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ABSTRACT Objective: To develop an objective and efficient method to automatically identify Parkin-
son’s disease (PD) and healthy control (HC). Methods: We design a novel model based on residual
network (ResNet) architecture, named PD-ResNet, to learn the gait differences between PD and HC and
between PD with different severity levels. Specifically, a polynomial elevated dimensions technique is
applied to increase the dimensions of the input gait features; then, the processed data is transformed
into a 3-dimensional picture as the input of PD-ResNet. The synthetic minority over-sampling technique
(SMOTE), data augmentation, and early stopping technologies are adopted to improve the generalization
ability. To further enhance the classification performance, a new loss function, named improved focal
loss function, is developed to focus on the train of PD-ResNet on the hard samples and to discard the
abnormal samples. Results: The experiments on the clinical gait dataset show that our proposed model
achieves excellent performance with an accuracy of 95.51%, a precision of 94.44%, a recall of 96.59%,
a specificity of 94.44%, and an F1-score of 95.50%. Moreover, the accuracy, precision, recall, specificity,
and F1-score for the classification of early PD and HC are 92.03%, 94.20%, 90.28%, 93.94%, and 92.20%,
respectively. Furthermore, the accuracy, precision, recall, specificity, and F1-score for the classification of PD
with different severity levels are 92.03%, 94.29%, 90.41%, 93.85%, and 92.31%, respectively. Conclusion:
Our proposed method shows better performance than the traditional machine learning and deep learning
methods. Clinical impact: The experimental results show that the proposed method is clinically meaningful
for the objective assessment of gait motor impairment for PD patients.

INDEX TERMS Gait motor disorder, improved focal loss function, PD-ResNet, Parkinson’s disease (PD).

I. INTRODUCTION
Parkinson’s disease (PD) is a progressive, neurodegenerative
disease resulting from the degenerative death of dopaminer-
gic neurons. PD patients often suffer frommotor impairment,
e.g., resting tremors, muscle rigidity, bradykinesia, and postu-
ral imbalance, since dopaminergic neuromodulation can pre-
cisely impact motor control [1]. In addition, PD patients also
experience non-motor symptoms such as depression, consti-
pation, and sleep disturbances. Both motor and non-motor
symptoms can negatively affect patients’ life in numerous

aspects. Timely detection and early treatment can effectively
prevent motor complications and improve the quality of life
for PD patients [2]. Therefore, it requires the diagnosis as
early as possible to prevent and control PD.

Traditionally, the clinical assessment scales are used to
assess PD patients, which faces two apparent flaws. On the
one hand, parkinsonian features may be so subtle at the
beginning of the disease that leads to the misdiagnosis [3].
On the other hand, due to the complexity of the evaluation,
a professional and experienced neurologist is required to
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conduct a comprehensive evaluation, which consumes more
time and cost. Fortunately, the typical motor symptoms of PD
patients can be objectively quantified by using somewearable
sensor devices [4]. In this paper, the GYENNO MATRIX
wearable device is used to extract the gait features of subjects
for the identification of PD [5]. GYENNO MATRIX is a
motor evaluation device that includes ten wireless MEMS
inertial sensor nodes, a data center, and corresponding com-
puter software. The data of the sensors can be transmitted to
the computer software in real time through the data center,
and the computer software can automatically quantify the
human gait parameters.

Wearable sensor devices enable PD patients to be mea-
sured anytime and anywhere, and they can subsequently
generate many gait indicators associated with the quantita-
tive assessment of mobility [6]. Eight spatial-temporal and
kinematic gait features in 49 subjects were extracted using
two shank-mounted inertial measurement units in [7]. Then,
an support vector machine (SVM) based classifier for the
gait analysis and classification was developed to achieve
an overall accuracy of 93.9%. Referring to the study by
Sama et al., bradykinetic was evaluated by analyzing the
signals from a triaxial accelerometer placed on the waist
of 12 PD patients [8]. Most of the studies suffered from a
small number of sensors and small sample sizes. Referring to
the study by Mirelman et al., 134 gait features from 332 PD
patients and 100 HCs were extracted via multiple wear-
able sensor devices [9]. Then the traditional machine learn-
ing (ML) methods were employed to classify the severity
of PD. In this paper, we recruit 457 subjects and extract
194 comprehensive features from each subject under three
measurement conditions. Subsequently, a polynomial ele-
vated dimensions method is applied to increase the num-
ber of gait features. Synthetic minority over-sampling tech-
nique (SMOTE) [10] and data enhancement technology are
employed to further expand the samples.

