1.

Furthermore, the extent of the variability for each of the
identified tracts were examined. The tracts identified via spectral
clustering in the MyConnectome dataset exhibited lower average
variability (50%) compared against the HCP dataset (53%).
However, the range of the variability exhibited was smaller
in the HCP dataset (16–109%) than in the MyConnectome
dataset (10–203%). Similarly, tracts identified via QuickBundles
demonstrated lower variability (50%) in MyConnectome than
in HCP (54%), but again showed a smaller range of variability
in HCP (14–97%) than in MyConnectome (11–156%). A full
summary of average streamline counts and CV can be found in
Supplementary Table 1.

Relationships Between Reliability
Metrics
Relationships between employed metrics were explored to
examine common features in reliable tracts. First, a significant
negative correlation was observed between the average Euclidean
distance from the average centroid and tract overlap, streamline
count variability, while a significant positive relationship was
observed between Euclidean distance and streamline count
variability (Figure 3, left column). Further, a significant negative
correlation was identified between the along-tract agreement of
fractional anisotropy and both streamline count variability (only
for the MyConnectome dataset) and the average log-transformed
streamline count (Figure 3, middle-left column). Finally a
significant negative relationship was observed between the tract
spatial overlap and streamline count variability (Figure 3, middle
column), while a positive relationship was observed between
tract overlap and the average log-transformed streamline count
(Figure 3, middle-right column). No significant relationship
was identified between the tract spatial overlap and the along-
tract agreement or between the log-transformed streamline count
and average Euclidean distance. Additionally, no significant
relationship was identified between streamline count variability
and tract overlap in the HCP dataset. Relationships were
similar for both tracts identified via spectral clustering and
the QuickBundles algorithm. For the majority of identified
relationships, the correlation was stronger in the single-
subject MyConnectome dataset than in HCP datasets for
both algorithms.

“U”-Shaped Tract Reliability
Assessment of short-range, “U”-shaped tracts was performed
with the same metrics used to examine reliability of whole-
brain tractography. The average Euclidean distance from the
average centroid for identified “U”-shaped tracts via the spectrally
clustered template was similar as previously observed, with
distances of 2.53 ± 0.75 mm and 2.99 ± 0.67 mm in
MyConnectome and HCP datasets, respectively. From the
QuickBundle clustered template, a slightly greater distance
is observed—2.66 ± 0.92 mm and 3.05 ± 0.82 mm for
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FIGURE 2 | Individual observations for a given metric are overlaid on a box plot for each dataset and clustering method employed by the template. (A) Mean
Euclidean distance of tracts relative to the corresponding average tract centroid. (B) Average voxel-wise spatial overlap across corresponding tracts. (C) Along-tract
absolute agreement of fractional anisotropy across corresponding tracts. (D) Variability of streamline counts across corresponding tracts.

MyConnectome and HCP datasets, respectively. Figures 4A,B
display the identified tracts from spectral clustering and
QuickBundles, respectively (see Supplementary Videos 3, 4 for
individually identified tracts for the respective algorithms), while
Figure 4C displays a box plot with individual Euclidean distance
observations against the average tract centroid for each dataset.

Spatial overlap of identified “U”-shaped tracts from spectral
clustering and QuickBundles were also computed. Overlap
within analysis datasets demonstrated moderate overlap in both
datasets with wDSC of 0.606 ± 0.155 and 0.517 ± 0.123
for spectral clustering identified tracts in MyConnectome and
HCP analysis datasets, respectively. With QuickBundle clustered
identified tracts, similar overlaps were observed with an average
wDSC of 0.598 ± 0.199 and 0.515 ± 0.152 for MyConnectome
and HCP analysis datasets, respectively. Full details of computed
wDSCs for identified “U”-shaped tracts compared for the analysis
datasets are provided in Supplementary Table 2.

As with whole-brain tractography reliability, the absolute
agreement of along-tract FA was also computed for “U”-
shaped tracts identified in the analysis datasets, comparing
the metrics mapped at corresponding samples across subjects
and sessions. For tracts identified from the spectral clustered
template, good absolute agreement was observed with computed
average ICCs of 0.938 ± 0.081 and 0.883 ± 0.076 for
the MyConnectome and HCP analysis datasets, respectively.
The QuickBundle clustered template also demonstrated high
agreement of along-tract FA, with average ICCs of 0.900 ± 0.162
and 0.847 ± 0.147 in the MyConnectome and HCP datasets,
respectively. Similar to whole-brain clustering, a difference was

observed between the two clustering algorithms applied to both
datasets. As before, the MyConnectome dataset demonstrated
better along-tract agreement irrespective of the clustering
method applied to the template. Supplementary Table 2 provides
full details of computed ICC for all “U”-shaped tracts, with 95%
confidence intervals.

