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A B S T R A C T   

The inception of highly active antiretroviral therapy (HAART) has changed the management of human immu-
nodeficiency virus (HIV) positive patients, with an improvement in life expectancy. However, neurological 
complications associated with high dosage and chronic administration of HAART have not been fully addressed. 
Therefore, this study evaluated the potential benefits of silver nanoparticles (AgNPs) conjugated-HAART 
(HAART-AgNPs) and its interaction with neuronal and glial cells in type-2 diabetic rats. Forty-two (n = 42) 
adult male Sprague-Dawley rats (250 ± 13 g) were divided into non-diabetic and diabetic groups. Each rat was 
administered with either distilled water, HAART, or HAART-AgNPs for eight weeks. After that, the prefrontal 
cortex (PFC) was excised for immunohistochemical, biochemical, and ultrastructural analysis. The formulated 
HAART-AgNPs were characterised by Ultraviolet-Visible, Transmission electron microscope, Energy Dispersive 
X-ray and Fourier transform infrared spectroscopy. Of the various concentrations of HAART-AgNPs, 1.5 M 
exhibited 20.3 nm in size and a spherical shape was used for this study. Administration of HAART-AgNPs to 
diabetic rats significantly decreased (p < 0.05) blood glucose level, number of faecal pellets, malondialdehyde 
(MDA), tumour necrosis factor-alpha (TNF-α), Interleukin-1 beta (IL-1β) compared with HAART-treated diabetic 
rats. Notably, there was a significant increase (p < 0.05) in antioxidant biomarkers (SOD and GSH), improve-
ment in PFC-glial fibrillary acid protein (PFC-GFAP) positive cells and alleviation of anxiety-like behaviour in 
HAART-AgNPs treated diabetic rats. These results showed that HAART-AgNPs alleviates the anxiogenic effect 
and neuronal toxicity aggravated by HAART exposure via the reduction of oxidative and neuroinflammatory 
injury as well as preserving PFC GFAP-positive cells and neuronal cytoarchitecture.   

1. Introduction 

The introduction of highly active antiretroviral therapy (HAART) has 
changed the Human Immunodeficiency Virus (HIV) diagnosis from a 
fatal disease into a chronically managed condition. Consequently, the 
life expectancy and the quality of life among the people living with HIV 
have since improved (Barbier et al., 2020). Despite the benefits of 
HAART, its long-term use and systemic exposure has been strongly 

linked with various metabolic disturbances such as diabetes and car-
diovascular diseases (Nansseu et al., 2018; Sapula et al., 2022). Previous 
studies have reported that initiation of HAART increases the risk of 
diabetes mellitus (Nansseu et al., 2018; Ergin et al., 2020). The mech-
anism by which HAART causes diabetes has been attributed to excessive 
reactive oxygen species (ROS) production, leading to cell toxicity 
(Awodele et al., 2018; Ikekpeazu et al., 2020). The increased ROS 
damage vital cellular components (e.g., DNA, lipids, and proteins) in 
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glucoregulatory tissues leading to insulin resistance or compromised 
insulin synthesis, thereby promoting hyperglycemia (Han, 2016). Also, 
HAART has been linked with mitochondrial damage and subsequently 
increases the risk of neuropathy and neuroinflammation (Lin et al., 
2018; Lu et al., 2021). Chronic administration of HAART to HIV positive 
patients has been reported to cause neuroinflammation, changes in 
astrocyte mitochondrial membrane and mitochondrial ROS production 
in animal experiments (Bertrand et al., 2021; Lawal et al., 2022). 

The astrocytes are the major components of the brain tissue involved 
in the overall maintenance of brain homeostasis, neuronal metabolism, 
and neuroprotection (Siracusa et al., 2019). Thus, active astrocyte 
dysfunction during hyperglycemia characterised by a decrease in glial 
fibrillary acidic protein (GFAP) level has been reported to promote 
neurocognitive dysfunctions (Yang et al., 2018; Kodidela et al., 2020). 

The continuous use of HAART to prevent a viral rebound in people 
living with HIV and diabetes-induced neuroinflammation caused detri-
mental effects on astrocytes in the CNS and contributed significantly to 
the aetiology of neuro-pathologies (Cohen et al., 2017; Yang et al., 
2018). Excessive production of pro-inflammatory cytokines during 
neuroinflammation has been implicated in cognitive deficits and anxiety 
disorders (Charlton et al., 2018; Li et al., 2019). Interestingly, in the 
post-era of HAART, people living with HIV have experienced an 
improvement in motor skills and verbal fluency but show impaired ex-
ecutive functions and anxiety-like behaviour (Heaton et al., 2011; Checa 
et al., 2020). In addition, the prevalence of anxiety and depression 
among the patient receiving HAART remains high (Nuesch et al., 2009; 
Rabkin et al., 2000). The most used components of HAART (Efavirenz 
and Tenofovir) have been reported to cross the blood-brain barrier, 
causing mitochondrial dysfunction and some neurological-related 
adverse effects like depression and anxiety disorder (Chen et al., 2019; 
Checa et al., 2020). Several studies have suggested that the prefrontal 
cortex and its circuitry play a vital role in anxiety-like behaviour in 
animals and humans (Likhtik et al., 2014; Hare and Duman, 2020). More 
so, a decrease in the prefrontal cortex activities and abnormalities in the 
neuroimaging studies have been observed in fearful and anxious in-
dividuals (Berkowitz et al., 2007; Likhtik et al., 2014). 

The application of nanomedicine for antiretroviral drug delivery 
holds promise in HIV therapeutics due to their unique advantages such 
as increased drug bioavailability, stability, ability to reach the target cell 
population, and half-life (Kumar et al., 2015). 