For one-dimensional (1-D) clinical datasets, there have
extensive literatures, such as [7]–[9], to do manual fea-
ture extraction on the raw data before using traditional
ML methods. However, it requires expert domain knowl-
edge and it may influence the model’s accuracy. With the
rapid development of artificial intelligence technologies,
an increasing number of experts are devoting extensive
research to the application of deep learning (DL) in the
medical field [11], [12]. Compared with human experts,
DL performs well in prediction and diagnosis. Convolutional
neural network (CNN) is the main area of interest among DL,
which has been widely used in image processing thanks to
its powerful functions [13]. Several advanced CNN models
were proposed, such as AlexNet [14], VGGNet [15], Google
Inception Net (GoogLeNet) [16], and Residual Network
(ResNet) [17]. Transferring the parameters from a pre-trained
model to a new model is called transfer learning [18]. Many
studies fine-tuned the ImageNet-based pre-trained model and
subsequently applied the model to the field of medical imag-
ing [19]–[21]. However, ImageNet is an image dataset about
nature and is different from the medical image datasets. Blind

and violent transfer on unrelated areas is likely to lead to the
failure or even a negative transfer. Therefore, in this paper,
we build and train neural network from scratch. What we do
is not as simple as using pre-trainedmodels in DL but requires
more expertise and experience.

Since gait features in PD patients are not completely inde-
pendent from each other, the 2D CNN is used in the paper
to extract the spatial information among features. To our best
knowledge, there is no literature on using ResNet to identify
PD and HC frommultiple gait features. The ResNet does well
in classification tasks because it allows the neural network
to go deeper, be more accurate, have fewer parameters, and
solve the gradient problems. These advantages of the ResNet
mainly benefit from the residual unit [17]. In this paper,
considering the residual unit as the basic unit, a new model
based on ResNet architecture, named PD-ResNet, is proposed
to learn the gait differences between PD and HC. The main
contributions of this paper are summarized as follows.

1) To improve the performance, the polynomial elevated
dimensions technique is used to enhance the dimensionality
of the features of the input data, and both SMOTE and data
enhancement technology are adopted to increase the sample
size.

2) A PD-ResNet model is built to learn the gait information
of subjects to objectively classify PD and HC, early PD and
HC, as well as early PD and moderate to advanced PD.

3) An improved focal loss function is proposed to focus on
the learning of the samples that are difficult to be judged and
to stop the learning in abnormal samples.

The rest of this paper is organized as follows. Section II
introduces the dataset used and the details of the proposed
method. The evaluation criteria, experimental details, and the
final results of the experiments are described in Section III.
We make a brief review and discussion of our work in
Section IV. Section V provides the conclusion.

II. MATERIALS AND METHODS
A. DATABASE
This study has got the support of the Medical Ethics Com-
mittee of FujianMedical University Union Hospital (Fuzhou,
China). We recruited a total of 457 subjects. The dataset for
this study was obtained from the hospital from November
2018 to August 2021. Based on the Movement Disorders
Society (MDS) clinical diagnostic criteria for PD [22], move-
ment disorder specialists included those subjects diagnosed
with stages 1-3 of the Hoehn and Yahr’s scale (H-Y) [23]
into PD patients. Of all subjects, 296 PD patients and
161 age-matched HCs were identified as the PD group and
the HC group, respectively. Patients with any other neuro-
logical, psychiatric or orthopaedic diseases were excluded.
The age-matched HCs were collected according to similar
exclusion criteria. We further referred to the PD group with
H-Y scores that are greater than 2.5 as the moderate to
advanced PD group and the rest as the early PD group.
H-Y stages were determined while patients were ON med-
ication state, which occurred approximatively one hour after
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TABLE 1. Demographic and clinical information of the subjects.

