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Abstract

This study aimed to analyze the bile acid patterns in commercially available oxgall powders

used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders pur-

chased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and ana-

lyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid

chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester

derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile

acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual

bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic

acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxy-

cholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The con-

tent of total bile acid among the three oxgall powders was similar; however, the relative

contents of the individual bile acids among these oxgall powders were significantly different

(P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of

glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihy-

droxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It

was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those

from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human

bile model.

Introduction

Bile acids are synthesized from cholesterol in liver hepatocytes in humans and most animals,

stored in the gallbladder, secreted into the small intestine after ingestion of a fatty meal, effi-

ciently reabsorbed by the distal small intestine and returned to the liver via the portal vein [1].

Bile acids are a digestive secretion that plays an important physiological role in the elimination

of cholesterol from the body and in the intestinal solubilization and absorption of lipids [2].

Bile acid concentration ranges from *8% in the gallbladder to *0.2–2% in the intestine.

These values are not absolute, though, as person-to-person variations in bile acid levels exist

due to factors such as dietary intake [3]. In addition to their classical roles as detergents to aid
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in the process of digestion, bile acids are an important antimicrobial agent in the mammal gut

[4]. Their antimicrobial mechanisms include inducing membrane damage, disturbing macro-

molecule stability [5], and dissipating the bacterial transmembrane electrical potential [6].

Probiotics are live microbial food supplements which, when administered in adequate

amounts, exert various health benefits to the consumers [7]. These bacteria bring various

health benefits to the host, such as modulation of immune responses, prevention of gastroin-

testinal infections, improvement of lactose metabolism, regulation of lipid metabolism, and

antiobesity, anticancer, antiallergic, and antioxidative potentials [8, 9]. The current scientific

consensus is that probiotics should be alive to exert their beneficial effect in the human gastro-

intestinal tract [10]. Moreover, to survive passage through the small intestine, probiotic strains

must survive and grow in the presence of bile salts [11]. Hence, when evaluating the potential

of using lactic acid bacteria as effective probiotics, it is necessary to evaluate their ability to

resist bile [12, 13].

Due to the similarity between oxgall and human bile in bile acid composition, oxgall pow-

der, a product derived from bovine bile, has been commonly used to assess the bile tolerance

ability of potential probiotic strains at a concentration of 0.3% (wt/vol) instead of human bile

[14–16]. In the international literature, the oxgall powders used for bacterial bile tolerance

assay were mainly obtained from three manufacturers, namely Sigma-Aldrich (USA) [17, 18],

Oxoid (UK) [19–21] and BD Difco (USA) [22, 23]. Little or no information has been reported

on the total bile acid content and the content of the individual bile acids in commercially avail-

able oxgall powders. However, it is crucial to know this information in order to clarify which

oxgall powder is closest to human bile.

This study aimed to analyze bile acid patterns in the three commercially available oxgall

powders used for the evaluation of the bile tolerance ability of probiotic bacteria. Moreover,

the results obtained were compared with those from human bile. This study provides a refer-

ence for the selection of commercially available products capable of simulating the bile envi-

ronment of the human intestinal tract.

Experimental material and methods

Chemicals and reagents

All chemicals and solvents were of the highest purity commercially available. Standard bile

acids (sodium salts), including glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid

(GDCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic

acid (TDCA), taurocholic acid (TCA), chenodeoxycholic acid (CDCA), deoxycholic acid

(DCA) and cholic acid (CA), were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Three different oxgall powder samples were obtained from Sigma-Aldrich (Product code

B3883), Oxoid (Product code LP005, Basingstoke, Hampshire, UK) and BD Difco (Product

code 212820, Sparks, MD, USA). Acetonitrile and methanol (HPLC grade) were supplied by

Tedia (Fairfield, OH, USA). The derivatization reagents p-bromophenacylbromide and N, N-

diisopropylethylamine, and the ion-pairing reagent tetrabutylammonium hydrogen sulfate

were also purchased from Sigma-Aldrich.