Similarly, as previously observed, not all analysis datasets
contained streamlines for all template identified tracts. Six6
tracts in both the MyConnectome and HCP datasets contained
no streamlines when tracts were identified with the spectrally
clustered template, while 32 and 24 tracts, respectively, was
found to contain no streamlines when identified with the
QuickBundle clustered template. Variability of tract streamline
counts was also comparable, ranging from 13 to 81% and
16–122% (averaging 37 and 50%) for MyConnectome and
HCP datasets, respectively, identified via the spectrally clustered
template. Similarly, variability of identified tract streamline
counts from the QuickBundle clustered template ranged from 11
to 84% and 14–110% (averaging 38 and 49%) for MyConnectome
and HCP datasets. Figure 4 displays for each dataset, a box plot
with individual points indicating the observed values of a given
tract for each described metric. A full summary of evaluated
metrics of short-range, “U”-shaped tracts, inclusive of streamline
counts can be found in Supplementary Table 2.

The relationships between different reliability metrics were
also similar to the relationships observed for whole-brain
tractography clustering. Negative correlations were observed
with the Euclidean distance were demonstrated for all metrics
except for streamline count variability, which exhibited a
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FIGURE 3 | Spearman correlations are computed to explore relationships of metrics employed to assess reliability of spectral clustered (blue circles) and
QuickBundle clustered (orange circles) identified tracts via whole-brain tractography. Relationships between different metrics used for assessment are shown in
pairplots for (A) MyConnectome and (B) HCP datasets. Relationships between various metrics and average Euclidean distance from an average tract centroid
(left-most), relationships with along-tract absolute agreement (ICC; middle-left column), relationships with streamline count variability (middle-column), and with
voxel-wise spatial overlap (middle-right column) are displayed. Distribution of observed points for a given metric (matching the x-axis) are plotted along the diagonal.
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FIGURE 4 | “U”-shaped tracts identified in the HCPUR100 template viewed from axial superior (left), sagittal right (middle), and coronal anterior (right) via (A) spectral
clustering and (B) QuickBundle clustering. Colors of identified tracts do not correspond across clustering methods. Individual observations in “U”-shaped tracts for a
given metric are overlaid on a box plot for each dataset and clustering method employed by the template. (C) Mean Euclidean distance of tracts relative to the
corresponding average tract centroid. (D) Average voxel-wise spatial overlap across corresponding tracts. (E) Along-tract absolute agreement of fractional
anisotropy across corresponding tracts. (F) Variability of streamline counts across corresponding tracts.
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positive relationship (Figure 5, left-most column). As with
whole-brain tractography, negative correlations were identified
between along-tract agreement of fractional anisotropy and both
streamline count variability and the average log-transformed
streamline count (Figure 5, middle-left column). Lastly, a
significant positive relationship was once again identified
between the log-transformed streamline count (Figure 5, middle
column) and voxel-wise spatial overlap (Figure 5, middle-
right column). As before, the relationships were similar for
“U”-shaped tracts identified via spectral clustering and the
QuickBundles algorithm.

Lobular connectivity of “U”-shaped tracts was identified
and summarized. The majority of tracts identified in both
hemispheres were found within the frontal lobes, followed by
the parietal lobes. A number of tracts were also identified to
connect between the frontal and parietal lobes. A full summary
of the lobular connectivity of “U”-shaped tracts can be found in
Supplementary Table 3.

DISCUSSION

Clustering Reliability
Reliable identification of white matter pathways is crucial for
increasing confidence in the subsequent analysis. In this work,
we investigated the reliability of template-based clustering by
identifying and evaluating metrics of reliability in identified
tracts. On average, we observed identified tracts to exhibit
a Euclidean distance around 2.5 mm (or two voxels) from
the average centroid. A deviation from the average tract
trajectory could result in an increasing Euclidean distance.
Other factors, such as dispersion of streamlines (e.g., fanning
in the corticospinal tract), could also contribute to an increased
Euclidean distance.