medication intake. The demographic and clinical informa-
tion is described in Table 1. Before the gait features were
measured, each subject was asked to complete three Uni-
fied Parkinsons Disease Rating Scale (UPDRS), namely
UPDRS-I, UPDRS-II and UPDRS-III. To increase the num-
ber of the features and to extract comprehensive information,
we extracted 190 gait features from each subject under three
conditions and 4 demographic features (See Supplemen-
tary Tabel S1). The three testing conditions are as follows:
1) Time Up and Go (TUG): Stand up slowly from the chair,
walk along the designated path for a certain distance as usual
and then turn around and walk back to the original position.
We extracted 97 gait features during this process. 2) TURN:
We extracted seven gait features under the given way of
spinning. 3) NARROW: Walk as usual in a narrow path.
We extracted 86 gait features in this process. In addition,
4 demographic characteristics, i.e., gender, age, length of
thighs, and length of lower legs, were also included in the
list of features because these may independently influence
gait [9]. Before testing, clinical staff or family members
were arranged to instruct and assist the subjects in putting
on the wearable sensors and completing the standardized
movements. Furthermore, to ensure the validity of the results,
each task was required to perform 2-3 times, then the test
results were averaged.

B. METHOD OUTLINE
In this paper, a two-dimensional (2-D) CNNmodel is applied.
2-D CNN model is commonly used in computer vision and
image processing, where the input layer receives only 2-D
or three-dimensional (3-D) arrays. To this end, the gait data
should be first converted from one-dimensional (1-D) arrays
to 3-D arrays. Fig. 1 illustrates the flowchart of the proposed
approach. Transformation of data dimensions was completed
during data pre-processing. The sample imbalance between
PD group and HC group was solved by SMOTE, the fea-
ture dimensionality of the input dataset was raised by a
polynomial elevated dimensions technique, and the dataset

was subsequently transformed into the 3-D images. We ran-
domly divided the dataset into two groups, i.e., a training
set and a test set. The training set, after data augmentation,
was fed into the PD-ResNet for batch training. In addition,
the Root Mean Square Propagation (RMsprop) optimization
algorithm, learning rate (LR) decay technique, early stopping
technique, and improved focal loss function were employed
to achieve excellent training results and generalization ability.
Finally, the model performance was validated by a test set.

C. DATA PRE-PROCESSING
1) SAMPLE BALANCING
The initial samples consisted of 296 PDpatients and 161HCs.
Since sample imbalance could negatively affect the classifica-
tion performance and model’s accuracy [24], it needs to deal
with the initial imbalanced samples. The dominant approach
of overcoming the class imbalance in almost all analytic
scenarios is oversampling [25]. Random minority oversam-
plingmethods replicate samples fromminority classes, which
may cause overfitting [10], [24]. As a modified scheme of
the random oversampling algorithm, SMOTE is a technique
for manually synthesizing new samples based on a minority
class, which is suitable for tasks with input datasets in the
type of tabular or vector [26]. The SMOTE increases the sam-
ples by using random interpolation between minority class
samples according to the sample imbalance ratio. To realize
sample balance and increase the amount of data, SMOTE
generates some additional HC samples.

2) POLYNOMIAL ELEVATED DIMENSIONS
To transform 1-D data into 3-D data and get a large
size, it needs to enhance the feature dimensionality of the
input data. The polynomial elevated dimensions technique,
which uses the interactive multiplication of feature data to
increase its dimensionality, has become a simple and effective
method. In this method, the features are mapped to a high
dimensional space, thus obtaining the data projection in the
space. In this paper, the polynomial elevated dimensions
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FIGURE 1. The flowchart of our proposed approach.

technique is utilized to adjust the dataset, then the processed
dataset is transformed into the type of 1× 117× 117.

