
Air Pollution and Cognitive Impairment Among the Chinese
Elderly Population: An Analysis of the Chinese Longitudinal
Healthy Longevity Survey (CLHLS)
Qingyang Zhu1, Yuebin Lyu2, Keyong Huang3, Jinhui Zhou2, Wenhao Wang1, Kyle Steenland1,
Howard H. Chang4, Stefanie Ebelt1, Xiaoming Shi2, and Yang Liu1

1Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,
2China CDC Key Laboratory of Environment and Population Health, Chinese Center for Disease Control and Prevention,
National Institute of Environmental Health, Beijing, China, 3Key Laboratory of Cardiovascular Epidemiology & Department
of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and
Peking Union Medical College, Beijing, China, 4Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA, USA

Abstract Cognitive impairment and dementia have long been recognized as growing public health threats.
Studies have found that air pollution is a potential risk factor for dementia, but the literature remains
inconclusive. This study aimed to evaluate the association between three major air pollutants (i.e., PM2.5, O3,
and NO2) and cognitive impairment among the Chinese elderly population. Study participants were selected
from the Chinese Longitudinal Health Longevity Survey (CLHLS) after 2005. We define cognitive impairment
as a Chinese Mini‐Mental‐State Exam (CMMSE) score <24. The associations of air pollution with cognitive
impairment and CMMSE score were evaluated with a logistic regression model and a linear mixed‐effect model
with random intercepts, respectively. A total of 3,887 participants were enrolled in this study. Of the 2,882
participants who completed at least one follow‐up visit, 931 eventually developed cognitive impairment. In
single‐pollutant models, we found that yearly average PM2.5 and NO2 as well as warm season O3, were
positively associated with cognitive impairment. NO2 remained positively associated with cognitive impairment
in the multi‐pollutant model. The linear mixed‐effect models revealed that warm season O3 and yearly average
NO2 were significantly associated with decreased CMMSE scores. Our research has established a positive
association between cognitive impairment and air pollution in China. These findings underscore the imperative
for the next iteration of China's Air Pollution Prevention and Control Action Plan to broaden its focus to
encompass gaseous air pollutants since mitigating single air pollutant is insufficient to protect the aging
population.

Plain Language Summary Our research investigates the impact of air pollution on cognitive well‐
being in China's elderly. We studied three pollutants—fine particles (PM2.5), ozone (O3), and nitrogen dioxide
(NO2)—and their relationship to cognitive function. By analyzing data from a large survey, we found that higher
exposure to these pollutants, especially NO2, correlates with an increased risk of memory and thinking issues.
This insight is crucial for China's air pollution policies, highlighting the need to address a range of pollutants to
safeguard the cognitive health of its aging population.

1. Introduction
Cognitive impairment and dementia have long been recognized as growing public health threats, especially in an
aging society. The all‐age mortality rates attributable to dementia skyrocketed by 100.1% (95% CI: 89.1–117.5)
from 1990 to 2019, placing it the seventh leading risk factor of excessive deaths globally among all age groups,
and the fourth among individuals aged 70 and older (Collaborators, 2021). Meanwhile, the global prevalence
of dementia was projected to increase from 57.4 (95% CI: 50.4–65.1) million in 2019 to 152.8 (95% CI:
130.8–175.9) million in 2050 (Nichols et al., 2022), posing a great challenge to the healthy aging of the world's
elderly population. In 2020 alone, the prevalence of dementia among the Chinese population aged 60 and above
reached 6.0% (Ren et al., 2022). More strikingly, it was estimated that cognitive impairment, an intermediate stage
between normal cognitive function and dementia, affected 22.4% of the Chinese elderly population in 2018
(Qin et al., 2022).
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Amidst this unfolding crisis, air pollution has emerged as a potential risk factor for cognitive impairment and
dementia. For example, A handful of studies have linked PM2.5 to poor cognitive performance (Lin et al., 2017),
slower reaction time (Cullen et al., 2018), memory loss (Ailshire & Clarke, 2014; Ailshire & Crimmins, 2014),
global cognitive decline (Weuve et al., 2012), and Alzheimer's disease (AD) (Jung et al., 2015; Li et al., 2019).
Gaseous pollutants, such as ozone (O3) and nitrogen dioxide (NO2), were also found to be associated with
cognitive decline (Cleary et al., 2018), semantic fluency (Zare Sakhvidi et al., 2022), lower executive function,
and impaired logic memory (Gatto et al., 2014). However, as reviewed by Delgado‐Saborit et al., current study
findings are inconsistent, especially regarding which pollutants have the strongest association with dementia
(Delgado‐Saborit et al., 2021). This inconsistency is possibly attributable to exposure measurement error,
particularly when multiple air pollutants are investigated simultaneously.

