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Abstract

Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny recon-

struction and genome comparison, since they are much faster than traditional approaches that are

based on full sequence alignments. Existing alignment-free programs, however, are less accurate

than alignment-based methods.

Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to es-

timate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern

of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input

sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and

with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide

substitutions per site by considering the nucleotides aligned at the don’t-care positions of the iden-

tified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering

procedure where we discard all spaced-word matches for which the overall similarity between the

aligned segments is below a threshold. We show that our approach can accurately estimate substi-

tution frequencies even for distantly related sequences that cannot be analyzed with existing

alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality.

A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes.

Availability and Implementation: The program source code for FSWM including a documentation,

as well as the software that we used to generate artificial genome sequences are freely available at

http://fswm.gobics.de/

Contact: chris.leimeister@stud.uni-goettingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogeny reconstruction is one of the most fundamental tasks in

computational biology. Traditionally, phylogenetic trees are inferred

from multiple sequence alignments, by considering substitutions

that may have occurred since the aligned sequences have evolved

from a hypothetical common ancestor. While this procedure is still

standard in phylogeny analysis, approaches based on word statistics

have become popular in recent years, since they circumvent various

difficulties involved in multiple alignment (Bernard et al., 2016;

Reinert et al., 2009; Song et al., 2014; Vinga, 2014; Wan et al.,

2010). The main advantage of these methods is that they are much

faster than alignment-based approaches. Under most scoring

schemes, calculating an optimal alignment of two sequences takes

time proportional to the product of their lengths and is therefore

limited to rather short sequences. By contrast, the word composition

of sequences can be calculated in linear time. Another difficulty with
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traditional phylogeny approaches is that sets of orthologous genes

must be identified first, before multiple alignments can be calcu-

lated. Word-based methods, on the other hand, can be directly

applied to genomic sequences, and even to unassembled reads. Since

these approaches do not require global alignments of the sequences

under study, they are often called alignment free. Strictly spoken,

this is not quite correct, as most word methods compare—i.e.

align—subwords of the sequences to each other. We use the term

alignment-free anyway, since it is now commonly used for word-

based approaches to sequence comparison.

Alignment-free methods are not only used in phylogenetic stud-

ies (Bromberg et al., 2016; Didier et al., 2007; Hatje and Kollmar,

2012), but also for protein classification (Comin and Verzotto,

2011; Leslie et al., 2002; Lingner and Meinicke, 2006, 2008), read

alignment (Ahmadi et al., 2011; Langmead et al., 2009; Li et al.,

2008), isoform quantification from RNAseq reads (Patro et al.,

2014), sequence assembly (Zerbino and Birney, 2008), metagenom-

ics (Chatterji et al., 2008; Leung et al., 2011; Meinicke, 2015;

Tanaseichuk et al., 2012; Teeling et al., 2004; Wang et al., 2012;

Wu and Ye, 2011), analysis of regulatory elements (Federico et al.,

2012; Kantorovitz et al., 2007; Leung and Eisen, 2009; Wang et al.,

2012) and to identify biomarkers in diagnostic tests (Drouin et al.,

2016). Most authors divide alignment-free approaches into two

classes: methods based on word count and methods based on match

lengths (Haubold, 2014). For a fixed word length, word-count

methods transform the input sequences into word-frequency vectors;

the distance between two sequences can then be defined as the dis-

tance between the corresponding word-frequency vectors, for ex-

ample under the Euclidean norm (Chor et al., 2009; Sims et al.,

2009; Vinga et al., 2012; Zuo and Hao, 2015).

Match-length approaches, in contrast, estimate phylogenetic dis-

tances from the length of substring matches between two sequences

(Comin and Verzotto, 2012; Haubold et al., 2005; Thankachan

et al., 2016; Ulitsky et al., 2006). Since the length of exact substring

matches between two homologous sequence regions depends on the

mismatch frequency, substitution rates can be estimated, in turn,

from the average length of exact common substrings (Domazet-Loso

and Haubold, 2009). The program Kr (Haubold et al., 2009) is

based on this idea; to our knowledge, this was the first alignment-

free approach that estimates phylogenetic distances based on an ex-

plicit model of molecular evolution.

Recently, we proposed to use so-called spaced words, instead of

contiguous subwords of the input sequences, to quantify the similar-

ity or dissimilarity between two sequences (Leimeister et al., 2014).

Spaced words are words containing wildcard characters at positions

specified by a predefined binary pattern of match and don’t-care

positions. The main advantage of spaced words, compared to con-

tiguous words, is that occurrences of neighbouring spaced words are

statistically less dependent on each other; we have shown that better

phylogenies can be obtained if spaced-word frequencies are used in-

stead of the contiguous word frequencies used by traditional word-

based methods (Horwege et al., 2014; Leimeister et al., 2014). As

with most word-based methods, however, distances calculated from

spaced-word-frequency vectors are not based on stochastic models

of evolution; they do not try to estimate the ‘true’ distance between

two sequences in a rigorous way, but provide only a rough measure

of dissimilarity between the compared sequences.