3) DATA AUGMENTATION AND BATCH PROCESSING
The dataset is first normalized to improve the convergence
speed andmodel’s accuracy. The dimensions of the processed
dataset are resized into 1 × 112 × 112. 70% of the dataset
is adopted as a training set, and 30% is used as a test set
to evaluate the model’s effectiveness. Because deep neural
networks need to rely on a sufficient number of data sam-
ples for training to avoid overfitting, a relatively low num-
ber of data is a common challenge. Data augmentation can
increase the diversity of the dataset and reduce the possibility
of overfitting during training. In this paper, in addition to

using the SMOTE to expand the dataset, the random erasing
data augmentation technique [27] is also utilized to further
increase the number of the data samples on the training set.
We batch the data samples, each containing 23 samples1,
to reduce computational complexity and prevent the loss
function from jumping into local minima during training.
Furthermore, to realize online data enhancement, random
erasing starts only before each small batch of the dataset
enters the model.

1Batch size is actually a hyper parameter that can be adjusted according
to the specific situation. In this paper, considering the balance between
generalization ability and the performance of the model, the optimal batch
size is chosen to be 23.
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FIGURE 2. The basic structure of the resnet unit.

D. RESIDUAL NETWORK
ResNet can provide excellent performance in various applica-
tions, such as image classification, image generation, visual
recognition, natural language processing, speech recognition
and user prediction. Fig. 2 illustrates the basic structure of the
residual unit [17]. H (x) and F(x) represent the underlying
mapping of the input value x after two branches and the
residual mapping of x after two weight layers, respectively.
It can be seen that the residual unit turns the issue from
fitting the relationship betweenH (x) and x to the relationship
between F(x) and x by adding an identity function as the
shortcut connection. Concerning the residual network, two
distinct advantages are presented compared to the common
CNN as follows.

1) EASIER TO BE OPTIMIZED
Generally, the activation function before the output layer of
the residual unit is ReLU activation function, which acts as
a constant function of 0 or an identity function. We stacked
multiple residual units together for learning. Assuming that
the ReLU activation functions are identity functions, one has

xl+1 = xl + F (xl, {Wl}) , (1)

where xl represents the input of the lth resnet unit, and Wl
denotes the weights. xl+1 and F(xl, {Wl}) represent a direct
forward propagated output and the residual mapping to be
learned of the lth resnet unit, respectively.

Then the forward propagation process of the residual net-
work can be defined as

xL = xl +
L−1∑
i=l

F (xi, {Wi}), (2)

where xL denotes the accumulated output of L− 1 connected
residual units.

However, for a common CNN, its forward propagation
process can be described as

xL = xl
L−1∏
i=l

Wi, (3)

whereWi specifies the weights, xl and xL represent the input
of the lth convolutional layer and the output after L − 1 con-
volutional layers, respectively.

By comparing Eq. (2) with Eq. (3), it can be yielded that the
residual network is less computationally intensive and easier
to be optimized than the common CNN.

2) A BETTER SOLUTION TO THE GRADIENT PROBLEM
Referring to Eq. (2), the gradient of the residual network can
be expressed in the backpropagation process as

∂E
∂xl
=
∂E
∂xL

(
1+

∂

∂xl

L−1∑
i=l

F (xi, {Wi})

)
, (4)

where E denotes the loss function of the model. The gradient
of the common CNN can be given by

∂E
∂xl
=
∂E
∂xL

L−1∏
i=l

Wi. (5)

By comparing Eq. (4) and Eq. (5), we can conclude that
when the network deepens, the common CNN is prone to the
problems of gradient disappearance and gradient explosion,
while the ResNet can well solve such issues.

E. PROPOSED PD-ResNet
The proposed PD-ResNet is shown in Fig. 3 (a), which is
constructed from scratch using residual units as the basic
units. The dataset with 1 × 112 × 112 pixels is fed into
the network, and a fine feature mapping can be gained after
a 1× 1 convolution is carried out. If the number of the hidden
layers is too much, gradient problems may occur during
training; on the contrary, the number that is too less stops
the model from learning in the optimal direction. Usually,
the number of hidden layers is regarded as a hyperparameter
from the perspective of the model. By several experiments,
we found three resnet layers for three downsamplings, which
is a reasonable choice between performance gain and compu-
tational complexity. The resnet layer is shown in Fig. 3 (b).
We exploit AdaptiveAvgPool2d to convert the size of the
image to 512 × 1 × 1. AdaptiveAvgPool2d extracts deeper
feature information and reduces the number of parameters
and the computational complexity of the network. Then, the
linear layer is employed as a classifier, and the number of
the output neurons corresponds to the number of classes,
i.e., 2. Afterward, sigmoid activation function is carried out
to normalize the classification results. In the classification of
HC versus (vs.) PD, early PD vs. moderate to advanced PD,
and HC vs. early PD, a classification result higher than or
equal to 0.5 is considered as PD, moderate to advanced PD
and early PD, respectively.
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FIGURE 3. The architecture of our proposed model. (a) The structure of PD-ResNet; (b) The structure of the resnet layer.