Recent advances in satellite remote sensing have offered an opportunity to establish high‐performance air
pollution models for environmental epidemiological studies. However, satellite retrievals, such as aerosol optical
depth (AOD), are typically not direct measurements of ground‐level air pollution per se. A set of machine‐
learning approaches have been utilized to project the spatiotemporal distribution of multiple air pollutants
from satellite‐driven data. For example, Liang et al. established a 1‐km ensemble learning model for PM2.5 in
China from 2000 to 2018 (Liang et al., 2020). The model had an overall monthly R2 of 0.93 (Liang et al., 2020). In
addition, we also established 0.05° (approximately 5 km) O3 (Zhu et al., 2022) and NO2 prediction models (Huang
et al., 2023) covering 2005–2019 from OzoneMeasurement Instrument (OMI) retrievals. Certain models not only
expanded the spatial coverage of the ground‐level monitoring network but also reliably hindcasted historical
pollution status for ∼10 years before the onset of large‐scale environmental monitoring in China (Zhu
et al., 2022).

The availability of such long‐term air pollution data facilitates epidemiological investigations with large existing
cohorts that were established decades ago. The Chinese Longitudinal Health Longevity Survey (CLHLS) is the
world's largest survey on centenarians with a compatible group of people aged 65 and above (Zeng et al., 2017).
Participants of CLHLSwere enrolled in 22 different provinces in China over eight waves of survey data collection
that occurred during 1998–2018. Its database includes detailed information on the participants' sociodemographic
status as well as medical records. The CLHLS used a Chinese Mini‐Mental State Exam (CMMSE, localized from
the original MMSE) to evaluate the subjects' cognitive function. To ensure the quality and consistency of the
results throughout the whole nation, all the CMMSE tests were conducted face‐to‐face between trained in-
terviewers and the participants. The CMMSE has proven to be effective for the Chinese elderly population (Ren
et al., 2021).

The present study investigated the association between air pollution and cognitive impairment with the CLHLS
data. In contrast to traditional analyses that used environmental monitoring data, pioneers the integration of three
advanced satellite‐driven models to evaluate population exposure to PM2.5, O3, and NO2 at a fine resolution in
China. The improvement in exposure matrices could make better use of CLHLS's long temporal coverage and
thus benefit our mutual understanding of air pollution as a potential risk factor for dementia.

2. Methods
2.1. Study Population

The CLHLS is a nationwide survey on the healthy aging of the Chinese elderly population covering 22 out of the
31 provinces (Figure 1). It comprises eight rounds of data collection that took place in 1998, 2000, 2002, 2005,
2008–2009, 2011–2012, 2014, and 2018, respectively (Zeng et al., 2017). All participants were selected with a
targeted random sampling approach to ensure representativeness. The details of CLHLS may also be found at
https://agingcenter.duke.edu/CLHLS.

The present study selected CLHLS participants that were enrolled after 2005 to align with the temporal coverage
of the available air pollution exposure data set. The inclusion criteria covered: (a) free of cognitive impairment
(CMMSE ≥ 24) at enrollment; (b) fully completed at least one CMMSE measurement or unable to complete the
test only due to significant cognitive impairment; and (c) had clear residential address records. We tracked
participants until the end of the study, or the first time they developed a cognitive impairment, if any, assessed via
the survey in this study. The detailed distribution of our study participants can be found in Figure 1.
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The study was approved by the Biomedical Ethics Committee of Peking University (IRB00001052‐13074) and
the Institutional Review Board of Emory University (STUDY00000950). Signed written consents were obtained
from either the participants or their legal representatives for both the baseline and follow‐up surveys.