The primary issue with HAART is that it requires high doses for a 
prolonged duration of time to reduce the viral level in the system, thus 
predisposing living tissue to toxicity (Kumar, 2019). 

Silver nanoparticles (AgNPs) exhibit novel properties, making them 
suitable for a wide range of applications in the biomedical field. In 
addition, AgNPs are the most studied and utilised nanoparticles due to 
their simple method of synthesis, high surface to volume ratio, unique 
morphology, and intracellular delivery system (Marin et al., 2015). 
AgNPs have been utilised as antiviral, antidiabetic, and antioxidant 
agents in the biomedical field (Vadlapudi and Amanchy, 2017). 

Conversely, in vitro and in vivo studies on the neurotoxic effects of 
silver and silver nanoparticles reported a size- and dose-dependent 
cellular uptake and toxicity (Greish et al., 2019a; Ferdous and Nem-
mar, 2020). Small-medium-sized nanoparticles have been reported to be 
less toxic to the cell (Lara et al., 2010; Ferdous and Nemmar, 2020). 
More so, studies have reported that cytotoxic effects of silver nano-
particles can be minimised by reducing silver ions to a ground state 
(from Ag+ to Ag0), synthesising a spherical shape, small-medium size, 
and modified surface area (Smith et al., 2018; Dlugosz et al., 2020). 
Another study suggests that the cytotoxic effect observed in the use of 
silver nanoparticles is due to silver ions exposure (Wang et al., 2014). 

However, there is no data to substantiate the interaction of HAART 
conjugated with silver nanoparticles on neuronal cells and neuro-
cognitive dysfunctions. Hence, this study assessed the role of HAART- 
silver nanoparticles conjugate on the PFC of STZ-induced diabetic rats. 

2. Materials and methods 

2.1. Materials 

The Atripla, a combined form of Efavirenz (EFV, 600 mg), Emtrici-
tabine (FTC, 200 mg) and Tenofovir disoproxil fumarate (TDF, 300 mg), 
was purchased from Dis-Chem pharmacy Ballito, South Africa. Strep-
tozotocin (STZ), trisodium citrate, Sodium hydroxide and silver nitrate 
(AgN03) of analytical grade were sourced from Sigma-Aldrich Company, 
Johannesburg, South Africa. Enzyme-linked immunoassay (ELISA) kits 
for TNF-α (Catalogue no: E-EL-R0019) and interleukin (IL)− 1β (Cata-
logue no: E-EL-R0012) were purchased from BIOCOM Africa (pty), Ltd, 
South Africa. All the chemicals, reagents, and equipment were of 
analytical grade. 

2.2. Experimental animal 

Forty-two (42) adult male Sprague-Dawley rats (250 ± 13 g) were 
obtained from the Biomedical Research Unit (BRU) of the University of 
KwaZulu-Natal and were housed in the standard animal laboratory 
room. The animal laboratory room was maintained at a temperature of 
24–26 

◦

C, 12:12 light: dark cycle and 40–60% humidity. The animals 
were allowed free access to water and feed ad libitum. All animals were 
handled according to the National Institute of Health Guide for the Care, 
and Use of Laboratory Animals (NIH Publications No. 80–23), revised in 
1996. The animal laboratory procedures were approved by the Animal 
Ethics Committee of the University of KwaZulu-Natal (AREC/044/ 
019D). 

2.3. Experimental design 

After acclimatisation for six (6) days, the rats were randomly divided 
into six groups (n = 7 per group) and were treated for eight weeks, as in  
Fig. 1. The recommended animal dose was calculated using a human 
equivalent dose (HED) as recommended by the United States Food and 
Drug Administration (FDA) (Nair and Jacob, 2016) and the dose given 
was determined according to the previous studies (Everson et al., 2018; 
Olojede et al., 2022). 

2.4. Induction of type II diabetes in rats 

Experimental type 2 diabetes mellitus was induced using a fructose- 
streptozotocin (STZ) rat model as described by (Wilson and Islam, 
2012). Briefly, rats received 10% fructose solution ad libitum for two 
weeks. After that, the rats were fasted overnight and injected with a 
single of 40 mg/Kg B.W. STZ i.p. The STZ was dissolved in 0.9% NaCl 
with 100 mM sodium citrate buffer (pH 4.5). The control rats received 
an equal volume of the buffer. Animals with fasting blood glucose levels 
≥ 200 mg/dL were considered diabetic and included in this study. 

2.5. Formulation of HAART-AgNPs 

Silver nanoparticles were synthesised according to Turkevich et al. 
(Turkevich et al., 1951). Briefly, an aqueous solution (0.03 M) of silver 
nitrate (AgNO3) was prepared from 5.10 g of AgNO3 crystal. Then, a 
stock aqueous solution (2 M) of trisodium citrate (TSC) was prepared 
from 147 g in 250 mL of double-distilled water and used as a reducing 
and stabilising agent. Four TSC solutions with varying concentrations 
(0.5 M, 1 M, 1.5 M & 2 M) were prepared. Thereafter, an aqueous so-
lution of 0.03 M of AgNO3 was mixed with various concentrations of 
TSC, and it was continuously stirred for 5 mins at 90 ◦C. The resultant 
solution was adjusted with concentrated NaOH at a pH of 10.5. A colour 
change from colourless to amber yellow was observed, and this indi-
cated that AgNPs was successfully synthesised. 