F. IMPROVED FOCAL LOSS
The cross-entropy loss function effectively measures weak
variation, and it converges quickly, thus making it one of the
most popular loss functions within classification networks.
Mathematically, it can be given by

CE
(
p+, y

)
=

{
− log

(
p+
)
, y = 1

− log
(
1− p+

)
, y = 0,

(6)

where CE is the loss value, p+ represents the probability of a
positive prediction, and y denotes the real value of the sample.

We define the following equation as

p′ =

{
p+, y = 1
1− p+, y = 0,

(7)

where p′ represents the degree of correct prediction. p′ =
0 means that the prediction result is entirely wrong, and
p′ = 1 when the prediction result is entirely correct. The
predicted result is considered to be completely random when
p′ = 0.5. The relationship between p′ and the predicted
results is depicted in Fig. 4. The numerical axis being closer
to the left indicates that the sample is more difficult to be
judged (which is defined as a hard-to-judge sample), while
the numerical axis be closer to the right denotes that the
sample is easier to be judged (which is defined as an easy-
to-judge sample).

Combining Eq. (6) with Eq. (7), the cross-entropy loss
function is written by

CE
(
p′, y

)
= − log p′. (8)

To getmore hard-to-judge samples to be trained, theweight
of the loss value should be increased, and conversely, the
weight of that should be reduced for the easy-to-judge sam-
ples. The basic idea of focal loss function is that a dynamic

FIGURE 4. The relationship between p′ and the predicted results.

coefficient is added in the loss function to achieve the adjust-
ment [28]. The expression for focal loss is given by

FL
(
p′
)
= −

(
1− p′

)γ log (p′) , (9)

where FL implies the loss value and γ is a hyperparameter.
It is apparent that the dynamic coefficient

(
1− p′

)2 is a
concave function. This paper needs to strengthen the training
of samples with incorrect judgments while weakening the
learning of samples with correct judgments. As a result,
let the loss value fall more slowly when p′ is in the range
from 0 to 0.5, and let it fall more quickly when p′ is in the
range from 0.5 to 1. The dynamic coefficient is set up as a
convex function, which do not need to be calculated in a strict
sense. Then the loss function is written as

FL
(
p′
)
=

(
−p′2 + 1

)
×
[
− log

(
p′
)]
. (10)

However, some anomalous samples exist due to misjudg-
ments, mishandling during checking, improper data augmen-
tation, etc. The most extreme case is that p′ = 0. Learning
from these samplesmay be counterproductive. This paper sets
a threshold, and the sample is treated as an outlier when p′ is
less than the threshold. The loss value under the anomalous
sample is set to zero. The threshold is taken to be 0.05 in
the experiment. An improved focal loss method is proposed,
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FIGURE 5. The structure of the confusion matrix.

which is given by

IFL
(
p′
)
=

{
0, p′ < 0.05(
−p′2 + 1

)
×
[
− log

(
p′
)]
, otherwise.

(11)

The loss value for each epoch is the average of the IFL for
each sample in that epoch.

III. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
In this paper, a confusion matrix is used to evaluate the per-
formance of the proposed model, which can measure the
accuracy of a classifier. Fig. 5 exhibits the structure of the
confusion matrix, which shows the details of the classifica-
tion results on PD vs. HC. True HC (THC ) and true PD (TPD)
represent the number of HC and PD samples that are correctly
classified, respectively. The false HC (FHC ) indicates the
number of PD samples that are incorrectly predicted as HC,
and the false PD (FPD) indicates the number of HC samples
that are incorrectly predicted as PD. Hence, the values on the
diagonal line, i.e., in the blue boxes, indicate the number of
correctly classified samples, while the other values are the
number of incorrectly classified samples. Accuracy (Acc),
precision (Pre), recall (Rec), specificity (Spe) and F1-score
(F1) can be calculated separately by a confusion matrix,
which serve as evaluation metrics for the proposed model.
These indicators are defined as

Acc =
THC + TPD

THC + TPD + FPD + FHC
× 100%, (12)

Pre =
TPD

TPD + FPD
× 100%, (13)

Rec =
TPD

TPD + FHC
× 100%, (14)

Spe =
THC

THC + FPD
× 100%, (15)

F1 =
2× Pre× Rec
Pre+ Rec

. (16)

B. EXPERIMENTAL DETAILS
Both PD-ResNet and GoogLeNet are implemented under the
DL framework of PyTorch. SVM, eXtreme Gradient Boost-
ing (Xgboost), and Random Forest (RF) are implemented

using the scikit-learn ML library. All programs are written
and implemented using python 3.7. During the training pro-
cess, the value of the loss function is minimized as much as
possible to achieve optimal results. The initial learning rate is
set as 10−3, and it decays to one-fifth of the previous value for
every ten epochs run. The learning rate decay method aims to
speed up the decline of loss value at the beginning of training
and prevent the learning rate from being so large that the loss
value falls into a local minimum in the later stages of training.
The batch size is 23. We chose the RMSprop optimization
algorithm as the optimization strategy that provides a better
result during exploratory tests. Besides, we use the early
stopping technique to prevent the model from overfitting.
Finally, the training process ends on the 25th epoch.

The same balanced dataset and evaluation metrics are used
for all comparative classifiers. The evaluation of ML exper-
imental results is carried out via ten fold cross-validation.
In each fold, 90% of the data samples are used for model
training, and 10% are used for model validation. To save
computational resources, for DL experiments, 70% of the
dataset is adopted as a training set, and 30% is used as a
test set. All the comparative classifiers are optimized, and the
optimal results are selected. A random number seed is set to
allow for full reproducibility of the experimental results.

C. CLASSIFICATION RESULTS
1) CLASSIFICATION OF PD AND HC
To observe the prediction results of the different models,
Fig. 6 shows the confusion matrices obtained by training
on SVM, Xgboost, RF, GoogLeNet and PD-ResNet, respec-
tively. SVM, RF, and Xgboost are excellent traditional ML
algorithms that have been proved to perform well in clas-
sification tasks. The GoogLeNet algorithm is a state-of-
the-art deep neural network model based on the inception
module, inception is a sparse structure that can somewhat
reduce overfitting. Fig. 6 also shows the confusion matrices
of GoogLeNet and PD-ResNet with three different loss func-
tions (namely the cross-entropy loss function, the focal loss
function, and the improved focal loss function).

To compare the performance, Table 2 lists the accuracy,
precision, recall, specificity, and F1-score of the different
models according to their confusion matrices. It can be seen
that PD-ResNet with improved focal loss function shows the
best performance with an accuracy of 95.51%, a precision of
94.44%, a recall of 96.59%, a specificity of 94.44%, and an
F1-score of 95.50%. PD-ResNet has a strong learning capa-
bility, and it solves the gradient problem very well. The accu-
racy of the proposedmodel can be improved by 3.38%-5.06%
compared to three representative traditional ML algorithms.
The reason is that the residual units are used to enhance the
learning capability of the model. Furthermore, the accuracy
of the proposed method can be improved by 3.38% compared
to GoogLeNet with the cross-entropy loss function.

To observe the fitting degree of the proposedmethod, Fig. 7
plots the dynamic change curves of accuracy and loss on the
training and test sets during the iteration process. From Fig. 7,
it can be observed that as the number of iteration grows, the
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FIGURE 6. Confusion matrices for all mentioned methods.

FIGURE 7. The dynamic change curves of accuracy and loss for the proposed method.

model’s accuracy exhibits an increasing trend while the loss
value shows a decreasing trend. After 25 epochs, the proposed
model reaches saturation, and training is stopped with the
help of early stopping. It is easily seen that the fitting degree
of the proposed method in the whole training and testing
processes conforms to the basic principle, and there is no
severe over-fitting risk.