2.2. Exposure Assessment

We used three satellite‐driven machine learning models to estimate the level of exposure to ambient PM2.5, O3,
and NO2. Specifically, the 1‐km PM2.5 data were developed by Liang et al. using theMulti‐Angle Implementation
of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product as the main predictor. This model first
used a multiple imputation approach to gap‐fill the missing AOD values and then a generalized additive model to
synthesize prediction results from two tree‐based learning algorithms (i.e., RF and XGBoost). Its final predictions
agreed well with the ground‐level observations, with a monthly cross‐validation (CV) R2 of 0.93 after 2013 and a
test R2 of 0.67 for 2000–2012 (Liang et al., 2020). Surface‐level O3 concentrations were generated with the
Smithsonian Astrophysical Observatory (SAO) OMI Ozone Profile (OMPROFOZ) at a 0.05° resolution as the
main predictor (Zhu et al., 2022). The O3 model considered surface ozone pollution generated either from the
photochemical reactions involving NO2 and volatile organic species (VOCs) or that came down from the
stratosphere through the stratospheric intrusion process. Its monthly CV R2 reached 0.86 for 2014–2019 and the
test R2 was 0.73 for 2005–2013. The NO2 model was based on the OMI level‐3 tropospheric NO2 vertical column
densities (VCD). It also used an ensemble learning approach to account for the non‐linear relationship between
model predictors and ground‐level NO2 concentrations. The final NO2 predictions yielded a random CV R2 of
0.88 at monthly level (Huang et al., 2023). Annual average exposure to PM2.5, NO2 as well as annual and warm
season (April–September) average MDA8 (daily maximum 8‐hr average) O3 prior to the cognitive test were
assigned to the participants based on their geocoded address (street level). To specify, we first matched all the
participants' addresses to the model grid cells it completely fell into and then identified their exposure levels
according to the date when the CMMSE was carried out. For participants whose addresses changed during two
consecutive visits, we considered the midpoint of two visits as the date of moving.

Figure 1. The distribution of study participants. The CLHLS participants came from 22 Chinese provinces, namely Beijing,
Tianjin, Chongqing, Shanghai, Anhui, Fujian, Guangdong, Guangxi, Hubei, Hunan, Henan, Hebei, Heilongjiang, Liaoning,
Jiangxi, Jiangsu, Jilin, Shandong, Shaanxi, Shanxi, Sichuan, and Zhejiang.
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2.3. Measurement of Cognitive Impairment

Participants' cognitive function was measured with the CMMSE. This measure was modified from the original
MMSE developed by Folstein et al., in 1975 (Folstein et al., 1975) to fit the socioeconomic status of the Chinese
elderly population. Given that most participants of the CLHLS are illiterate, the CMMSE simplified questions
regarding calculation and verbal skills (Zeng & Vaupel, 2002). The details of the CMMSE and a sample ques-
tionnaire can be found at (https://doi.org/10.18170/DVN/WBO7LK). We define cognitive impairment as an
MMSE score <24 or unable to complete the test only due to poor cognitive function. Based on previous studies,
we treated questions that were marked “unable to answer” as wrong. Participants who were not able to complete
the questionnaire for reasons other than cognitive impairment (e.g., physical disabilities) were removed from the
current study.

2.4. Covariates

We considered a set of variables as potential confounders. For sociodemographic status, we included age (in
years), sex, body mass index (BMI) (kg/m2), educational level (in years), ethnic group (Han, Zhuang, and others),
and living in an urban/rural area.

We also considered the subjects' behavior patterns and chronic disease status as potential sources of confounding,
including past or present smoking, drinking, and physical exercise as well as currently suffering from high blood
pressure, diabetes, or heart disease. All covariates were updated at each round of survey.

2.5. Statistical Analysis

Since all the surveys of CLHLS were conducted on a cross‐sectional basis, we were not able to identify the
specific date that a participant developed cognitive impairment. Thus, a typical survival analysis using Cox
proportional hazards modeling may be inappropriate (Steenland et al., 2018). As such, we used a logistic
regression model that included the follow‐up time to analyze the association between air pollution and cognitive
impairment. The detailed model is illustrated in Equation 1.

Logit(P(Yiz)) = β0 + β1timeiz +∑ βjair pollutantijz +∑ βkconfounderikz (1)

where Yiz denotes the cognitive impairment status for individual i at zth measurement; timeiz denotes the time
stayed in this cohort (in years) since enrollment for individual i; air pollutantijz denotes the average concentration
of air pollutant j for individual i in the previous year of the zth measurement; confounderikz represents all the
confounders that are listed in the previous section.

We first ran single‐pollutant models assessing associations of yearly average PM2.5, NO2, warm season MDA8
O3, and yearly average MDA8 O3, with cognitive impairment status. We then conducted two multipollutant
models for yearly average PM2.5, NO2, and warm season O3, respectively. Multiple air pollutants were included
based on the temporal range, that is, the effect of warm season O3 was adjusted for warm season PM2.5 and NO2,
while yearly average PM2.5 and NO2 were evaluated simultaneously in a separate model adjusted for annual
average MDA8 O3 concentration. Furthermore, a generalized additive model (GAM) with a penalized spline
function for each specific air pollutant was also utilized to study the concentration‐response relationship between
air pollution and cognitive impairment. The GAM models also adjusted for other air pollutants as well as the
covariates previously listed. The reference point (where OR = 1) for all the concentration‐response relationships
were selected at each air pollutant's average value, that is, 61.4 μg/m3, 30.5 μg/m3 for annual average PM2.5 and
NO2 as well as 107.1 μg/m

3 for warm season O3, respectively.