The HAART-silver nanoparticle (HAART-AgNPs) was prepared by 
dissolving 15 g of HAART in 10 mL of concentrated sodium hydroxide 
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solution, and distilled water was added to make 50 mL. The final con-
centration of HAART (1. 05 M) was mixed with 100 mL of AgNPs 
aqueous solution and then stirred on ultra-sonication to ensure proper 
reaction of HAART and AgNPs. 

The conjugated AgNPs + HAART was centrifuged at 4500 rpm and 
40 ◦C for 40 min to discrete the unincorporated drug. The supernatant 
was analysed using a UV spectrophotometer at a wavelength of 
285–315 nm to calculate the quantity of unincorporated drug (W1) from 
the total amount of drug coupled with silver nanoparticle (W2). 

The HAART-AgNPs percentage incorporated efficiency was calcu-
lated according to Govender et al. (Govender et al., 2006) as follows: % 
IE = W2 − W1

W1
× 100 = 90.52 ± 0.5%. 

2.6. Characterization of AgNPs and HAART-AgNPs 

The characterisation of AgNPs and HAART-AgNPs was previously 
done (Lawal et al., 2021). Briefly, Fourier Transform Infrared (FTIR) 
spectroscopy (Perkin-Elmer Universal ATR spectrometer, USA) was used 
to identify the various functional groups in the HAART + AgNPs con-
jugates. The ultraviolet-visible (UV-Vis) spectroscopy (Shimadzu 
MultSpec-1501, Shimadzu Corporation, Tokyo, Japan) was used to 
confirm the absorption of the conjugated HAART-AgNPs. The size and 
morphology of the nanoparticles were examined by a high-resolution 
transmission electron microscope (HR-TEM, JEOL 2100, Japan) oper-
ated at a voltage of 200 kV. 

The field emission scanning electron microscope (FESEM, Carl Zeiss, 
Germany) operated at a voltage of 5 kV with energy dispersive X-ray 
(EDX, Aztec Analysis Software, England) was used to determine the 
elemental components. 

2.7. Blood glucose level and metabolic activities 

The weekly fasting blood glucose was determined using a portable 
glucometer (Sigma-Aldrich, Durban, South Africa), and the blood sam-
ple was obtained through the tail vein. The metabolic activities (char-
acterised by calorie intake, water intake, urine volume and the number 
of faecal pellets) were monitored in individual rats using a novel 
metabolic cage. 

2.8. Behavioural assessment 

2.8.1. Open field test (OFT) to measure the anxiety and explorative 
behaviours 

On day 79 of the experiment, the animals were evaluated for spon-
taneous and anxiety-like behaviours using the open field test. The open 
field apparatus consists of a large rectangular box measuring 70 cm long 
× 70 cm wide × 35 cm high with several 15 cm × 15 cm squares. Ani-
mals were placed in the centre of the squares and were monitored for 
5 min. The parameters for locomotion and anxiety-like behavioural ac-
tivities were measured and recorded (Bădescu et al., 2016; Eilam, 2003). 

2.9. Neurochemical analysis 

2.9.1. Preparation of brain homogenates 
After eight weeks of treatment, all animals were anaesthetised using 

the excessive isoflurane inhalation method and euthanised by decapi-
tation. The brains were harvested and immediately rinsed in cold 
phosphate-buffered saline (PBS). The prefrontal cortex was dissected in 
accordance with the Chiu procedure (Chiu et al., 2007). Then, 0.5 g of 
the prefrontal cortex (n = 7) was dissected on the ice tray, thawed, and 
homogenised in 10% phosphate buffer (0.1 M, pH 7.5). The homoge-
nates were centrifuged for 10 mins at 20,000 g and 4 ◦C. The superna-
tants were then obtained for neurochemical analyses. 

2.9.2. Determination of superoxide dismutase (SOD), catalase (CAT) and 
malondialdehyde (MDA), and reduced glutathione level (GSH) 

Prefrontal cortex tissue homogenates were used to measure the 
concentration of reduced glutathione (GSH), superoxide dismutase 
(SOD), catalase (CAT) and malondialdehyde (MDA) by spectrophoto-
metric assay. Reduced glutathione (GSH) level was assessed using the 
Ellman protocol (Ellman, 1959). Superoxide dismutase (SOD) activity 
and catalase (CAT) were determined as reported (Aebi, 1974; Kakkar 
et al., 1984). Malondialdehyde (MDA) level was determined by 
measuring the content of thiobarbituric acid (TBA) reactive products 
using the method of Mkhwanazi et al. (Mkhwanazi et al., 2014). 

2.9.3. Analysis of inflammatory biomarkers 
The concentrations of tumour necrosis factor-α (TNF-α) and inter-

leukin (IL)− 1β were quantified in the prefrontal cortex homogenates 
using their specific ELISA kits (Elabscience Biotechnology Co., Ltd., 
Houston, TX, USA) according to the manufacturer’s instructions. 

Fig. 1. Illustrate experimental design. Group 1–3, designated as NC, NH and NSH were non-diabetic animals, but treated with vehicle (distilled water, 0.5 mL/100 g, 
p.o), HAART (98.2 mg/kg, p.o), and HAART-AgNPs (24.5 mg/kg, i.p). Group 4–6, designated as DC, DH and DSH were diabetic animals treated with (distilled water, 
0.5 mL/100 g, p. o), HAART (98.2 mg/kg, p. o), and HAART-AgNPs (24.5 mg/kg, i.p). All rats were treated daily except for i.p groups, which were treated for 5 days 
per week for eight weeks. NC= non-diabetic control, NH= non-diabetic + HAART, NSH= non-diabetic + HAART-AgNPs, DC= diabetic Control, DH= diabetic 
+ HAART, DSH= diabetic + HAART-AgNPs, i. p = intraperitoneal injection. p.o = per os, BLG WK= blood glucose weekly measurement, STZ= streptozotocin. 
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2.9.4. Brain tissue processing for microscopic study 
The prefrontal cortex (n = 2) was carefully removed and weighed, 