Three other word-based methods have been proposed in recent

years to estimate the mismatch frequency or number of substitutions

per site between DNA sequences, namely Co-phylog (Yi and Jin,

2013), andi (Haubold et al., 2015) and an estimator that is based on

the number of spaced word matches between two sequences

(Morgenstern et al., 2015). Co-phylog uses so-called micro align-

ments, consisting of a single pair of aligned nucleotides, flanked on

both sides by exact word matches of a fixed length ‘. With our nota-

tion, a micro alignment can be seen as a match between two identi-

cal spaced-words of length 2‘þ 1 with a single wildcard character

at the middle position. To estimate the mismatch frequency between

two sequences, Co-phylog calculates the fraction of micro align-

ments where the middle position is a mismatch.andi searches for

pairs of maximal unique word matches within a certain distance to

each other, and on the same diagonal in the comparison matrix of

two sequences. The program then uses the implied gap-free align-

ments of the sequence segments between these word matches to esti-

mate the number of substitutions per position. This can be seen as a

generalization of Co-phylog, with more than one wildcard character

in the middle, and with flanking word matches of varying length.

Finally, we proposed in a previous paper to estimate evolutionary

distances based on the number of (spaced) word matches between

the sequences (Morgenstern et al., 2015). This approach is more ac-

curate than other alignment-free approaches. It is limited, however,

to homologies extending over the full length of the input sequences,

therefore this previous approach cannot be applied to compare dis-

tantly related genomes.

To accurately estimate the number of substitutions per position

between two sequences, programs such as Kr, andi and Co-phylog

have to consider (spaced) word matches between homologous seg-

ments of the input sequences. In order to exclude random back-

ground matches, they use cut-off values for the length of the

matching word pairs—or, with our terminology, for the number of

match positions in the matched spaced words. A difficulty with this

approach is that a high cut-off is necessary if long sequences are

compared, since the number of background matches increases quad-

ratically with the sequence length, while the number of homologous

matches increases only linearly. Thus, with cut-off that is sufficiently

high to reduce the noise of random similarities, many homologous

word matches will be discarded as well, which reduces the amount

of information available for phylogeny inference.

In this paper, we propose filtered spaced-word matches (FSWM),

an alternative alignment-free approach to estimate phylogenetic dis-

tances between DNA sequences. FSWM first identifies all matching

spaced words between two sequences, with respect to a fixed pattern

of match and don’t-care positions. Similar to Co-phylog and andi,

we look at the aligned nucleotides at the don’t-care positions of

those spaced-word matches to estimate the average number of sub-

stitutions per sequence position. The fundamental difference be-

tween our method and these earlier methods is the way we filter out

random background spaced-word matches. Instead of using a high

number of match positions in the underlying pattern, we define a

similarity score for spaced-word matches, considering the similarity

between aligned nucleotides at the don’t-care positions, and we dis-

card all spaced-word matches with a score below a certain thresh-

old. The fraction of mismatches at the don’t care positions of the

remaining spaced-word matches is then used to estimate the number

of substitutions per position since two sequences diverged from a

common ancestral sequence.

Using simulated and real genomic sequences, we show that

FSWM can accurately estimate phylogenetic distances between gen-

omic sequences. If distance matrices produced by FSWM are used as

input for Neighbor-Joining, accurate phylogenetic trees can be ob-

tained, even for large, distantly-related sequences. Calculating the

evolutionary distance between two bacterial genomes of 3.3 Mb

each takes around 0.2 s with our approach; for a pair of eukaryotic

genomes of 340 Mb each, the runtime is around 320 s.
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2 Algorithm

2.1 Spaced words and spaced-word matches
To describe our algorithm, we are using the terminology from our

previous papers (Leimeister and Morgenstern, 2014; Morgenstern

et al., 2015). For an alphabet R, a sequence S of length L and 0 < i

� L; S ½i� denotes the ith symbol of S. A (binary) pattern is a word

over {0, 1}; a position k in a pattern P is called a match position if

P½k� ¼ 1, it is called a don’t-care position if P½k� ¼ 0. The number of

match positions in a pattern is called its weight. If ‘*’ is a ‘wildcard’

character, � 62 R, a spaced word with respect to a pattern P is a

word s over R [ f�g of the same length as P, with s½i� 2 R if i is a

match position of P and S½i� ¼ � if i is a don’t-care position of P. We

say that a spaced word s with respect to some pattern P occurs in a

sequence S at position i if s½k� ¼ S½iþ k� 1� for all match positions

k of P.

For sequences S1 and S2 over R, with lengths L1 and L2, respect-

ively, a pattern P of length ‘, and positions i, j,

1 � i � L1 � ‘þ 1;1 � j � L2 � ‘þ 1, we say that there is

spaced-word match between S1 and S2 at (i, j) with respect to P if

the same spaced word s occurs at position i in S1 and at position j in

S2. In other words, the requirement is that for all match positions k

in P, one has S1½iþ k� 1� ¼ S2½ jþ k� 1�. Below is a spaced-word

match between two DNA sequences S1 and S2 at (5, 2) with respect

to the pattern P¼1100101:

S1 : G C T G T A T A C G T C

S2 : G T A C A C T T A T

P : 1 1 0 0 1 0 1

By definition, nucleotides in S1 and S2 corresponding to a match pos-

ition of P are identical, while at the don’t-care positions mismatches

are possible. Throughout this paper, we use a single pattern P if two

sequences are compared, as opposed to the multiple-pattern ap-

proach that we previously used (Leimeister et al., 2014).