Another reliability metric evaluated was the voxel-wise spatial
overlap of corresponding tracts. Previous studies have used a
Dice similarity coefficient to compute tract overlap (Schilling
et al., 2019; Rheault et al., 2020), but wDSC was chosen as
it better reflects the overlap of streamlines by minimizing the
penalization of those far from the core (Cousineau et al., 2017b).
In healthy individuals, corresponding tracts are generally found
in similar regions of the brain with comparable trajectories (more
variability is expected in the superficial white matter). The wDSC
reflects this similarity by comparing and identifying the voxels
traversed by the two tracts being compared. If two tracts have
similar trajectories, presumably also traversing similar voxels,
this is reflected by a higher degree of spatial overlap when
brought into the same space (e.g., template space). In the study
by Zhang et al. (2019), clustering demonstrated greater reliability
than ROI-based techniques in a study of test-retest datasets,
exhibiting a minimum tract overlap of 0.593 from a clustering
approach compared to 0.362 with a ROI-based approach.
Here, we provide further support for template-based clustering
approaches, demonstrating an average wDSC across the two
techniques and datasets evaluated that is greater than reported
by Zhang et al. (2019) indicating a high degree of overlap.

Along-tract quantitative measurements can also be a good
indicator of tract reliability, as noted by Cousineau et al.
(2017a). Corresponding tracts are expected to have similar along-
tract profiles and deviation from this profile could indicate
an incorrect tract was identified. In this study, the absolute
agreement of along-tract fractional anisotropy was assessed
between corresponding samples of tracts across subjects and
sessions. The majority of identified tracts within a given
dataset and technique exhibited good agreement between
their tract profiles.

Tract streamline counts and the variability across subjects and
sessions were also evaluated. While the method of tractography
seeding can influence the resulting streamlines, methods such
as SIFT, were developed to filter and retain streamlines such
that streamline counts are reflective of the underlying diffusion
profile. Further, different individuals may also contribute to
this variability due to underlying anatomy. However, within
a single healthy adult individual with developed brain, tract
streamline counts should be similar (i.e., on the same order
of magnitude). In this study, a slightly smaller variability was
observed in the MyConnectome dataset relative to the HCP
dataset, but a high variability was still demonstrated in the
majority of identified tracts. The observed variability could
suggest streamline counts and the associated variability may not
be a dependable indicator of reliability. Nonetheless, if streamline
counts are to be assessed, care processing should be performed
to ensure they are comparable, such as applying post processing
techniques to correspond to the underlying diffusion signals, such
as with SIFT (Smith et al., 2013).

Reliability Metric Relationships
While the chosen metrics evaluated can all be used individually
to characterize the reliability of tract identification, certain
relationships were observed between different metrics of
reliability. We have shown that the spatial overlap of identified
tracts demonstrated good reliability across other metrics, such
as low streamline count variability demonstrating the need for
filters like SIFT that attempt to match the streamline counts to
underlying diffusion signals. Similarly, a low Euclidean distance
was also observed with low streamline count variability, as well
as high tract overlap. However, along-tract agreement (ICC), did
not demonstrate such a relationship with other reliability metrics.
Instead both high and low reliability across other metrics were
observed when ICC suggested good reliability. Lastly, similar
relationships were observed for both whole-brain tractography
and “U”-shaped tractography, suggesting that template-based
clustering may be appropriate for both.

“U”-Shaped Tract Clustering
Clusters identified from whole-brain tractography can contain
multiple “U”-shaped tracts clustered together and affecting the
evaluated metrics described previously. One such example was
in clusters with a large number of streamlines (>1,000). The
close proximity of these streamlines could contribute to a smaller
Euclidean distance and a high degree of overlap observed. As
such, it is important to separate evaluation of “U”-shaped tracts
from whole-brain tractography, which is possible by lowering the

Frontiers in Neuroinformatics | www.frontiersin.org 11 February 2022 | Volume 16 | Article 777853

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-777853 February 11, 2022 Time: 16:29 # 12

Kai and Khan Template-Based Clustering Reliability of Tractography

FIGURE 5 | Spearman correlations are computed to explore relationships of metrics employed to assess reliability of spectral clustered (blue circles) and
QuickBundle clustered (orange circles) identified tracts in short-ranged, “U”-shaped tracts. Relationships between different metrics used for assessment are shown
in pairplots for (A) MyConnectome and (B) HCP datasets. Relationships between various metrics and average Euclidean distance from an average tract centroid
(left-most), relationships with along-tract absolute agreement (ICC; middle-left column), relationships with streamline count variability (middle-column) and with
voxel-wise spatial overlap (middle-right column) are displayed. Distribution of observed points for a given metric (matching the x-axis) are plotted along the diagonal.
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Gaussian kernel width for spectral clustering and the distance
threshold for QuickBundles.