post-fixed in 10% neutral buffer formalin (NBF) for 1 h and transferred 
to 15% sucrose in phosphate-buffered saline (PBS) until they sunk 
(24 h). Afterwards, the tissue was transferred to 30% sucrose in PBS 
until they sunk and finally fixed in 10% NBF for histology and immu-
nochemistry through paraffin embedding. The tissues were sectioned at 
5 µm using Leica RM 2255 microtome, cleared in xylene, hydrated in 
decreasing alcohols, stained with Haematoxylin and Eosin (H&E) dye, 
and mounted with dibutyl phthalate poly-styrene xylene (Djidja et al., 
2017). 

2.9.5. Immunohistochemical (IHC) analysis 
The uniform random sampling of the prefrontal cortex was used for 

the primary antibody (anti-GFAP). The sections from the prefrontal 
cortex were washed in PBS (2 ×10 min) at 4 ◦C and pre-incubated in 
0.1 M PBS, 5% normal goat serum with 0.4% Triton X-100%, and 1% 
bovine serum albumin for one hour at 4 ◦C. Then, the sections were 
directly incubated in the primary antibody diluted in the PBSA -Triton 
(PBSAT: PBS 0.01 M, PH 7.4, 0.1% of Sodium Azide and 0.3%. 

Triton X 100) and prepared for 72 h at 4 ◦C and under agitation. 
After PBST washes (2 x 10 min), the sections were incubated in 0.1 M 
PBS containing 2% normal goat serum and biotinylated rabbit anti-goat 
IgG (Secondary antibody) (1:2000) for 2 h at room temperature. They 
were then rinsed in PBST (2 x 10 min) and incubated with the avidin- 
biotin complex (AB; 1:2000) for 2 h in the room, followed by several 
washes (1 ×10 min in PBST and 2 ×10 min in Tris buffer (0.05 M, PH 
7.6)). The peroxidase activity detection was carried out with 3–3’ dia-
minobenzidine (DAB, 0.025%), 0.5% Nickel ammonium sulphate in tris 
buffer (0.1 M, pH 7.6) with 0.03% hydrogen peroxide. The immunore-
active reaction was stopped by washing the sections once in 0.1 M Tris 
buffer (10 min) and twice in 0.1 M PBS (10 min). Sections were dehy-
drated in progressive ethanol baths, cleared in 2 successive xylene baths, 
mounted onto gelatine-coated slides and coverslipped with Eukitt. 

2.9.6. Quantification of immunostained astrocytes 
Immunostained astrocytes counting was conducted under an optical 

microscope (Olympus BH2) connected via a CCD high-performance 
camera (COHU) to the Scion Image stereological software (Scion Cor-
poration, version Beta 4.0.2)-equipped computer. The counting was 
made in 6 sections per animal along with the rostrocaudal plane of the 
PFC. The total number of immunoreactivity cells was presented as mean 
± standard error mean (SEM). 

2.9.7. Ultrastructural brain tissue processing 
The brain tissues were initially sectioned into1 mm3 pieces and post- 

fixed in buffered 2.5% glutaraldehyde for 12 h, washed in phosphate 
buffer (3 × 5 min), and transferred in 1% osmium tetroxide for 2 h. 
Thereafter, the tissue was washed in phosphate buffer (3 × 5 min), 
dehydrated in ascending grades of acetone solutions (30%, 50%, 75%, 
and 100%) for 5 min each, and then embedded in Durcopan (Fluka). 
Ultrathin Section (1 μm in thickness) of PFC were cut using an ultra-
microtome (Leica Ultracut R), contrasted by uranyl acetate and lead 
acetate, and the prepared tissue sections were examined by transmission 
electron microscopy (TEM). 

The TEM analysis was carried out at the Microscopy and Micro-
analysis Unit (MMU), the University of KwaZulu-Natal, Westville, South 
Africa. 

2.10. Statistical analysis 

Data were analysed and presented as mean ± SEM. The differences 
between means were compared using one-way analysis (ANOVA), fol-
lowed by Tukey’s multiple comparison test to determine the statistical 
significance between the groups. All analyses were done using GraphPad 
Prism 8 for Windows (GraphPad Software San Diego, CA 92108). 

P < 0.05 was considered statistically significant. 

3. Results 

3.1. The characterisation of AgNPs and HAART-AgNPs 

The results for the characterisation of silver nanoparticles and highly 
active antiretroviral therapy-silver nanoparticle conjugates were previ-
ously published (Lawal et al., 2021). 

The HR-TEM investigations on the conjugated HAART-AgNPs 
revealed nanoparticle sizes ranging between 19 nm and 32 nm, and 
SEM showed that most nanoparticles are spherical in shape. The UV–vis 
showed an absorption peak between 315 and 320 for the nano-
composites, whereas EDX spectroscopy revealed a percentage of silver 
(Ag) and other elemental compositions such as oxygen, chlorine, fluo-
rine, carbon, phosphorus, sodium, and copper. Notably, FTIR revealed 
the functional groups related to AgNPs and HAART, such as O-H, C-F, C- 
Cl, N-H and C-N (Lawal et al., 2021). 