If one wants to estimate phylogenetic distances between genomic

sequences based on spaced-word matches between them, one needs

to distinguish between matches representing true homologies and

random background matches (Devillers and Schbath, 2012). One

possible way of reducing the number of background spaced-word

matches would be to use a sufficiently high weight w, i.e. number of

match positions, for the underlying pattern. Such an approach has

been taken, for example, by andi and Co-phylog. For long, divergent

input sequences, however, this approach is problematic. To see this,

consider two sequences of length L under a model of evolution with-

out insertions and deletions (indels), with a match probability p for

pairs of homologous nucleotides and a background match probabil-

ity q. With a pattern of length ‘ and weight w, the expected number

of homologous spaced-word matches would be ðL� ‘þ 1Þ � pw,

while the expected number of background matches would be

ðL� ‘Þ � ðL� ‘þ 1Þ � qw. That means that, in order to obtain N

times as many homologous spaced-word matches than background

matches, one would have to use a weight w satisfying

w � logp
q
½N � ðL� ‘Þ�

For two sequences of length 5 Mb, for example, with p¼0.8 and

q¼0.25, a weight of w¼16 would be necessary to keep the fraction

of background spaced-word matches below 10 % ðN ¼ 9Þ; in this

case, one would obtain around 140 000 homologous spaced-word

matches and around 5800 background matches. By contrast, with

the same L and q, but with p¼0.6, a weight of w¼21 would be

necessary to have<10% background matches. With these param-

eter values, as few as 114 expected spaced-word matches would be

left as a basis for phylogeny reconstruction, 109 homologous and

5 background matches. With p¼0.5, it would be unlikely to find

even a single spaced-word match with this approach.

2.2 Filtered spaced-word matches
Herein, we propose an alternative solution to distinguish between

homologous and background spaced-word matches as a basis of

phylogeny reconstruction. To identify all spaced-word matches be-

tween two sequences with respect to a pattern P, we sort the spaced

words in the sequences lexicographically, such that matching

spaced-words appear next to each other. A score is calculated for

each spaced-word match using the following substitution matrix

(Chiaromonte et al., 2002)

A C G T

A 91 �114 �31 �123

C 100 �125 �31

G 100 �114

T 91

Here, we define the score of a spaced-word match as the sum of the

substitution scores of the nucleotide pairs aligned at the don’t-care

positions. The spaced-word match shown in the previous section,

for example, has three don’t-care positions where the nucleotide

pairs ðT;CÞ; ðA;AÞ and (G, T) are aligned; the score of this spaced-

word match would thus be �31þ 91� 114 ¼ �54. Our algorithm

discards all spaced-words matches with scores below a certain cut-

off. Experimental results show that a cut-off value of zero is ad-

equate to filter out most background similarities, see Table 1 and

Figure 1, so our software uses this value by default.

For a sequence pair and a pattern P, one can plot the number of

spaced-word matches against the similarity scores, i.e. for each pos-

sible score value, one plots the number of spaced-word matches

with this score. We call such a plot a spaced-words histogram, ex-

amples are given in Figure 1. Under an i.i.d. model of molecular evo-

lution, the scores of both homologous and background spaced-word

matches are approximately normally distributed, with mean values

ð‘�wÞ � sh and ð‘�wÞ � sb, respectively, where sh and sb are the ex-

pected substitution scores for homologous and background nucleo-

tide pairs. If, in addition, we consider a model without insertions

and deletions, a spaced-word match at (i, j) is ‘homologous’ if and

only if i¼ j, and each spaced-word match is either completely hom-

ologous or completely background. In this case, a spaced-words

histogram is approximately the sum of two normal distributions.

Figure 1 shows that, for real-world sequences too, the background

spaced-word matches are roughly normally distributed. The distri-

bution of the homologous spaced-word matches is more complex,

Table 1. Proportion of ‘homologous’ spaced-word matches re-

tained after our ‘filtering procedure’—i.e. after discarding all

spaced-word matches with scores smaller or equal than zero—for

gap-free simulated sequence pairs of different length and with 0.2–

1.0 substitutions per site

0.2 0.4 0.6 0.8 1.0

5 mb 1.00000 0.99998 0.99986 0.99769 0.98723

50 mb 0.99994 0.99950 0.99599 0.97795 0.86791

100 mb 0.99989 0.99898 0.99258 0.95765 0.79022
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A B

C D
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G H

Fig. 1. Spaced-word histograms for simulated and real-world sequence pairs. The number of spaced-word matches is plotted against the spaced-word score as

defined in the main text. The plots show the remaining spaced-word matches after the greedy one-to-one mapping explained in the main text. Thus, a spaced

word at a certain position can be involved in at most one spaced-word match. (A) simulated indel-free sequence pairs of length 5 mb under an i.i.d. substitution

model with a transition/transversion ratio of 2:1 and 0.1 substitutions per sequence position on average; (B) same model with 0.3 substitutions per position;

(C) Sagittula stellata E37 vs Rhodobacterales bacterium HTCC2255; (D) Octadecabacter arcticus 238 vs Octadecabacter antarticus 307; (E) Escherichia coli strain

S88 vs Escherichia coli strain 536; (F) Phaeobacter gallaeciensis 2.10 vs Rhodobacterales bacterium Y4I, (G) Saccharomyces mikatae vs Saccharomyces cerevi-

siae, (H) Spizellomyces punctatus vs Batrachochytrium dendrobatidis. For all sequence pairs, the scores of the background spaced-word matches are approxi-

mately normally distributed. For the real-world sequences, the peaks of the homologous matches are more complex, due to varying degrees of sequence

conservation within the genomes. In E, the background peak is not visible since the two E.coli genomes are so closely related that there are much more homolo-

gous than background spaced-word matches. In H, we used a logarithmic scale because, for these two sequences, there are many more background than hom-

ologous spaced-word matches and the homologous peak would not be visible with a linear scale. For all sequence pairs, we used a pattern P with the default

weight of w¼ 12 and 100 don’t-care positions, so the pattern length was 112
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however, reflecting different degrees of sequence similarity in differ-

ent parts of the sequences.