To observe the overall performance of the proposed
method, the Receiver Operating Characteristic (ROC) Curve
and Area Under Curve (AUC) of the predicted results of
178 test samples are shown in Fig. 8. The AUC reaches 0.982,
which indicates the excellent performance of our model.

2) CLASSIFICATION OF EARLY PD AND MODERATE TO
ADVANCED PD
It is clinically significant to differentiate between early PD
and moderate to advanced PD due to the different treatment

schemes. Moreover, it can be seen from Table 1 that there
is statistically significant differences between early PD and
moderate to advanced PD for UPDRS. All 296 PD patients
in our dataset were classified according to H-Y scores [23]
into 230 patients with early PD and 66 patients with moderate
to advanced PD. The 296 PD samples were individually
removed as a new dataset, then the same dataset partition
methodwas used and the PD-ResNet was adopted for training
where all parameters were set in the same way. The accu-
racy, precision, recall, specificity, and F1-score are 92.03%,
94.29%, 90.41%, 93.85%, and 92.31%, respectively. These
results indicate that the proposed method is also applicable to
differentiate early PD from moderate to advanced PD.

3) CLASSIFICATION OF EARLY PD AND HC
Since the symptoms of early PD are not obvious, it makes
the diagnosis difficult. The 161 HCs and 230 early PD
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TABLE 2. Performance comparisons of the mentioned methods.

FIGURE 8. The ROC curve of the proposed method.

samples were moved out separately as a new dataset. The
same data preprocess and dataset partition methods were
used. Then PD-ResNet was adopted for training where all
parameters were set in the same way. The accuracy, preci-
sion, recall, specificity, and F1-scores are 92.03%, 94.20%,
90.28%, 93.94%, and 92.20%, respectively, which indicates
that the proposed method is also applicable to differentiate
early PD from HC.

IV. DISCUSSION
Since traditional clinical assessment scales are subjective and
expensive, it is of great importance to use advanced analytical
techniques to identify PD in clinical practice. ML and DL
methods are widely used for automatic quantification and
motor impairment analysis in PD. In this paper, gait features
are fed into the PD-ResNet based on the residual unit for
training, and an improved focal loss function is proposed.
PD-ResNet can efficiently extract and aggregate the rich-
est gait features. Improved focal loss function inherits the

advantages of focal loss function, which makes the network
mainly focus on learning hard samples. Furthermore, the
effect of anomalous samples is also taken into account by
improved focal loss function. Our proposed PD-ResNet with
improved focal loss function achieves good classification per-
formance, and its accuracy, precision, recall, specificity, and
F1-score are 95.51%, 94.44%, 96.59%, 94.44%, and 95.50%,
respectively. The dynamic change curves of accuracy and
loss from Fig. 7 show that the proposed method does not
risk over-fitting. The proposed method is also suitable for the
identification of early PD and moderate to advanced PD, and
the accuracy, precision, recall, specificity, and F1-score are
92.03%, 94.29%, 90.41%, 93.85%, and 92.31%, respectively.
Furthermore, the proposed method can also classify early PD
and HC with an accuracy of 92.03%, a precision of 94.20%,
a recall of 90.28%, a specificity of 93.94%, and an F1-score
of 92.20%.

There are various ways to extract gait characteristics from
PD patients. Since wearable sensor devices have the advan-
tages of economy and objectivity, they are used for the
automatic quantification of PD gait movement impairments.
Table 3 in detail compares the differences between the pro-
posed method and the existing methods for automatically
quantifying the gait of PD patients using wearable sensor
devices. Only the features on the lower back, two shank, and
feet from the subjects were extracted in [7], [29], and [30],
respectively. However, the gait of PD patients depends on
various aspects of body coordination, such as the walking
process on the lower limb requires coordination between the
swing of the upper limb and the central trunk to maintain
stability. The recognition results may be adversely affected
due to few acquisition nodes, single action, and few features
in the sensor acquisition system. Recently, the method on
capturing multiple gait characteristics of the whole body
by using numerous wearable sensor devices was proposed
in [9]. The 134 gait features of the subjects under TUG test
were extracted, and the PD was classified using traditional

VOLUME 10, 2022 2200111



X. Yang et al.: PD-ResNet for Classification of Parkinson’s Disease From Gait

TABLE 3. Comparison with the existing works.