Analysis of conjugated bile acids

Samples of the three oxgall powders under study were dissolved in distilled water at a concen-

tration of 0.3% (wt/vol), filtered through a 0.45-μm nylon filter, and analyzed for conjugated

bile acids using a Shimadzu LC-20A HPLC system (Kyoto, Japan) equipped with a TC-C18

reverse-phase column [5 μm, 4.6 mm×250 mm; (Agilent Technologies, Santa Clara, CA,

USA)]. The column temperature was maintained at 40˚C and the flow rate was set at 1.0 mL/
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min. The sample injection volume was 20 μL and ultraviolet detection was performed at 200

nm using a Shimadzu SPD-M20A photodiode array detector. Mobile phase solvent A was ace-

tonitrile-water (60:40) containing 7.5 mM tetrabutylammonium hydrogen sulfate (pH 2.5),

while solvent B was acetonitrile-water (30:70) containing 7.5 mM tetrabutylammonium hydro-

gen sulfate (pH 2.5) [24]. The mobile phase gradient increased linearly within 30 min from an

initial concentration of 15% solvent A to a final concentration of 70% solvent A.

Analysis of free bile acids

Samples of the three oxgall powders under study were dissolved in distilled water at a concen-

tration of 1.0% (wt/vol) and filtered through a 0.45-μm nylon filter. The oxgall solution (1 mL)

was acidified with formic acid to pH 2.0 and then extracted three times with 3 mL of ethyl ace-

tate. The combined organic extracts (4.0 mL) were evaporated to dryness under nitrogen

stream at 40˚C after dehydration with anhydrous sodium sulfate. The residue was dissolved in

2.5 mL of anhydrous acetonitrile–methanol (9:1) containing 5 g/L p-bromophenacylbromide.

Subsequently, 25 μL of N, N- diisopropylethylamine was added to catalyze the reaction as pre-

viously described [25], and incubated at 60˚C for 30 min.

The free bile acid derivatives were analyzed using a Shimadzu LC-20A HPLC system

equipped with a TC-C18 reverse-phase column (5 μm, 4.6mm × 250 mm). The column tem-

perature was maintained at 40˚C and the flow rate was set at 1.0 mL/min. The sample injection

volume was 20 μL and ultraviolet detection was performed at 254 nm using a Shimadzu

SPD-M20A photodiode array detector. Mobile phase solvent A was acetonitrile-water (70:30)

at pH 3.10 adjusted with phosphoric acid, and mobile phase solvent B was acetonitrile. The

mobile phase gradient increased linearly within 25 min from an initial concentration of 0% of

the solvent B to a final concentration of 80% of the solvent B.

Analysis of total bile acid

The total bile acid content was determined enzymatically by measuring the aqueous solution

of the oxgall powders (0.3%, wt/vol) using a Hitachi 7180 automatic biochemical analyzer

Table 1. Content of individual bile acids and total bile acid in oxgall powder from different manufactures.

Bile acid Sigma-Aldrich Oxoid BD Difco

% (wt/wt) mmol/kg % (wt/wt) mmol/kg % (wt/wt) mmol/kg

GCA 24.21 ± 0.06a 519.88 ± 1.36A 20.20 ± 0.03c 433.81 ± 0.64C 23.05 ± 0.11b 494.99 ± 2.31B

GDCA 5.05 ± 0.02b 112.34 ± 0.44B 4.39 ± 0.02c 97.70 ± 0.35C 5.55 ± 0.14a 118.67 ± 0.57A

GCDCA 1.38 ± 0.01a 30.66 ± 0.19A 1.19 ± 0.00b 26.53 ± 0.08B 1.39 ± 0.02a 30.85 ± 0.36A

TCA 30.53 ± 0.08b 592.00 ± 1.55B 31.64 ± 0.07a 613.65 ± 1.43A 30.00 ± 0.13c 581.85 ± 2.48C

TDCA 5.51 ± 0.05c 122.55 ± 1.16B 7.29 ± 0.07a 145.79 ± 1.45A 6.04 ± 0.04b 120.94 ± 0.81B

TCDCA 1.51 ± 0.01c 33.48 ± 0.27B 1.67 ± 0.02a 37.22 ± 0.35A 1.53 ± 0.01b 30.68 ± 0.25C

CA 0.58 ± 0.02c 13.58 ± 0.44C 0.95 ± 0.03b 21.98 ± 0.81B 2.87 ± 0.05a 66.67 ± 1.14A

DCA 0.09 ± 0.00c 2.09 ± 0.08C 0.11 ± 0.00b 2.77 ± 0.01B 0.50 ± 0.01a 12.15 ± 0.16A

CDCA 0.02 ± 0.00c 0.55 ± 0.05C 0.03 ± 0.00b 0.79 ± 0.03B 0.10 ± 0.00a 2.37 ± 0.03A

Total bile acid — 1440.51 ± 20.83AB — 1402.16 ± 15.15B — 1460.66 ± 18.70A

Data are expressed as mean ± SD (n = 4). Means in the same column not sharing a common lowercase superscript letter are significantly different from each other

(P< 0.05). Means in the same row not sharing a common uppercase superscript letter are significantly different from each other (P< 0.05).