A well-known problem in phylogenomics are duplications in

genomes, since only orthologous sequences can be used for phyl-

ogeny reconstruction (Huerta-Cepas et al., 2016; Schreiber et al.,

2009; Waterhouse et al., 2013). We address this issue by selecting a

one-to-one matching of spaced words when comparing two se-

quences. If a spaced word s occurs at m positions in the first se-

quence and at n positions in the second sequence, there are m�n

spaced-word matches involving s. To find a one-to-one mapping be-

tween the occurrences of s, we use a greedy approach: after our fil-

tering procedure, we sort the remaining spaced-word matches

according to their similarity scores, we pick the one with the highest

score and remove the corresponding two occurrences of s from our

list. Next, we select the highest scoring one among the remaining

spaced-word matches etc. By picking high-scoring spaced-word

matches first, we increase the probability of matching orthologous

segments of the compared genomes.

As an example, consider the two sequences below and the pat-

tern P¼10 011.

S1 : G G A T A G G G T A T A T T A

S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Here, the spaced word s¼G��TA occurs three times in S1, at pos-

itions 1, 6 and 8, and twice in S2, at positions 2 and 9, so we obtain

6 spaced-word matches involving s, namely at (1,2), (1,9), (6,2),

(6,9), (8,2) and (8,9). The one at (8,2) has a negative score, as it

aligns nucleotide pairs (T, G) and (A, G) at the don’t-care pos-

itions, the same is true for the one at (8,9) that aligns (T, G) and

(A, A). Thus, with our default cut-off value of zero, these two

spaced-word matches will be discarded in our initial filtering pro-

cedure. To obtain a one-to-one mapping, we sort the remaining

four spaced-word matches involving s according to their scores.

Here, the one at (6,2) would be selected first as it aligns two nu-

cleotide pairs (G, G) at the don’t-care positions, so it would have a

score of 100þ100¼200. Next, the one at (1,9) would be selected

that aligns (G, G) and (G, A), with a score of 100þ91¼191. The

third and fourth spaced-word match would be at (1,2) and (6,9),

respectively, both aligning (G, G) and (A, G), so each one would

have score of 100 – 31¼69. We do not accept them in our one-to-

one matching, however, since these occurrences of the spaced

word s have already been used in the previously accepted, higher-

scoring spaced-word matches.

After a set of spaced-word matches has been selected for a pair

of genomic sequences as described, we estimate the evolutionary dis-

tance between the sequences by considering all don’t-care positions

of these spaced-word matches. From the aligned nucleotides at these

positions, we estimate the match probability p and apply the usual

Jukes-Cantor correction (Jukes and Cantor, 1969) to estimate the

average number of substitutions per sequence position. Note that

the spaced words that are finally selected can overlap so, in theory, a

position in one sequence can be assigned to up to ‘ – w positions in

the second sequence when p is estimated. For the above shown se-

quence pair, for example, there would be an additional spaced-word

match with a positive score, namely the one at (7, 10) involving the

spaced word G � �AT. As a result, the G at position 7 in S1 would

be assigned by two different spaced-word matches—the ones at (6,

2) and (7, 10)—to two different positions in S2, positions 3 and 11.

In the interest of program runtime, we do not remove such double

assignments.

The runtime of our program depends on the number of spaced-

word matches between the input sequences with grows quadratically

with the sequence length. Since matches involving the same spaced

word s are sorted to obtain a one-to-one matching, the worst-case

complexity of our algorithm is OðL2 � log LÞ. For realistic data,

however, this worst-case estimate is hardly relevant, since the real

number of spaced-word matches is only a tiny fraction of the theor-

etical maximum. Moreover, in real-world sequences not too many

spaced words appear more than once, and only small sets of spaced-

word matches need to be sorted for the greedy one-to-one matching.

To further decrease the runtime for very long genomes, the weight w

of the underlying pattern can be increased, to decrease the number

of spaced-word matches. The runtime of our program on real-world

and simulated sequences is reported in the next section. In addition

to the weight w, the user can adjust the threshold for the spaced-

word matches in the filtering procedure which is, by default, set to

zero. By contrast, the number of don’t-care positions is hard-coded

in the current implementation, we use patterns with 100 don’t care

positions. With our default value of w¼12, spaced words have

therefore a length of ‘¼112.

3 Test results

To evaluate the accuracy of the evolutionary distances estimated

with FSWM, we performed systematic test runs on simulated and on

real-world genomes. In all these test runs, we used the default weight

w¼12 and a threshold of zero for the spaced-word scores in the fil-

tering procedure. With some sequences we did additional test runs

with alternative values of w. Binary patterns were generated with

our software tool rasbhari (Hahn et al., 2016).