Furthermore, we also evaluated the association between air pollution and the CMMSE score using a linear mixed‐
effect regression model with random intercept. The detailed model is illustrated in Equation 2.

Yiz = β0 + θi +∑ βjair pollutantijz +∑ βkconfounderikz (2)
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where Yiz denotes the CMMSE score for individual i at zth measurement; θi is the random intercept. air pollutantijz
denotes the average concentration of air pollutant j for individual i in the previous year of the zth measurement;
confounderikz represents all the confounders that are listed in the previous section.

All the statistical analyses were conducted with R (v 4.0.5, R core team). Two‐sided p‐value < 0.05 was
considered statistically significant.

3. Results
As can be seen in Table 1, 3,887 participants at baseline were selected for the present study. Among them, 2,882
(74.1%), 1,362 (35.0%), and 521 (13.4%) completed one, two, and three rounds of the follow‐up survey,
respectively. At baseline, the average age and BMI were 80.0 ± 11.3 years and 22.0 ± 29.4 kg/m2. Slightly more
than half of the participants (2,088, 53.7%) were male, while 3,480 (89.5%) of them belonged to the Han ethnic
group. A total of 2,642 (68.0%) individuals lived in a rural area. The majority of the participants self‐identified as
never drinkers (2,563, 65.9%) and never smokers (2,401, 61.8%), while 490 (12.6%) and 605 (15.6%) participants
identified themselves as former drinkers and former smokers. Thirty‐six‐point‐five percent (1,419) of them
exercised regularly. Around 10.3% (401), 24.5% (951), and 4.0% (154) of the participants had heart diseases, high
blood pressure (HBP), and diabetes at baseline, respectively. At the first follow‐up visit, 752 (26.1%) of the
remaining participants developed cognitive impairment, while 129 (9.5%) and 50 (9.6%) people developed CI at
the second and third follow‐up visits.

As illustrated in Table 2, per year increase in age was associated with a 0.7% increase in the risk of cognitive
impairment (95% CI = [1.004, 1.010], p < 0.001). Females (OR and 95% CI = 1.040 [1.004, 1.075], p < 0.001),
current smokers (OR and 95% CI= 1.026 [1.006, 1.045], p= 0.008) and former drinkers (OR and 95%CI= 1.024
[1.005, 1.042], p = 0.012) were at a higher risk of cognitive impairment. On the contrary, per year increase in
education (OR and 95% CI = 0.997 [0.995, 0.999], p = 0.003), living in an urban area (OR and 95% CI = 0.980
[0.963, 0.996], p = 0.018), and regular exercise (OR and 95% CI = 0.966 [0.952, 0.980], p < 0.001) were
protective factors for cognitive impairment. We did not observe significant association between cognitive
impairment and ethnic groups, BMI, high blood pressure, diabetes, heart diseases, past smoking as well as current
drinking status.

The baseline annual average exposure levels to PM2.5, NO2, and MDA8 O3 were 62.5 ± 14.3, 29.1 ± 11.7, and
89.2 ± 5.82 μg/m3, respectively (Table 3). Warm season average MDA8 O3 was significantly higher than the
annual average and reached 106 ± 12.2 μg/m3. The exposure levels for three follow‐up visits were generally
comparable to the baseline. Yearly average PM2.5 and NO2 were moderately correlated with each other (r= 0.57)
while warm season O3 also showed moderate correlation with NO2 and PM2.5 in the warm season (r = 0.69 and
0.57, respectively).

3.1. The Association Between Air Pollution and Congnitive Impairment

In the single‐pollutant models (Table 4), we found that exposures to O3, PM2.5, and NO2 were all positively
associated with cognitive impairment. Specifically, per IQR (18.34 μg/m3) increase in annual average PM2.5

was associated with a 1% increased odds of cognitive impairment (OR and 95% CI = 1.009 [1.001, 1.016],
p = 0.034). The OR and 95% CI values per IQR increase in annual average NO2 (18.20 μg/m

3) and warm season
average O3 (20.98 μg/m

3) were 1.019 ([1.007, 1.031], p = 0.001) and 1.011 ([1.000, 1.022], p = 0.033),
respectively. Annual average O3 exposure was not significantly associated with cognitive impairment (OR and
95% CI per 8.54 μg/m3 = 1.001 [0.997, 1.014], p = 0.192).

In the multi‐pollutant model, only annual average exposure to NO2 remained positively associated with cognitive
impairment (OR and 95% CI= 1.018 [1.002, 1.033] per 18.20 μg/m3 increase, p= 0.023). On the contrary, PM2.5

and warm season O3 did not demonstrate a statistically significant relationship with cognitive impairment
(Table 4).