3.2. HAART-AgNPs reduces blood glucose level in diabetic rats 

Blood glucose levels increased significantly in all the diabetic groups 
(DC, DH and DSH) one-week post-STZ vs non-diabetic group (NC). 
Diabetic rats administered HAART (group DH) had a significant increase 
(p < 0.05) in blood glucose levels compared with diabetic control. In 
contrast, rats administered HAART-AgNPs (group DSH) had a substan-
tial decrease in blood glucose after eight weeks of treatment vs diabetic 
control (DC) and diabetic treated rats only (group DH). Conversely, 
there was no significant difference in blood glucose levels in the non- 
diabetic groups (Fig. 2). 

3.3. HAART-AgNPs improves metabolic activities 

Table 1 shows the effects of HAART and HAART-AgNPs on metabolic 
activities and anxiety-like behaviour in non-diabetic and diabetic rats. 
The metabolic biomarkers significantly (water intake, urine volume, 
food consumption and faecal pellets) increased in the diabetic control 
group (DC) compared to the non-diabetic control (NC). The water intake 
and faecal pellets significantly increased in group DH (diabetic plus 
HAART) (72.13 ± 1.394) compared with the diabetic control (62.25 
± 1.88). Interestingly, both water intake and faecal pellets significantly 
decreased in group DSH (diabetic + HAART-AgNPs) (48.13 ± 2.10) 
compared to DH (72.13 ± 1.394). 

3.4. The HAART-AgNPs mitigates anxiety-like behaviours in the open 
field test 

Fig. 3 shows the effects of HAART and HAART-AgNPs on anxiety-like 
behaviours in non-diabetic and diabetic rats. There was a significant 
reduction (p < 0.05) in latency to leave the centre and centre square 
entries of group DC compared to group NC. Group DH (diabetic 
+HAART) had significantly reduced latency and centre square entries 
compared to group DC. Notably, group DSH showed a significant 
(p < 0.05) increase (9.375 ± 0.596) in latency compared to group DH 
(6.625 ± 0.3750). The centre square entries were significantly higher in 
group DSH (AgNPs + HAART) (5.500 ± 0267) compared with group DH 
(3.813 ± 0.230). 

3.5. HAART-AgNPs increases locomotion activities 

Fig. 4 shows the effects of HAART and HAART-AgNPs on locomotion 
activities in non-diabetic and diabetic rats. The indices of locomotion 
activities (Centre line crossing and total line crossing) significantly 
(p < 0.05) reduced in the DC group compared to group NC. The diabetic 
rats administered HAART (group DH) showed a significant (p < 0.05) 
reduction in locomotion compared to group DC and group DSH. 
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Interestingly, there was a significant increase in centre line cross in 
rats administered with HAART-AgNPs (group DSH) compared with 
group DH. 

3.6. HAART-AgNPs reduces prefrontal cortex inflammatory biomarkers 
(TNF-α and IL-1β) 

Fig. 5(a-b) shows the effects of HAART and HAART-AgNPs on in-
flammatory markers in non-diabetic and diabetic rats. The concentra-
tion of inflammatory biomarkers (TNF-α and IL-1β) significantly 
(p < 0.05) increased in the DC group compared to the NC group. The 
diabetic rat administered HAART (group DH) showed a significant 
(p < 0.05) increase in both TNF-α and IL-1β compared to the DC rat. 
However, the diabetic rat administered HAART-AgNPs (group DSH) 
showed a reduction in inflammatory biomarkers compared with HAART 
only but not significant. 

3.7. HAART-AgNPs enhances antioxidant enzymes activities 

Fig. 6(a-d) shows the effect of HAART and HAART-AgNPs on 
oxidative stress biomarkers. The diabetic control group had a significant 
(p < 0.05) increase in MDA level and a significant (p < 0.05) decrease in 
catalase, SOD and GSH compared with the non-diabetic control group. 

Fig. 2. Illustrate the weekly changes in blood glucose level in non-diabetic and diabetic rats treated with either vehicle, HAART, or HAART-AgNPs. NC= nondiabetic 
control, NH=non-diabetic + HAART, NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver 
nanoparticles+ HAART. a vs NC; bp < 0.05 v DC, cp < 0.05 v DH, (n = 7). 

Table 1 
Metabolic activity parameters.  

Groups Water intake 
(cm3) 

Urine Volume 
(cm3) 

Food intake 
(mg) 

Faecal 
pellets 

NC 36.388 ± 0.53 19.75 ± 0.25 21.69 ± 1.23 17.38 
± 1.22 

NH 39.13 ± 0.22 20.63 ± 1.19 23.78 ± 0.88 20.00 
± 1.19 

NSH 36.63 ± 1.15 20.75 ± 0.31 22.96 ± 1.61 16.63 
± 1.32 

DC 62.25 ± 1.88aa 47.00 ± 3.09aa 34.63 ± 1.99a 24.38 
± 1.10a 

DH 72.13 ± 1.394b 58.50 ± 2.19 41.30 ± 2.47 32.25 
± 2.23b 

DSH 48.13 ± 2.10c 39.25 ± 3.69 34.85 ± 1.72 20.38 
± 1.45c 

Table 1: Effect of HAART-AgNPs on metabolic activities (water intake, urine 
volume, food intake, and faecal pellet number) in diabetic rats. ap < 0.05, 
aap < 0.0001 vs NC, bp < 0.05 v DC, cp < 0.05 v DH. NC=nondiabetic control, 
NH=non-diabetic +HAART, NSH=non-diabetic+ silver nanoparticles 
+ HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic 
+silver nanoparticles+ HAART, (n = 7). 