Abbreviations: GCA, glycocholic acid; GDCA, glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; TCA, taurocholic acid; TDCA, taurodeoxycholic acid;

TCDCA, taurochenodeoxycholic acid; CA, cholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid.

https://doi.org/10.1371/journal.pone.0192964.t001
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(Hitachi, Tokyo, Japan) coupled with a commercial kit from BioSino Biotechnology and Sci-

ence Inc. (Beijing, China) as described previously [26].

Statistical analysis

Data are expressed as mean ± standard deviation (SD). Statistical analysis was performed by

one-way analysis of variance (ANVOA) followed by Tukey’s multiple comparison tests using

SPSS 18.0 software package (SPSS Inc., Chicago, IL, USA). A difference was considered statisti-

cally significant when P< 0.05.

Results

The liquid chromatograms obtained from the analysis of the bile acid compositions of the

three oxgall powders showed baseline separation and symmetrical sharp peaks for nearly all

the conjugated bile acids (S1 Fig) and the free bile acids modified as p-bromophenacyl esters

(S2 Fig) under the present chromatographic conditions. No severe peak tailing or leading was

observed for any of the analytes. The major conjugated bile acids in the oxgall powders were

identified as TCA, GCA, TDCA, GDCA, TCDCA and GCDCA, whereas the major free bile

acids were characterized as CA, DCA and CDCA. The sum of the content of these individual

bile acids in each of the oxgall powders exceeded 98% of total bile acids content determined

with the enzymatic colorimetric method. The content of individual bile acids in the oxgall

powders is summarized in Table 1. The content of the individual bile acids in each oxgall pow-

der was significantly different (P< 0.05). In each oxgall powder, TCA was the most abundant

conjugated bile acid, followed by GCA, TDCA, GDCA, TCDCA, and GCDCA, whereas CA

was the most abundant free bile acid, followed by DCA and CDCA.

Fig 1 shows the content of glycine-conjugated bile acids (GCBA) and taurine-conjugated

bile acids (TCBA), and the GCBA to TCBA ratio in oxgall powders from different manufactur-

ers. There were significant differences in these parameters among the oxgall powders

(P< 0.001). The oxgall powder from Sigma-Aldrich showed the highest GCBA content, fol-

lowed by those from BD Difco and Oxoid, whereas the oxgall powder from Oxoid showed the

highest TCBA content, followed by those from Sigma-Aldrich and BD Difco. The oxgall pow-

der from Sigma-Aldrich showed the highest GCBA to TCBA ratio, followed by those from BD

Difco and Oxoid.

Fig 2 shows the content of dihydroxy bile acids (DHBA) and trihydroxy bile acids (THBA)

and the DHBA to THBA molar ratio in oxgall powders from different manufacturers. There

were significant differences in these parameters among the oxgall powders (P< 0.01 or

P< 0.001). The oxgall powder from BD Difco showed the highest DHBA and THBA content,

whereas those from Sigma-Aldrich and Oxoid showed the lowest content of DHBA and

THBA, respectively. The oxgall powder from Oxoid showed the highest DHBA to THBA

molar ratio, followed by those from BD Difco and Sigma-Aldrich.

Fig 3 shows the content of free bile acids (FBA), conjugated bile acids (CBA), and the FBA/

TBA ratio in oxgall powders from different manufacturers. There were significant differences

in these parameters among the oxgall powders (P< 0.01, or P< 0.001). The oxgall powder

from BD Difco showed the highest FBA content, followed by those from Oxoid and Sigma-

Aldrich, whereas the oxgall powder from Sigma-Aldrich showed the highest CBA content,

Fig 1. Comparison of the contents of GCBA (A), TCBA (B), and GCBA/TCBA (C) in oxgall powders from the

three manufacturers. ���P< 0.001. Data are expressed as the mean ± SD (n = 4). Abbreviations: GCBA, glycine-

conjugated bile acid; TCBA, taurine-conjugated bile acid.

https://doi.org/10.1371/journal.pone.0192964.g001
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followed by those from BD Difco and Oxoid. The oxgall powder from BD Difco showed the

highest FBA to TBA ratio, followed by those from Oxoid and Sigma-Aldrich.