Figure 2 shows the concentration‐response relationship between air pollutants and cognitive impairment. Spe-
cifically, the OR of NO2 increased almost monotonously with higher concentrations (Figure 2a). The
concentration‐response relationship between warm season O3 and cognitive impairment showed a stage‐wise
increase (Figure 2b). That is to say, the effect of warm season O3 was generally stable for the concentration
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range between 80 and 110 μg/m3. The OR of O3 increased sharply for 110–130 μg/m
3 and then stabilized for

concentrations higher than 130 μg/m3. The OR of PM2.5 were greater at both low (<40 μg/m3) and high con-
centrations (>100 μg/m3) (Figure 2c).

Table 1
Sociodemographic Characteristics of the CLHLS Participants

Baseline (N = 3,887) First follow‐up (N = 2,882) Second follow‐up (N = 1,362) Third follow‐up (N = 521)

Age (years)

Mean (SD) 80.0 ± 11.3 81.6 ± 10.9 79.7 ± 8.54 80.7 ± 6.63

Gender

Male 2,088 (53.7%) 1,464 (50.8%) 724 (53.2%) 276 (53.0%)

Female 1,799 (46.3%) 1,418 (49.2%) 638 (46.8%) 245 (47.0%)

BMI

Mean (SD) 22.0 ± 29.4 22.3 ± 7.14 23.0 ± 12.4 23.1 ± 7.59

Ethnic group

Han 3,480 (89.5%) 2,539 (88.1%) 1,200 (88.1%) 324 (62.2%)

Zhuang 112 (2.9%) 94 (3.3%) 48 (3.5%) 12 (2.3%)

Others 295 (7.6%) 249 (8.6%) 114 (8.4%) 185 (35.5%)

Education (years)

Mean (SD) 3.09 ± 3.88 3.13 ± 3.88 3.62 ± 4.02 2.90 ± 4.04

Living area

Rural 2,642 (68.0%) 1,802 (62.5%) 830 (60.9%) 336 (64.5%)

Urban 1,245 (32.0%) 1,080 (37.5%) 532 (39.1%) 185 (35.5%)

Cognitive impairment

Normal cognitive function 3,887 (100%) 2,130 (73.9%) 1,233 (90.5%) 471 (90.4%)

Yes 0 (0%) 752 (26.1%) 129 (9.5%) 50 (9.6%)

Alcohol drinking

Current drinker 834 (21.5%) 556 (19.3%) 251 (18.4%) 103 (19.8%)

Former drinker 490 (12.6%) 451 (15.6%) 176 (12.9%) 63 (12.1%)

Never drinker 2,563 (65.9%) 1,875 (65.1%) 935 (68.6%) 355 (68.1%)

Tobacco smoking

Current smoker 881 (22.7%) 603 (20.9%) 298 (21.9%) 94 (18.0%)

Former smoker 605 (15.6%) 521 (18.1%) 243 (17.8%) 94 (18.0%)

Never smoker 2,401 (61.8%) 1,758 (61.0%) 821 (60.3%) 333 (63.9%)

Exercise

Yes 1,419 (36.5%) 1,254 (43.5%) 587 (43.1%) 232 (44.5%)

No 2,468 (63.5%) 1,628 (56.5%) 775 (56.9%) 289 (55.5%)

Heart diseases

Yes 401 (10.3%) 392 (13.6%) 221 (16.2%) 105 (20.2%)

No 3,486 (89.7%) 2,490 (86.4%) 1,141 (83.8%) 416 (79.8%)

High blood pressure

Yes 951 (24.5%) 880 (30.5%) 532 (39.1%) 236 (45.3%)

No 2,936 (75.5%) 2,002 (69.5%) 830 (60.9%) 285 (54.7%)

Diabetes

Yes 154 (4.0%) 185 (6.4%) 117 (8.6%) 55 (10.6%)

No 3,733 (96.0%) 2,697 (93.6%) 1,245 (91.4%) 466 (89.4%)

GeoHealth 10.1029/2024GH001023

ZHU ET AL. 6 of 12



3.2. The Association Between Air Pollution and CMMSE Score

In the single pollutant models (Table 5), per IQR increase in the warm season
and yearly exposure to O3 were both significantly associated with a decrease
in the CMMSE score (β and 95% CI per 20.98 μg/m3 = − 0.271 [− 0.441,
− 0.102], p = 0.001 for warm season and β and 95% CI per 8.54 μg/m3

= − 0.200 [− 0.341, − 0.058], p = 0.006 for yearly exposure, respectively).
Similarly, yearly exposure to NO2 was also associated with a decrease in the
CMMSE score (β and 95% CI per 18.20 μg/m3 = − 0.254 [− 0.446, − 0.062],
p = 0.009). However, PM2.5 was not significantly associated with CMMSE
score in the single‐pollutant model (β and 95% CI per 18.34 μg/m3 = 0.062
[− 0.064, 0.189], p = 0.332).