We separately assessed the clustered “U”-shaped tracts with
the same metrics used to study whole-brain tractography. Much
of the same observations noted previously in whole-brain
tractography were also seen in these “U”-shaped tracts. The
use of a template may alleviate some of these issues, capturing
tracts that have similar trajectories across individuals. Conversely,
“U”-shaped tracts specific to an individual may be missed.
Notably, a slight increase in the computed Euclidean distance was
observed for QuickBundle identified tracts. Further, a decrease in
spatial overlap was observed in “U”-shaped tracts irrespective of
the algorithm chosen. Additionally, the QuickBundles clustered
template resulted in the lack of streamlines in more tracts
of both datasets, which could be due to clusters of outlier
streamlines in the template. It has been previously noted that
the QuickBundles method may capture outlier streamlines in
small clusters (Siless et al., 2013) as it uses a distance threshold
for cluster assignment without discarding any streamlines. While
discrepancies observed between clustering algorithms may be
attributed to implementation differences of evaluated algorithms
or the choice of parameters, an overall decrease in reliability
(as seen from tract overlap), indicates that improvements still
need to be made to improve the reliability of identifying “U”-
shaped tracts.

Inter- vs. Intrasubject
In this work, we utilized two unique datasets: an intersubject
dataset acquired to investigate the human brain in the
HCP and an intrasubject dataset acquired over a 3-year
period to similarly investigate the human brain using similar
acquisitions. In assessing template-based clustering reliability,
similar observations were made across both datasets. While
minimal change would be expected in the developed brain of
a single subject, some variation is expected across different
individuals (Cousineau et al., 2017b), which may contribute to the
differences observed between the two datasets. When examining
“U”-shaped tracts, this expectation appeared to be reflected in
the evaluated metrics, with tracts identified in the single subject
dataset demonstrating slightly less variability as previously noted.

Template-Based Clustering
In addition to the use of two unique datasets, the processing was
also performed with two different clustering tools using similar
parameters: spectral clustering and QuickBundles (Garyfallidis
et al., 2012). Analysis was performed on both for comparison
of reliability in two different template-based clustering tools.
Differences between the two clustering algorithms were observed,
particularly when performing whole-brain clustering. These
differences may be attributed to disparities in the implementation
of the two algorithms, including the handling of outlier
streamlines as previously mentioned. Further, while the clusters
may not correspond across between these two different
techniques, and the relationships observed from the results of
both techniques were similar, suggesting the robustness of a
template-based approach in reliably identifying tracts. A previous
study had explored the challenges of tractography, assessing the
pathways identified by various different methods (Maier-Hein

et al., 2017). Here, we explored the reliability of template-based
clustering algorithms. As tools and techniques are developed
and refined to automate tract identification, the importance of
assessing the reliability of these methods should be emphasized.

Limitations
Clustering of tractography, both with spectral clustering and
using QuickBundles, required streamlines to be resampled to
N equispaced samples. Subsequent analysis was also performed
on these samples along a given tract. However, streamlines
comprising a tract may be of different lengths, with some
streamlines terminating earlier than others due to meeting cutoff
criteria. Despite differing lengths, correspondence is assumed
between two samples. One method of resolving this is to set
terminal ROIs at the ends of a tract such that all streamlines are
guaranteed to terminate or be cutoff at the ROIs. As previously
noted when discussing manual placement of ROIs, this requires
some anatomical knowledge (Tunç et al., 2014). Alternatively,
Chandio et al. (2020) mapped samples from streamlines to
a corresponding segment of a representative centroid. This
eliminates the need for ROIs, but still requires an adequate
registration. Further evaluation of this method is also required
to determine its accuracy in mapping superficial white matter.