3.1 Simulated sequences
As a first set of test data, we generated semi-artificial sequence pairs.

Here, we used the genome sequence of E. coli, strain K12, as ances-

tral sequence and evolved it into pairs of descendant synthetic gen-

omes by randomly generating an average number of d substitutions

per site; we varied d between 0 and 1 in steps of 0.05 and used a

transition/transversion ratio of 2:1. For each value of d, we gener-

ated 500 pairs of simulated genomes, estimated their distances with

the methods under study and computed the standard deviations of

the estimated distances. For a first set of sequence pairs, we did not

include insertions and deletions. To make the simulation more real-

istic we generated a second set of sequence pairs where insertions

and deletions were included with a probability of 0.5% at every pos-

ition. The length of indels was randomly chosen between 1 and 100

with uniform probability. In Figure 2, the distances estimated with

Co-phylog, andi and FSWM for these simulated sequence pairs, with

and without indels, are plotted against the corresponding ‘real’ dis-

tances, i.e. the average number d of substitutions per site used to

generate them. As mentioned, we used the default weight of w¼12,

but with other values for w, similar results were achieved.

As can be seen in In Figure 2, FSWM estimates phylogenetic dis-

tances accurately for distances up to around 0.85 substitutions per

position; for larger substitution rates, distances are slightly underes-

timated. The distance estimates of the program are hardly affected

by insertions and deletions in the sequences. andi, by comparison,

returns accurate distances in the range up to around 0.6 substitu-

tions per position for our indel-free sequence pairs; this confirms

previous results published by the authors of the program who also

used indel-free sequence pairs in their program evaluation (Haubold

et al., 2015). For sequences with insertions and deletions, however,
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the results of the program are reliable only for distances up to

around 0.35 substitutions per positions. Co-phylog, finally, pro-

duces reasonably good distance estimates in the range between 0

and around 0.75 substitutions per position, although this program is

less accurate and produces statistically less stable results than

FSWM. For larger substitution rates, the distances estimated by Co-

phylog level out. As with FSWM, insertions and deletions hardly af-

fect the performance of Co-phylog on these test data.

Next, we simulated sets of gene sequences with the Artificial Life

Framework (ALF) developed by Dalquen et al. (2012). ALF evolves

gene sequences based on a probabilistic model along a random tree,

starting with a common ancestral sequence. During this process,

evolutionary events are logged such that the ‘true’ phylogeny is

known for each simulated sequence set and can be used as a refer-

ence in benchmark studies. We generated a series of 35 datasets con-

taining 50 ‘species’ each with a minimum gene length of 1000 and

with default settings for all other parameters. Each dataset com-

prises 1500 simulated gene families with one gene for each of the 50

species, generated along the same tree. The total length of the se-

quences in one dataset is between 225 Mb and 463 Mb, the largest

distance between two sequences in this dataset is around 0.4 substi-

tutions per position.

For each dataset, we calculated distance matrices with FSWM,

Co-phylog and andi. We then applied the Neighbor Joining (NJ) al-

gorithm (Saitou and Nei, 1987) from the PHYLIP package

(Felsenstein, 1993) to these distance matrices to calculate phylogen-

etic trees. Finally, we compared the obtained trees to the reference

trees using the Robinson-Folds (RF) metric (Robinson and Foulds,

1981) to assess their quality. The smaller the RF distances are, the

better are the reconstructed trees. The sum of the RF distances over

all 35 datasets was 470 for the distances calculated by andi, 446 for

the Co-phylog approach and 424 for our FSWM method.
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Fig. 2. Distances estimated with Co-phylog (top), andi (middle) and FSWM (bottom) for pairs of simulated DNA sequences, without indels (left-hand side) and

with indels (right-hand side), plotted against the ’real’ distances, measured in substitutions per site. Sequence pairs were generated as explained in the main text,

Section 3.1, by inserting random mutations into the E. coli K12 genome sequence. Error bars represent standard deviations
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3.2 Real genomes
To see if similar results can be achieved on real-world genomes, we

first used a set of 13 bacterial genomes from the Brucella genus. As

a reference, we used a tree that has been previously published by

Foster et al. (2009) which is based on orthologous SNPs, discovered

by the alignment program MUMmer (Kurtz et al., 2004). The total

size of this dataset is about 43.5 Mb; the 13 genomes are closely

related, the largest distance between two genomes in this set is

around 0.002 substitutions per position. All three programs, Co-

phylog, andi and FSWM, precisely produced the topology of the ref-

erence tree, i.e. the RF distances between the reconstructed trees and

the reference tree are all zero. For the pattern weight in FSWM, we

used not only the default value of w¼12, but also w¼10,11,13,14.

With all these values for w, we obtained exactly the same correct

tree topology; these trees are shown in the supplementary material.

As a third benchmark set for phylogeny reconstruction, we used

a set of 14 plant genomes with a total size of about 4.8 Gb which is

frequently used as a test case in alignment-free studies (Hatje and

Kollmar, 2012; Leimeister and Morgenstern, 2014). These se-

quences are rather distantly related, the maximum distance between

two genomes in this set is 0.633 substitutions per position. Figure 3

shows a previously published tree that has been calculated using

Maximum Likelihood based on manually improved multiple se-

quence alignments of CAP and Arp2/3 protein sequences (Hatje and

Kollmar, 2012), a tree obtained with andi and three trees obtained

with FSWM using parameter values w¼12, w¼13 and w¼14.