Warm season and yearly exposure to O3 remained negatively associated
with CMMSE score in the multi‐pollutant model (β and 95% CI per 20.98
μg/m3 = − 0.753 [− 1.024, − 0.483], p < 0.001 for warm season and β and
95% CI per 8.54 μg/m3 = − 0.186 [− 0.335, − 0.036], p = 0.015 for yearly
exposure, respectively). Per IQR (18.20 μg/m3) increase in yearly exposure to
NO2 was associated with a 0.240 (95% CI = [0.030, 0.451], p = 0.025)
decrease in the CMMSE score. PM2.5 was associated with an increase
in the CMMSE score in the multi‐pollutant model (β and 95% CI per
18.34 μg/m3 = 0.197 [0.045, 0.348], p = 0.011).

4. Discussion
In the present study, we found that yearly exposure to PM2.5 and warm season
exposure O3 were associated with an increased risk of cognitive impairment
in the single‐pollutant models, annual average exposure to NO2 was associ-
ated with cognitive impairment in both the single‐ and multi‐pollutant
models. The linear mixed‐effect model further substantiated these findings,
showing that exposure to O3 during the warm season, in addition to annual
exposure to O3 and NO2, was correlated with reduced CMMSE scores across
both model types. Notably, our findings align well with existing literature and
previous studies utilizing the same data set in the positive association between
air pollution and cognitive impairment, although the effect size may differ.
For example, Wang et al. reported that a 10 μg/m3 increase in ambient PM2.5

concentrations was associated with a 5.1% increased risk of poor cognitive
function (defined as CMMSE <18, HR and 95% CI= 1.05 [1.02, 1.08]) using
the CLHLS data after 2002 (Wang et al., 2020). Yao et al. found that China's
clean air policy significantly decelerated the decline in MMSE score using a
quasi‐experimental design (Yao et al., 2022). Furthermore, utilizing CLHLS
data from after 2008, Ma et al. examined the impact of a 2‐year average
exposure to PM2.5, O3, and NO2 on cognitive function. Their findings suggest
that PM2.5 increased the risk of cognitive impairment (threshold of CMMSE
varied from 18 to 24, HR and 95% CI= 1.10 [1.02, 1.18] per 20 μg/m3), while
O3 and NO2 yielded elevated but statistically insignificant risks (Ma
et al., 2022). Compared to the studies above, our study enhanced the
assessment of air pollution exposure by using three high‐performance
satellite‐driven air pollution models at fine resolutions. With this advanced

approach, we identified significant positive associations between all three air pollutants and cognitive impair-
ment, even when using a more sensitive definition of cognitive impairment (CMMSE<24). The subtler definition
of cognitive impairment in our study also possibly explains why our observed magnitudes of association are
relatively smaller than those reported in the aforementioned studies. The findings based on CLHLS collectively
suggest that air pollution poses a substantial threat to the cognitive health of the aging population in China. This
concern is heightened by the fact that air pollution levels in China remain well above the thresholds recommended
by the WHO—5 μg/m³ for annual average PM2.5, 10 μg/m³ for NO2, and 60 μg/m³ for peak season MDA8 O3.