Clustering performed in this study also used a template to
identify corresponding tracts in the analysis datasets. While
clustering does not explicitly require registration, the template-
based techniques examined here require an adequate registration
between the template and the subject of interest (Yendiki et al.,
2011; Guevara et al., 2012; Tunç et al., 2014; d’Albis et al., 2018)
to identify corresponding tracts across subjects and sessions.
Additionally, template-based techniques can only identify tracts
with similar trajectories to those already defined by the template.
ROI-based techniques can be used to identify tracts of interest,
but as mentioned in the introduction, these methods can be
laborious and require anatomical knowledge. A combination of
the data-driven approaches taken here complemented by the use
of ROIs for refinement to ensure proper termination of pathways
may be better suited to aid discovery of new tracts in vivo.

As previously mentioned, the clustering performed utilized
two different techniques and comparison of tracts across these
two methods was not possible due to lack of correspondence
of identified tracts. Differences include how streamlines were
clustered, where spectral clustering performs k-means clustering
in a spectral space to identify tracts, QuickBundles identifies
similar streamlines by directly employing the MDF distance
and adding the streamline to a cluster if the distance threshold
is satisfied. Differences in the algorithm are likely the cause
behind the differences observed. Nonetheless, the metrics used to
evaluate the identified tracts and the comparison of the metrics
can be applied generally to assess reliability regardless of the tract
identification technique chosen.

Despite the influence of the HCP acquisition protocol on
the MyConnectome acquisition protocol, there are notable
differences between the two datasets. HCP dMRI was acquired
with 3-shells and 270 total directions (90 directions/shell), while
MyConnectome dMRI was acquired with 2-shells and 60 total
directions (30 directions/shell). Additionally, preprocessing of
data may slightly differ, with the HCP data preprocessed with the
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HCP minimal preprocessing pipeline (Glasser et al., 2013) and
the MyConnectome data preprocessed using an in-house pipeline
to apply standard preprocessing steps. Preprocessed HCP dMRI
data was also corrected for gradient field inhomogeneities,
whereas the correction for gradient field inhomogeneities was
not possible for the MyConnectome dataset due to the lack of a
proprietary scanner-specific file required. Data harmonization—
an active area of research—is one possible method to improve
comparability between different datasets, as such, future work
should also explore the reliability of harmonized datasets.

To match the number of diffusion acquisitions available in the
MyConnectome dataset, n = 15 subjects were selected from the
HCP dataset to keep analysis as similar as possible between the
two datasets. As previously mentioned, variability within a single,
healthy adult individual is expected to be minimal, there may
be more variability in the larger population. In particular, more
variability may be expected in the superficial white matter due to
differing cortical folding patterns across individuals. In this study,
we have shown the ability of template-based clustering to identify
corresponding tracts across individuals in the limited sample
size. Future studies should explore and quantify the amount of
variability, in particular to the superficial white matter, across a
larger population.

With regards to clinical applications, such as in neurological
and psychiatric disorders, which have been recognized as
disorders of the network (e.g., epilepsy as a network disorder
(Mark et al., 2012), abnormal networks in schizophrenia
(Rubinov and Bullmore, 2013), and more), the capability to
identify connectivity throughout the brain, including previously
unnamed and unidentified tracts in a reliable manner has
important clinical implications. The techniques applied in this
study may be able to provide biomarkers indicative pathological
changes if tracts can be identified in the presence of disease.
However, one of the current limitations of the template-based
approach is the requirement of adequate registration, which may
be non-trivial with the occurrence of substantial morphological
change (e.g., due to tumors). The current study suggests that
while template-based approaches are reliable for identifying
connectivity and may be a critical approach in expanding
current knowledge of the human connectome with potential
future clinical impact, improvements are required to tackle the
challenges of identifying connectivity in the presence of disease.

CONCLUSION

In this work, we performed whole-brain tractography on
two unique datasets, assessing the reliability of template-
based clustering approaches and identifying relationships
between reliability metrics. Similar relationships were observed
irrespective of the clustering algorithm chosen suggestive of
the robustness of template-based approaches. Furthermore,
streamline count on its own may not be a good indicator of
reliability, though the evaluation of the metric relationships
suggest that the certain metrics may be in agreement with
other measures, providing a better indicator of reliability. We
further identified the superficial white matter (“U”-shaped)
tracts using the same clustering algorithms to assess reliability

of a template-based approach, observing similar relationships
as in whole-brain tractography. Data-driven, template-based
approaches can reliably identify and investigate pathways,
including those previously unnamed or unidentified such as the
superficial white matter.

Future work should look to examine reliably identified
“U”-shaped tracts to improve understanding of its biophysical
properties, the relationship with cortical measurements (e.g.,
gyrification), and how the short-range pathways are affected in
patient populations.
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