The trees obtained with our approach are similar to the tree pub-

lished by Hatje and Kollmar (2012), with only minor differences in

the Brassicales clade: with w¼12 and w¼13, Brassica rapa has a

slightly different position in the FSWM tree, compared to the tree

based on protein alignments, while with w¼14, Capsella rubella is

placed at a different position. andi did not produce a reasonable

phylogeny for these genomes, since this program works best on se-

quences with lower substitution rates. We also tried to run Co-phy-

log on this dataset, but the program did not terminate, so we were

unable to include its results in our evaluation. As reported in the lit-

erature, other alignment-free methods were also unable to calculate

meaningful phylogenies for this dataset (Hatje and Kollmar, 2012;

Leimeister and Morgenstern, 2014).

3.3 Runtime
We ran all programs on 10 x Intel(R) Xeon(R) CPU E7-4850 with

2.00 GHz with 4 cores each summing up to 40 cores (80 threads)

A B

C

E

D

Fig. 3. Trees reconstructed from 14 plant genomes. (A) tree based on multiple protein alignments and Maximum Likelihood (Hatje and Kollmar, 2012); (B) tree cal-

culated with distances from andi; (C–E) trees calculated with distances from FSWM with weights w¼12 (C), w¼ 13 (D) and w¼14 (E), respectively
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and 1000 GB RAM. Co-phylog took around 1200 s for one of the

simulated ALF datasets, andi 22 s and FSWM 180 s. For the

Brucella genomes the runtime was 3 s for andi, 59 s for Co-phylog

and 15 s for FSWM. For the plant genomes, the runtime was 1740 s

for andi, for FSWM the runtime was 129 540 s with w¼12, com-

pared to 28 980 s with w¼13 and 10 260 s with w¼14.

4 Discussion

In this paper, we proposed Filtered Spaced-Word Matches (FSWM),

a new alignment-free approach to estimate phylogenetic distances

between genomic sequences. Similar to the recently published meth-

ods andi and Co-phylog, FSWM rapidly identifies pairwise local

gap-free alignments where pairs of identical nucleotides are aligned

to each other at certain, pre-defined positions, while mismatches are

possible elsewhere. Phylogenetic distances between genomes can

then be estimated by considering those positions of the identified

local alignments where mismatches are allowed. While andi and Co-

phylog use local alignments bounded by matching word pairs of

a certain length, our approach uses spaced-word matches with re-

spect to an arbitrary binary pattern of match and don’t-care

positions.

The main difference between FSWM and these previous methods

is in how we distinguish between local homologies and spurious ran-

dom similarities. andi and Co-phylog use exact word matches of a

certain length to reduce the background noise. A disadvantage of

this approach is that, this way, many true homologies are discarded

as well. By contrast, we use patterns with a rather low number w of

match positions, the default value in FSWM is w¼12. This allows

us to identify sufficiently many local homologies, even for remotely

related sequences. To filter out random similarities, we then look at

the nucleotides aligned at the don-t care positions, and we discard

all spaced-word matches for which the overall similarity is below a

certain threshold. We use patterns with 100 don’t care positions, so

the default length of our spaced-word matches is 112 nt. To deal

with duplications, we select a one-to-one mapping of spaced words

from the compared sequences.

Our approach is able to rapidly detect homologies among gen-

omic sequences, as a basis for phylogeny reconstruction. At the

same time, our filtering procedure allows us to distinguish between

true homologies and spurious random similarities. This way, FSWM

can accurately estimate substitution frequencies, even for long, dis-

tantly related sequences where established alignment-free methods

fail to produce reasonable results.

For closely related sequences, our filtering approach can separate

homologous spaced-word matches from background matches with

almost 100% accuracy. For distantly related sequences, there is a

certain twilight zone where the distributions of the homologue and

background matches in the spaced-word histograms have some

overlap, as can be seen in the comparison of Spizellomyces puncta-

tus and Batrachochytrium dendrobatidis in Figure 1H. If longer pat-

terns with more don’t-care positions would be used, the split

between homologous and background spaced-word matches would

become clearer, but the pattern length cannot be too long because

this would reduce the number of spaced-word matches in homolo-

gous regions too much.

In the current version of FSWM, the main parameter that is to be

adjusted by the user is the weight w of the underlying binary pattern.

By default, we are using a low weight to obtain sufficiently many

‘candidate’ spaced-word matches that are then filtered based on the

similarity between the aligned segments. If large genomes are com-

pared, it is advisable to increase w to reduce the number of

‘candidate’ spaced-word matches, since this decreases the program

runtime. Note that the value of w has no systematic influence on the

estimated distances; in our test runs we obtained similar distance

values and phylogenetic trees with different values of w; see also the

supplementary material to this paper.

To clearly separate homologous from background spaced-word

matches in our filtering procedure, we are using a relatively high

number of don’t care positions; in our implementation, the number

of 100 don’t care positions is hard-coded. A certain disadvantage of

this approach is that we miss homologies containing insertions or

deletions since, by definition, spaced-word matches are gap-free

local alignments. Therefore, input sequences for FSWM must be

long enough to ensure that sufficiently many homologous spaced-

word matches are found, even for remotely related input sequences

with frequent indels.