Table 2
The Association Between Model Covariates and Cognitive Impairment

Covariates OR (95% CI) p‐value

Age (yr) 1.007 (1.004, 1.010) <0.001*

BMI (kg/m2) 1.000 (0.999, 1.000) 0.948

Time since enrollment (yr) 1.010 (1.008, 1.012) <0.001*

Sex

Male – –

Female 1.040 (1.004, 1.075) <0.001*

Ethnic group

Han – –

Zhuang 1.020 (0.982, 1.059) 0.339

Others 0.983 (0.954, 1.012) 0.145

Living area

Rural – –

Urban 0.980 (0.963, 0.996) 0.018*

Education (yr) 0.997 (0.995, 0.999) 0.003*

Tobacco smoking

Never smoker – –

Former smoker 1.017 (0.997, 1.036) 0.104

Current smoker 1.026 (1.006, 1.045) 0.008*

Alcohol drinking

Never drinker – –

Former drinker 1.024 (1.005, 1.042) 0.012*

Current drinker 1.006 (0.986, 1.026) 0.571

Exercise

No – –

Yes 0.966 (0.952, 0.980) <0.001*

Heart disease

No – –

Yes 1.010 (0.991, 1.030) 0.304

High blood pressure

No – –

Yes 1.008 (0.993, 1.023) 0.252

Diabetes

No – –

Yes 1.002 (0.975, 1.028) 0.924

Note. OR (95% CI) and p‐value were from the multi‐pollutant model includes
yearly average NO2, O3, and PM2.5 concentrations. *p < 0.05.
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Studies in other countries also examined the association between air pollution and cognitive impairment, but the
consistency of results varied across different air pollutants. Specifically, studies in Sweden (Grande et al., 2021),
South Korea (Lee et al., 2022), and the US (Grande et al., 2021) reported that PM2.5 would escalate the risk of
cognitive decline measured by theMMSE. NO2 has also been positively linked to cognitive decline or dementia in
the US (Shi et al., 2021), England (Carey et al., 2018), and Canada (Chen et al., 2017; Smargiassi et al., 2020). In
combination with our results, the importance of NO2 needs to be highlighted since it is the only air pollutant that
remained positively associated with cognitive impairment in our multi‐pollutant model and it is also significantly
positively associated with the CMMSE score in the mixed‐effect models. However, the findings were more
controversial for ozone. For example, Cleary et al. reported that ozone is correlated with faster cognitive decline
(Cleary et al., 2018) in the US. On the contrary, Chen et al. found no significant association between O3 and
dementia in a Canadian cohort study. Park et al. even reported that O3 yielded protective effects for cognitive
decline in Korea (Park et al., 2022).

A possible reason for this controversy is the time window of ozone exposure. As a secondary pollutant, ground‐
level ozone is predominantly formed by the photochemical reactions between NOx and VOCs in the presence of
heat and solar radiation (Li et al., 2020; Zhu et al., 2022). Consequently, ozone exhibits distinct seasonality in
most Chinese regions, where elevated ozone pollution usually occurs from late spring to early autumn
(Zhu et al., 2022). In this study, O3 posted null or even protective effects at low‐medium concentrations
(70–110 μg/m3), but its risk surged at concentrations higher than 110 μg/m3 (Figure 2). Additionally, we found
that warm season exposure to ozone is positively associated with cognitive impairment, but annual averages
yielded insignificant effects. This phenomenon has also been spotted for other health outcomes. As reviewed by
Atkinson et al., studies that used warm season exposure to ozone generally reported a positive association with
mortality, while no evidence was shown for annual concentrations (Atkinson et al., 2016). These findings suggest
that the health impacts of ozone may be more pronounced during the warmer seasons when pollution levels are at
their peak.

Table 3
Exposure Levels to O3, PM2.5, and NO2 (μg/m

3)

Baseline (N = 3,887) First follow‐up (N = 2,882) Second follow‐up (N = 1,362) Third follow‐up (N = 521) Overall (N = 8,652)

Warm season O3
Mean (SD) 106 ± 12.2 107 ± 13.1 108 ± 14.7 113 ± 18.9 107 ± 13.5

Annual average O3
Mean (SD) 89.2 ± 5.82 89.0 ± 6.45 89.4 ± 7.53 93.2 ± 8.86 89.4 ± 6.61

Annual average PM2.5

Mean (SD) 62.5 ± 14.3 62.6 ± 16.0 61.1 ± 18.7 47.5 ± 11.1 61.4 ± 15.9

Annual average NO2
Mean (SD) 29.1 ± 11.7 32.2 ± 12.4 31.7 ± 12.8 28.5 ± 11.5 30.5 ± 12.2