Fig. 3. Effect of HAART-AgNPs on anxiety-like behaviour in diabetic rats. ap < 0.05, aap < 0.0001 vs vs NC, bp < 0.05 v DC, cp < 0.05 v DH. NC= nondiabetic 
control, NH=non-diabetic + HAART, NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic + silver 
nanoparticles+ HAART. A= center square latency, B= center square entries, (n = 7). 
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Administration of HAART to the diabetic rat (DH) significantly 
increased MDA with a reduction in SOD and GSH compared to diabetic 
control. However, administration of HAART-AgNPs to diabetic animals 
(DSH) caused a significant decrease in MDA levels and increased GSH 
and SOD levels compared with group DH (p < 0.05). 

3.8. HAART-AgNPs protects GFAP-positive astrocytes in the prefrontal 
cortex  

Fig. 7 A and B show the effect of HAART and HAART-AgNPs on 
GFAP-positive astrocytes. There was a significant reduction in GFAP 
positive astrocytes in the prefrontal cortex of diabetic control (DC) 
compared to non-diabetic control (NC). Administration of HAART to 
diabetic rats (DH) caused a significant reduction in GFAP-positive as-
trocytes compared with group DC. However, HAART-AgNPs adminis-
tration to diabetic rats (DSH) significantly increased GFAP-positive 
astrocytes compared to group DH. 

3.9. HAART-AgNPs prevents prefrontal cortex neuronal injury 

The effect of HAART and HAART-AgNPs on prefrontal cortex 
neuronal cells is shown in Fig. 8. The diabetic control group (DC) 
showed shrinkage of cytoplasm and hypertrophy of neuronal cells 
compared with the normal control (NC). The non-diabetic groups (NH 
and NSH) administered with HAART and HAART-AgNPs showed 
shrinkage of cytoplasm. Notably, administration of HAART-AgNPs to 
diabetic rats (group DSH) showed more normal neuronal cells with few 
neuronal hypertrophies compared with diabetic rats administered with 
HAART only (group DH). 

3.10. HAART-AgNPs protects ultrastructural organelles of the prefrontal 
cortex 

Fig. 9 shows the effect of HAART-AgNPs on prefrontal cortex 
neuronal organelles. The control group (NC) showed a normal nucleus 
(N) with a double-layered nuclear membrane and the presence of 
nucleoli. The mitochondria in the control group showed intact mem-
brane and the presence of cristae within the mitochondria. All treated 

Fig. 4. Effect of HAART-AgNPs on locomotion in diabetic rats. ap < 0.05, aap < 0.0001 vs NC, bp < 0.05 v DC, cp < 0.05 v DH. NC= nondiabetic control, NH=non- 
diabetic + HAART, NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nano-
particles+ HAART. A= Centre line crossing, B= total line cross, (n = 7). 

Fig. 5. Effect of HAART-AgNPs on inflammatory response in the Prefrontal cortex of diabetic rats. ap < 0.05 vs NC, bp < 0.05 v DC. NC= nondiabetic control, 
NH=non-diabetic + HAART, NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nano-
particles+ HAART. TNF-α = tumour necrosis factor- alpha, IL-1β = interleukin-1 beta, A= TNF-α, B= IL-1β, (n = 7). 
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groups presented with a various nucleus and mitochondrial alterations. 
The diabetic group (DC) and the diabetic group treated with HAART 
showed ruptured and vacuolated mitochondria (M) with degenerated 
nucleoli. However, the diabetic rats (group DSH) treated with HAART- 
AgNPs showed an improved double-layered membrane and presence 
of nucleoli and mitochondrial cristae compared with diabetic rats 
treated with HAART only. 

4. Discussion 

This study examined the effect of HAART-silver nanoparticles con-
jugate on metabolic, behavioural, molecular, histological, and ultra-
structural changes associated with prolonged administration of HAART 
in diabetic rats. 

HAART is required at higher doses for a lifetime to maintain an 
undetectable viral load in people living with HIV, which predisposes 
them to systemic toxicity and metabolic disorders such as diabetes 
mellitus (Nduka et al., 2017; Ergin et al., 2020). Recently, silver nano-
particles have been used for a wide range of applications in the 
biomedical field, such as antiviral, antioxidant and antidiabetic agents, 
due to their unique properties and possibly the synergistic effects on 
therapeutic agents (Vadlapudi and Amanchy, 2017; Essghaier et al., 
2022). Thus, conjugation of AgNPs to HAART may exert significant 
benefits, such as reducing the dosage of HAART needed for therapy and 
inhibiting some pathophysiological mechanisms mediated by HAART in 
contribution to diabetes (Lawal et al., 2021; Olojede et al., 2022). 
Although, the issues related to the toxicity profile of AgNPs on the 
biological tissues have been raised (Fadaka et al., 2022). Conversely, 
studies have reported that the toxicity profile of AgNPs depends on 
several factors such as nanoparticles size, shape, morphology, dimen-
sion, and capping agent (Alkaladi et al., 2014; Fadaka et al., 2022). 

In the current study, the characterisation of HAART loaded silver 

nanoparticles with various concentrations (0.5 M, 1 M, 1.5 M, and 2 M) 
showed nanoparticles sizes from 19 nm to 32 nm and a spherical shape. 
Interestingly, previous studies have reported that nanoparticles with 
small-medium particle size and spherical shape are sensitive and less 
toxic to the biological tissues (Lara et al., 2010; Lee et al., 2013; Agni-
hotri et al., 2014; Ferdous and Nemmar, 2020). In addition, a study has 
confirmed that there are no adverse effects of AgNPs of 30 nm with 
spherical shape on the alveolar epithelial cells (Stoehr et al., 2011). 
Therefore, we hypothesised that HAART loaded silver nanoparticles 
may improve therapeutic efficacy and reduce neurological disorders 
associated with high dosage and long-term exposure to HAART. 