To separate homologous from background spaced-word matches,

a suitable threshold needs to be defined for the similarity between

matching spaced words. If the chosen threshold is too low, too many

random similarities are accepted, and our approach overestimates dis-

tances between compared sequences. If the threshold is too high, the

noise is reduced, but this way, low-scoring homologous spaced-word

matches are also discarded and distances are underestimated. In

FSWM, we use a nucleotide substitution matrix and, by default, we

discard all spaced-word matches for which the total score over all

don-t-care positions is negative. With this cut-off criterion, our

method is able to accurately estimate substitution frequencies even for

highly divergent genomic sequences. For very large substitution rates,

however, our method slightly underestimates phylogenetic distances,

so it is possible that FSWM discards too many low-scoring homolo-

gies. More sophisticated statistical methods may be applied to better

distinguish between true homologies and random similarities in our

approach to further improve its accuracy.

Funding

S.S.-J. was supported by a grant from International Max Planck Research

School Molecular Biology, Göttingen.

Conflict of Interest: none declared.

References

Ahmadi,A. et al. (2011) Hobbes: optimized gram-based methods for efficient

read alignment. Nucleic Acids Res., 40, e41.

Bernard,G. et al. (2016) Alignment-free microbial phylogenomics under sce-

narios of sequence divergence, genome rearrangement and lateral genetic

transfer. Scientific Reports, 6, 28970.

Bromberg,R. et al. (2016) Phylogeny reconstruction with alignment-free

method that corrects for horizontal gene transfer. PLOS Comput. Biol., 12,

e1004985.

Chatterji,S. et al. (2008) Research in Computational Molecular Biology: 12th

Annual International Conference, RECOMB 2008, Singapore, March 30 –

April 2, 2008. Proceedings, pp. 17–28. Springer, Berlin. Heidelberg.

Chiaromonte,F. et al. (2002) Scoring pairwise genomic sequence alignments.

In: Altman,R.B. et al. (eds) Pacific Symposium on Biocomputing. World

Scientific, Singapore, pp. 115–126.

Chor,B. et al. (2009) Genomic dna k-mer spectra: models and modalities.

Genome Biol., 10, R108.

Comin,M. and Verzotto,D. (2011) The irredundant class method for remote

homology detection of protein sequences. J. Comput. Biol., 18, 1819–1829.

Comin,M. and Verzotto,D. (2012) Alignment-free phylogeny of whole gen-

omes using underlying subwords. Algorithms Mol. Biol., 7, 34.

Dalquen,D.A. et al. (2012) Alf-a simulation framework for genome evolution.

Mol. Biol. Evol., 29, 1115–1123.

978 C.-A.Leimeister et al.

Deleted Text: ,
Deleted Text: seconds 
Deleted Text:  
Deleted Text: seconds 
Deleted Text: econds
Deleted Text: seconds 
Deleted Text: seconds 
Deleted Text: seconds 
Deleted Text: ,
Deleted Text: seconds 
Deleted Text: ,
Deleted Text: seconds 
Deleted Text: ,
Deleted Text: seconds 
Deleted Text: ,
Deleted Text: seconds 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw776/-/DC1


Devillers,H. and Schbath,S. (2012) Separating significant matches from spuri-

ous matches in DNA sequences. J. Comput. Biol., 19, 1–12.

Didier,G. et al. (2007) Comparing sequences without using alignments: appli-

cation to HIV/SIV subtyping. BMC Bioinformatics, 8, 1.

Domazet-Loso,M. and Haubold,B. (2009) Efficient estimation of pairwise dis-

tances between genomes. Bioinformatics, 25, 3221–3227.

Drouin,A. et al. (2016) Predictive computational phenotyping and biomarker dis-

covery using reference-free genome comparisons. BMC Genomics, 17, 754.

Federico,M. et al. (2012) Direct vs 2-stage approaches to structured motif find-

ing. Algorithms Mol. Biol., 7, 20.

Felsenstein,J. (1993) Phylip (phylogeny inference package), version 3.5 c.

Foster,J. et al. (2009) Whole-genome-based phylogeny and divergence of the

genus brucella. J. Bacteriol., 191, 2864–2870.

Hahn,L. et al. (2016) rasbhari: optimizing spaced seeds for database searching,

read mapping and alignment-free sequence comparison. PLOS Comput.

Biol., 12, e1005107.

Hatje,K. and Kollmar,M. (2012) A phylogenetic analysis of the brassicales

clade based on an alignment-free sequence comparison method. Front.

Plant Sci., 3, 192.

Haubold,B. (2014) Alignment-free phylogenetics and population genetics.

Brief. Bioinf., 15, 407–418.

Haubold,B. et al. (2015) andi: fast and accurate estimation of evolutionary dis-

tances between closely related genomes. Bioinformatics, 31, 1169–1175.

Haubold,B. et al. (2009) Estimating mutation distances from unaligned gen-

omes. J. Comput. Biol., 16, 1487–1500.

Haubold,B. et al. (2005) Genome comparison without alignment using short-

est unique substrings. BMC Bioinf., 6, 123.

Horwege,S. et al. (2014) Spaced words and kmacs: fast alignment-free sequence

comparison based on inexact word matches. Nucleic Acids Res., 42, W7–W11.