TABLE 4. Performance of the proposed model with and without SMOTE.

ML methods. In this paper, 194 comprehensive gait charac-
teristics from subjects were extracted using the GYENNO
MATRIX wearable device. To exclude the effect of coinci-
dence, each subject was asked to test under three experimental
environments, i.e., TUG, TURN, and NARROW. An end-to-
end DL approach based on the resnet unit is used so that man-
ual feature selection is not required. Moreover, an improved
focal loss function is proposed, and some techniques such
as data augmentation, polynomial elevated dimensions, early
stopping, and LR decay are applied. Therefore, compared
with these existing studies, the proposed method has the
following advantages: 1) A considerable amount of data is
available and a large number of features are extracted for each
subject. 2) An end-to-end DL approach is adopted without
requiring additional manual feature extraction.

To obtain enough features for the training and type con-
version of our dataset, in this paper, the polynomial elevated
dimensions technology is adopted to enhance the dimen-
sionality of the features of the input data. In this method,
the interactive multiplication of feature data is utilized to
increase the feature dimensionality. In this paper, the datasets
before and after the polynomial boosting process were put
into a logistic regression algorithm for training, respectively.

The results show an accuracy of 86.95% for the former and
91.30% for the latter. Hence, it proves that the polynomial
elevated dimensions technology can be fully applicable to the
dataset of this paper.

Imbalanced samples may negatively affect the accuracy of
the model and thus be detrimental to the training of the classi-
fication network. In this paper, sample balancing is achieved
by using SMOTE. To demonstrate the effectiveness of the
method, the differences in model performance before and
after using SMOTE are presented in Table 4. It can be seen
from the table that SMOTE improves the overall performance
of the model.

From table 2 we can see that the improvement in perfor-
mance comes mainly from the proposed method in the paper.
Although our proposed method shows good performance, the
present work has several limitations. Firstly, the evaluation
was done ON medication, but the features under OFF-state
maybe different for patients with advanced PD who suffer
from severe motor impairment. Secondly, the collection of
gait parameters from subjects is limited to the hospital ward
and clinic environment which are very different from their
real living conditions. Many psychological factors may affect
the measurement results due to environmental disturbances.
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Hence, a system suitable for long-term monitoring in daily
life conditions should be further developed. The system can
collect the motor symptoms from PD patients anytime and
anywhere without manufactured interference and transmit
them remotely. It will provide researchers with remote mon-
itoring data and realize remote home monitoring. Moreover,
PD patients may also experience freezing of gait, i.e., FOG,
which often occurs in their legs during walking [31]. How-
ever, in our study, due to the short duration of the test and
the limited number of patients, a few patients who reported
a FOG medical history did not present any FOG during
testing. Finally, one of the main challenges in PD includes
the differential diagnosis with other neurological disorders
(e.g., progressive supranuclear palsy, essential tremor and
multisystem atrophy) rather than HC only. Because themove-
ment disorder-related symptoms of these diseases often show
remarkable similarities, it is necessary to conduct an in-depth
analysis of the movement signal to reduce the possibility of
misjudgment.

Future work is recommended to further expand the dataset,
which improves the classification accuracy and generaliza-
tion ability. Hence, more accurate classification of the sever-
ity of PD patients can be realized with sufficient dataset.

V. CONCLUSION
In this paper, a new PD-ResNet structure based on the resnet
unit has been presented to realize the automatic recognition of
PD and classify PD severity. With its excellent performance,
PD-ResNet aggregates rich feature information and solves the
gradient problem very well. Furthermore, an improved focal
loss function has been proposed. The experiments show that
the proposed PD-ResNet with improved focal loss function
can efficiently identify PD. The proposed method has great
potentials for the applications on intelligent diagnosis and
medical automation in PD field, which can provide clinicians
with effective help in diagnosing PD.
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