In this study, the diabetic rats treated with HAART had persistently 
increased blood glucose levels across the weeks. This result shows that 
the chronic administration of HAART contributed to the hyperglycaemic 
effect of diabetes. The development of hyperglycaemia has been re-
ported with the prolonged use of HAART in people living with HIV 
(Sharma, 2014), which has been attributed to insulin resistance, mito-
chondrial dysfunction, and metabolic disorders (Avari and Devendra, 
2017). Conversely, a significant decrease in blood glucose was observed 
in rats treated with HAART-silver nanoparticles conjugate (HAAR-
T-AgNPs) compared with HAART-treated rats only. This glycaemic 
control may be due to the potential of silver nanoparticles to increase 
insulin secretion via insulin-like growth factor-I, thereby promoting 
glucose uptake (Olojede et al., 2022). A similar study has shown the 
antidiabetic activity of silver nanoparticles via up-regulation of insulin 
receptors and higher expression of glucokinase genes (Alkaladi et al., 
2014). 

The metabolic disturbances of HAART were observed as evidenced in 
increased defecation and water intake of diabetic rats. Literature has 
shown that an increase in defecation is a valuable indicator of anxiety- 
like behaviours and is frequently observed in highly emotional ani-
mals (Hall, 1934; Crumeyrolle-Arias et al., 2014). In this study, the 

Fig. 6. Effect of HAART on oxidative stress in the Prefrontal cortex of diabetic rats. ap < 0.05 vs NC, bp < 0.05 v DC, cp < 0.05 v DH. NC= nondiabetic control, 
NH=non-diabetic + HAART, NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nano-
particles+ HAART. A= Catalase, B= Malondialdehyde, C=superoxide dismutase (SOD), D= reduced glutathione (GSH), (n = 7). 
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administration of HAART to the diabetic rats exacerbates anxiety-like 
behaviour compared to diabetic control and diabetic rats treated with 
HAART-AgNPs. Evidence of behavioural deficits and anxiogenic effects 
of HAART was seen in the open field test. The centre square entries, the 
latency to leave the centre square, the centre line cross and the total line 

cross were significantly reduced in the diabetic HAART-treated group. 
Despite the benefits of the backbones of HAART components (NRTIs and 
NNRTIs), they are associated with neuropsychological disturbances, 
fatigue, and dizziness (Romao et al., 2011). More so, chronic treatment 
of Efavirenz (NNRTIs) has been reported to induce an anxiety-like effect 

Fig. 7. A Prefrontal cortex GFAP-positive astrocytes in diabetic and non-diabetic groups, NC= nondiabetic control, NH=non-diabetic + HAART, NSH=non-dia-
betic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nanoparticles+ HAART. Black arrow indicates GFAP- 
positive astrocyte.Fig. 7B Effect of HAART-AgNPs on GFAP positive astrocytes in the Prefrontal cortex. NC= nondiabetic control, NH=non-diabetic + HAART, 
NSH=non-diabetic+ silver nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nanoparticles+ HAART, GFAP= glial 
fibrillary acidic protein. ap < 0.05 v NC, bp < 0.05 v DC, cp < 0.05 v DH. Black arrow indicates immunostained astrocytes, (n = 2). 
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Fig. 8. Effect of HAART-AgNPs on Prefrontal cortex neuronal cell. NC= nondiabetic control, NH=non-diabetic + HAART, NSH=non-diabetic+ silver nanoparticles 
+ HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nanoparticles+ HAART. Black arrow = normal neuronal cell, red arrow = neuronal 
atrophy, green arrow= neuronal hypertrophy and blue arrow= cytoplasmic shrinkage (n = 2). 

Fig. 9. Effect of HAART-AgNPs on Prefrontal cortex neuronal organelles. NC= nondiabetic control, NH=non-diabetic + HAART, NSH=non-diabetic+ silver 
nanoparticles + HAART, DC= diabetic control, DH=diabetic + HAART, DSH= diabetic +silver nanoparticles+ HAART. N indicates Nucleus (short red arrow =
nuclear membrane, long red arrow= nucleoli), M indicates Mitochondria (blue arrow= mitochondrial cristae) (n = 2). 
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in animals and humans (Raines et al., 2005; Romao et al., 2011; Cav-
alcante et al., 2017). 

The neurological observation in the HAART-treated rats was asso-
ciated with a significant increase in the prefrontal cortex MDA level. 
This observation may be due to the excessive production of ROS, which 
occurs during the intracellular phosphorylation of NRTIs in the pre-
frontal cortex (Schank et al., 2021). The excessive ROS production and 
the reduced antioxidant enzymes CAT, SOD and GSH may promote 
oxidative stress resulting in tissue injury. A previous study has reported 
that oxidative injury promotes lipid peroxidation that compromises 
mitochondrial biogenesis, which has been implicated in 
HAART-induced mitochondrial dysfunction (Schank et al., 2021). 

In this study, HAART-AgNPs alleviates the anxiety-like behaviours in 
the diabetic rats via improved metabolic disturbances and anxiogenic 
parameters in the open field, which correlated with reduced MDA and 
improvement in GSH, CAT and SOD. This suggests that silver nano-
particles may alleviate the anxiogenic effects of long-term administra-
tion of HAART via their antioxidant properties by reducing ROS 
production during the intracellular phosphorylation of HAART. This 
result agrees with previous findings that reported a significant antioxi-
dant activity of silver nanoparticles (Keshari et al., 2020). In addition, an 
increase in antioxidant activity has been demonstrated to improve brain 
cell oxidative injury and cognitive functions (Franzoni et al., 2021). 