Huerta-Cepas,J. et al. (2016) eggNOG 4.5: a hierarchical orthology frame-

work with improved functional annotations for eukaryotic, prokaryotic and

viral sequences. Nucleic Acids Res., 44, D286–D293.

Jukes,T.H. and Cantor,C.R. (1969) Evolution of Protein Molecules. Academy

Press, New York.

Kantorovitz,M.R. et al. (2007) A statistical method for alignment-free com-

parison of regulatory sequences. Bioinformatics, 23, i249–i255.

Kurtz,S. et al. (2004) Versatile and open software for comparing large gen-

omes. Genome Biol., 5, R12.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25–R10.

Leimeister,C.A. et al. (2014) Fast alignment-free sequence comparison using

spaced-word frequencies. Bioinformatics, 30, 1991–1999.

Leimeister,C.A. and Morgenstern,B. (2014) kmacs: the k-mismatch average

common substring approach to alignment-free sequence comparison.

Bioinformatics, 30, 2000–2008.

Leslie,C. et al. (2002) The spectrum kernel: A string kernel for SVM protein

classification. In: Proceedings of the Pacific Symposium on Biocomputing,

vol. 7, pp. 566–575.

Leung,G. and Eisen,M.B. (2009) Identifying cis-regulatory sequences by word

profile similarity. PLOS One, 4, 1–11.

Leung,H.C.M. et al. (2011) A robust and accurate binning algorithm for meta-

genomic sequences with arbitrary species abundance ratio. Bioinformatics,

27, 1489–1495.

Li,R. et al. (2008) Soap: short oligonucleotide alignment program.

Bioinformatics, 24, 713–714.

Lingner,T. and Meinicke,P. (2006) Remote homology detection based on

oligomer distances. Bioinformatics, 22, 2224–2231.

Lingner,T. and Meinicke,P. (2008) Word correlation matrices for protein se-

quence analysis and remote homology detection. BMC Bioinformatics,

9, 259.

Meinicke,P. (2015) UProC: tools for ultra-fast protein domain classification.

Bioinformatics, 31, 1382–1388.

Morgenstern,B. et al. (2015) Estimating evolutionary distances between gen-

omic sequences from spaced-word matches. Algorithms Mol. Biol., 10, 5.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification from

RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32, 462–464.

Reinert,G. et al. (2009) Alignment-free sequence comparison (I): statistics and

power. J. Comput. Biol., 16, 1615–1634.

Robinson,D. and Foulds,L. (1981) Comparison of phylogenetic trees. Math.

Biosci., 53, 131– 147.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Schreiber,F. et al. (2009) Orthoselect: a protocol for selecting orthologous

groups in phylogenomics. BMC Bioinf., 10, 219.

Sims,G.E. et al. (2009) Alignment-free genome comparison with feature fre-

quency profiles (ffp) and optimal resolutions. Proc. Natl. Acad. Sci., 106,

2677–2682.

Song,K. et al. (2014) New developments of alignment-free sequence compari-

son: measures, statistics and next-generation sequencing. Brief. Bioinf., 15,

343–353.

Tanaseichuk,O. et al. (2012) Separating metagenomic short reads into gen-

omes via clustering. Algorithms Mol. Biol., 7, 27.

Teeling,H. et al. (2004) TETRA: a web-service and a stand-alone program for

the analysis and comparison of tetranucleotide usage patterns in DNA se-

quences. BMC Bioinformatics, 5, 163.

Thankachan,S.V. et al. (2016) ALFRED: a practical method for alignment-

free distance computation. J. Comput. Biol., 23, 452–460.

Ulitsky,I. et al. (2006) The average common substring approach to phyloge-

nomic reconstruction. J. Comput. Biol., 13, 336–350.

Vinga,S. (2014) Editorial: alignment-free methods in computational biology.

Brief. Bioinf., 15, 341–342.

Vinga,S. et al. (2012) Pattern matching through chaos game representation:

bridging numerical and discrete data structures for biological sequence ana-

lysis. Algorithms Mol. Biol., 7, 10.

Wan,L. et al. (2010) Alignment-free sequence comparison (II): theoretical

power of comparison statistics. J. Comput. Biol., 17, 1467–1490.

Wang,Y. et al. (2012) MetaCluster 5.0: a two-round binning approach for

metagenomic data for low-abundance species in a noisy sample.

Bioinformatics, 28, i356–i362.

Waterhouse,R.M. et al. (2013) Orthodb: a hierarchical catalog of animal, fun-

gal and bacterial orthologs. Nucleic Acids Res., 41, D358–D365.

Wu,Y.W.W. and Ye,Y. (2011) A novel abundance-based algorithm for bin-

ning metagenomic sequences using l-tuples. J. Comput. Biol., 18, 523–534.

Yi,H. and Jin,L. (2013) Co-phylog: an assembly-free phylogenomic approach

for closely related organisms. Nucleic Acids Res., 41, e75.

Zerbino,D.R. and Birney,E. (2008) Velvet: Algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zuo,G. and Hao,B. (2015) CVTree3 web server for whole-genome-based and

alignment-free prokaryotic phylogeny and taxonomy. Genomics

Proteomics Bioinf., 13, 321– 331.

Filtered spaced-word matches 979