Discussion

Bile is a yellow-green aqueous solution whose major constituents include 70% bile salts, 22%

phospholipids, 4% cholesterol, 3% proteins, and 0.3% bilirubin [27]. The core antimicrobial

constituents in bile are conjugated bile acids formed from cholesterol in the liver cells. In the

gallbladder, duodenum, and the jejunum, bile acids are present almost exclusively as glycine or

taurine derivatives [28]. The human biliary bile acids consist mainly (~ 96%) of GCA,

GCDCA, GDCA, TCA, TCDCA, and TDCA in a molar ratio of ~ 6:6:4:3:3:2 [29].

Each of the 9 individual bile acids could be detected in the three oxgall powders, and the

majority of them were present in the form of conjugate either with glycine or taurine.

Although these results are consistent with the findings on the major composition of human

bile acids [29], the three oxgall powders differed from the human bile in the relative abundance

of the individual bile acids. GCBA, DHBA, and FBA are more hydrophobic and, therefore,

have faster transmembrane movement than TCBA, THBA, and CBA, respectively [30]. Conse-

quently, GCBA, DHBA, and FBA have greater antibacterial activities than TCBA, THBA, and

CBA, respectively [6, 31]. Accordingly, the higher GCBA to TCBA, DHBA to THBA, and FBA

to CBA ratios, the greater the antimicrobial ability of bile will become when total bile acid con-

centration added to culture media is kept constant.

Because the oxgall powder from Sigma-Aldrich was the closest to human bile in the above

parameters, it appears to be the best model for evaluating the bile tolerance ability of poten-

tially probiotic strains. Considerable variation was also found in GCBA/TCBA, DHBA/THBA,

and FBA/CBA among the three oxgall powders. One possible explanation for this discrepancy

is that different bovine species or production technologies used by the manufacturers differ

from each other. Moreover, the high FBA content in the oxgall powder from BD Difco might

be due to chemical or microbial deconjugation of CBA.

Oxgall powders are also used as raw materials in the pharmaceutical industry to manufac-

ture the therapeutic agents CDCA and ursodeoxycholic acid (UDCA) [32]. However, the

oxgall powders analyzed in this study as biological agents have completely different bile acid

compositions compared to those used as raw materials in the pharmaceutical industry. In fact,

the latter oxgall powders usually undergo alkaline hydrolysis to release the precursor CA for

the synthesis of CDCA and UDCA. Particularly, they mainly contain CA and DCA and small

amounts of CDCA, and do not contain nearly any conjugated bile acids [33].

Conclusions

Nine bile acids (i.e., TCA, GCA, TDCA, GDCA, TCDCA GCDCA, CA, CDCA, and DCA)

were detected in all three oxgall powders from Sigma-Aldrich, Oxoid, and BD Difco. Although

there was not considerable difference in the content of total bile acid among the three oxgall

powders, significant difference was found in the relative content of the individual bile acids.

Since the oxgall powder from Sigma-Aldrich was the most similar to human bile in the GCBA

to TCBA, DHBA to THBA, and FBA to TBA ratios compared to those from Oxoid and BD

Difco, it is the most suitable for evaluating the bile tolerance ability of probiotic bacteria

instead of human bile.

Fig 2. Comparison of the contents of DHBA (A), THBA (B) and DHBA/THBA (C) in oxgall powders from the

three manufacturers. ��P< 0.01 and ���P< 0.001. Data are expressed as the mean ± SD (n = 4). Abbreviations:

DHBA, dihydroxy bile acids; THBA, trihydroxy bile acids.

https://doi.org/10.1371/journal.pone.0192964.g002
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Supporting information

S1 Fig. Separation of conjugated bile acids in a standard mixture (0.8 mM each) (A) and

aqueous solution of oxgall powder from Sigma-Aldrich (B), Oxoid (C), and BD Difco (D).

Peak identification: 1, GCA; 2, TCA; 3, GCDCA; 4, GDCA; 5, TCDCA; 6, TDCA. Abbrevia-

tions: GCA, glycocholic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic acid;

GDCA, glycodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxy-

cholic acid.

(EPS)

S2 Fig. Separation of p-bromophenacyl esters of free bile acids in a standard mixture (0.1

mM each) (A) and aqueous solution of oxgall powder from Sigma-Aldrich (B), Oxoid (C),

and BD Difco (D). Peak identification: 1, CA; 2, CDCA; 3, DCA. Abbreviations: CA, cholic

acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid.

(EPS)
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