Increased oxidative stress triggers the release of pro-inflammatory 
cytokines (TNF-α and IL-1β), as seen in the PFC of HAART-treated and 
diabetic control rats. The brain tissues are particularly susceptible to 
oxidative stress and neuronal damage due to their low antioxidant 
defence system, high amount of unsaturated fatty acid, and high oxygen 
consumption (Salim, 2017). In this recent study, an increase in the 
concentration of pro-inflammatory cytokines (TNF-α and IL-1β), inhi-
bition of antioxidants enzymes (CAT, SOD) and GSH were associated 
with anxiety-like behaviour in diabetic rats treated with HAART. A 
similar report has established an increase in TNF-α and IL-1β were 
associated with mood and anxiety disorders (Quagliato and Nardi, 
2018). Furthermore, literature has shown that HIV patients receiving 
HAART are susceptible to type 2 diabetes mellitus and its neuropathic 
complications due to increased ROS production that promotes cellular 
toxicity and neuroinflammation (Sharma, 2014; Nsonwu-Anyanwu 
et al., 2017; Pang et al., 2020;). 

Conversely, there was a slight decrease in the PFC concentration of 
pro-inflammatory cytokines (TNF-α and IL-1β) in HAART-AgNPs treated 
rats compared with HAART treated only (although not significant). This 
result suggests that silver nanoparticles may mitigate the neurotoxic 
effect of long-term use of HAART due to their anti-inflammatory prop-
erties. This is in line with previous studies showing the anti- 
inflammatory and neuroprotective effects of silver nanoparticles (See-
thalakshmi, 2015; Tyavambiza et al., 2021). 

Several studies have reported the role of PFC and astrocytic cells in 
anxiety disorders (Sofroniew and Vinters, 2010; Tovote et al., 2015; 
Hare and Duman, 2020). HAART caused astrocyte dysfunction and a 
decrease in PFC GFAP-positive astrocyte number in the diabetic rats. 
The dysfunction and decrease in astrocytes may be attributed to the 
neurological deficits observed in diabetic rats treated with HAART. 

In this study, an increase in the PFC GFAP-positive cells was observed 
in HAART-AgNPs treated animals. Silver nanoparticles offer an advan-
tage for delivering therapeutic agents due to their unique physico-
chemical characteristics, antioxidant, and anti-inflammatory properties 
(Vadlapudi and Amanchy, 2017). The improvement observed in PFC 
GFAP-positive cells may be attributed to the antioxidant and 
anti-inflammatory properties of silver nanoparticles to delay or prevent 
the loss of astrocytes in the PFC (Burdusel et al., 2018). 

Furthermore, the administration of HAART-AgNPs to diabetic rats 
protects neuronal cells against oxidative injury exacerbated by HAART 
and diabetes. The previous study has shown the therapeutic potential of 
silver nanoparticles in tissue restoration and regeneration (Burdusel 
et al., 2018). 

The mechanism by which HAART exerts its neurotoxic effects has 
been linked with mitochondrial damage and neuronal injury (Gnana-
sekaran, 2020). The evidence was seen in non-diabetic and diabetic rats 
treated with HAART that presented with ruptured, vacuolated mito-
chondria and degenerated nucleoli. However, HAART-AgNPs alleviates 
the anxiety-like behaviour by protecting the neuronal ultrastructural 
organelles (nucleus and mitochondria) in the PFC via its intrinsic 
anti-inflammatory and tissue restoration properties (Burdusel et al., 
2018). 

While the literature has reported the neurotoxic effects of silver 
nanoparticles (Węsierska et al., 2018; Greish et al., 2019b), there is 
substantial evidence that the neurotoxic effects of silver nanoparticles 
depend on various factors, particularly the synthesis method (Alkaladi 
et al., 2014; Seethalakshmi, 2015). The reduction of Ag+ to Ag0 using a 
1.5 M trisodium citrate (TSC) concentration as a reducing and stabilising 
agent with a nanoparticle size between 19 and 35 nm and spherical 
morphology may be an essential factor determining their neurotoxic 
effect on the PFC (Lara et al., 2010). The previous investigation of silver 
nanoparticles synthesis where the silver ion has been reduced to a 
ground state from Ag+ to Ag0

, and synthesised nanoparticles were within 
the small-medium nano-sized particle (20–50 nm) reported non-toxic to 
the biological tissues (Lara et al., 2010; Van Dong et al., 2012; Iravani 
et al., 2014). Furthermore, a study has reported that the cytotoxic effect 
observed in the use of silver nanoparticles is due to silver ions exposure 
(Wang et al., 2014). Therefore, the reduction of Ag+ to Ag0 using a 1.5 M 
trisodium citrate (TSC) concentration as a reducing and stabilising agent 
with a nanoparticle size between 19 and 35 nm and spherical 
morphology may be an essential factor in determining that reduced 
neurotoxic effects and improved antioxidant function of nanoparticles in 
our research. 

5. Conclusion 

Data from this study showed that the administration of HAART ag-
gravates anxiety-like behaviours and promotes neurotoxic effects on the 
PFC of diabetic rats. However, HAART conjugated with silver nano-
particles mitigates the anxiogenic effects of HAART, preserves PFC 
GFAP-positive cells and ultrastructural neuronal organelles, and reduces 
neuronal damage by reducing oxidative injury and inflammatory dam-
age. The conjugation of silver nanoparticles and HAART as a treatment 
regimen in HIV may be explored to enhance drug delivery while 
reducing the risk of neurological disorders (e.g., anxiety) associated with 
prolonged use of HAART. 
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