Table 4
The Association Between Air Pollution and Cognitive Impairment

Air pollutants IQR (μg/m3) OR (95% CI)a p‐valuea OR (95% CI)b p‐valueb

PM2.5 (yearly) 18.34 1.009 (1.001, 1.016) 0.034* 1.001 (0.992, 1.010) 0.721

O3 (yearly) 8.54 1.006 (0.997, 1.014) 0.192 1.000 (0.991, 1.009) 0.889

O3 (warm season) 20.98 1.011 (1.000, 1.022) 0.033* 1.007 (0.989, 1.024) 0.452

NO2 (yearly) 18.20 1.019 (1.007, 1.031) 0.001* 1.018 (1.002, 1.033) 0.033*

Note. Multiple air pollutants were included based on the temporal range, that is, the effect of warm season O3 was adjusted for
warm season PM2.5 and NO2, while yearly average air pollutants were evaluated simultaneously in a separate model. The OR
values are per IQR increase of the air pollutants. *p < 0.05. aOR (95% CI) and p‐value from the single pollutant model.
bOR (95% CI) and p‐value from the multi‐pollutant models.
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The association between air pollution and dementia may be attributed to biological mechanisms such as oxidative
stress and neuroinflammation. For example, Li and Xin found that NO2 inhalation could induce dose‐dependent
excitotoxicity and increase the risk of vascular dementia in healthy rats (Li & Xin, 2013). This finding also
agreedwith themonotonic increasing concentration‐response relationship betweenNO2 and cognitive impairment
in this study (Figure 2). Furthermore, Li et al. also reported that exposure to NO2 may accelerate neural apoptosis
and express neurotoxicity (Li et al., 2012). Similarly, as oxidative stressors, studies have also reported the impact of
O3 and PM2.5 on neuroinflammatory response (Kang et al., 2021; Tyler et al., 2018; Velázquez‐Pérez et al., 2021).
Moreover, the aging process itself also has the potential to exacerbate the neuroinflammation caused by air
pollution (Tyler et al., 2018), highlighting the need to mitigate air pollution in an aging society like China.

Figure 2. Concentration‐response relationship between air pollutants and cognitive impairment. The plots were generated with the multi‐pollutant model. (a) Yearly
average NO2; (b)Warm season (April–September) average O3; (c) yearly average PM2.5. Y axis are the ORs compared with the mean values of each air pollutant, that is,
61.4 μg/m3, 30.5 μg/m3 for annual average PM2.5 and NO2 as well as 107.1 μg/m

3 for warm season O3, respectively.

Table 5
The Association Between Air Pollution and CMMSE Scores

Air pollutants IQR (μg/m3) β (95% CI)a p‐valuea β (95% CI)b p‐valueb

PM2.5 (yearly) 18.34 0.062 (− 0.064, 0.189) 0.332 0.197 (0.045, 0.348) 0.011*

O3 (yearly) 8.54 − 0.200 (− 0.341, − 0.058) 0.006* − 0.186 (− 0.335, − 0.036) 0.015*

O3 (warm season) 20.98 − 0.271 (− 0.441, − 0.102) 0.001* − 0.753 (− 1.024, − 0.483) <0.001*

NO2 (yearly) 18.20 − 0.254 (− 0.446, − 0.062) 0.009* − 0.240 (− 0.451, − 0.030) 0.025*

Note. Multiple air pollutants were included based on the temporal range, that is, the effect of warm season O3 was adjusted
for warm season PM2.5 and NO2, while yearly average air pollutants were evaluated simultaneously in a separate model.
The OR values are per IQR increase of the air pollutants. *p < 0.05. aβ (95% CI) and p‐value from the single pollutant model.
bβ (95% CI) and p‐value from the multi‐pollutant models.
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A major strength of this study is the inclusion of three high‐performance satellite‐driven air pollution models. To
date, China's air quality monitoring network has covered most cities, but rural areas remain largely unmonitored.
Given that most participants of the CLHLS lived in rural areas, using satellite‐driven exposure estimates could
significantly improve the accuracy of exposure measurement. The extended temporal coverage of our exposure
data sets also facilitates the investigations with historical cohort data, especially on chronic health outcomes like
cognitive impairment and dementia. Another advantage is that the CLHLS used face‐to‐face interviews to
measure cognitive function and collect other covariates. This process guaranteed the data quality and consistency
across the whole nation.

This study also has some limitations. First, we were unable to identify the specific time when a participant
developed cognitive impairment, which may lead to exposure misalignment. Accounting for this, we adjusted for
the follow‐up in the logistic regression model since it could still be an informative predictor of cognitive
impairment (Steenland et al., 2018). Second, we could not generate exposure data before 2005 due to the avail-
ability of OMI products. Consequently, only four out of the eight waves of the CLHLS were included in the study.
Future studiesmay use a bigger sample size to study the impact of air pollution on healthy aging if the exposure data
set can be further generated to the late 1990s.Additionally, it is important to note that theCLHLShas a propensity to
oversample older adults (aged> 80), potentially leading to survivorship bias. This is because individuals who have
not developed cognitive impairment at a very advanced age may exhibit reduced sensitivity to neurodegenerative
diseases. To mitigate this bias, future studies are advised to recruit participants at a younger age. Moreover, the
great majority of our study participants belonged to the Han ethnic group, but there are more than 50 minority
groups in China that are not well studied to date. Further investigations are encouraged to focus on different sub‐
groups divided by region, sex, and ethnic groups to further promote environmental justice in China.

5. Conclusion
This study used satellite‐driven data sets to study the association between air pollution and cognitive impairment
among the Chinese elderly population. We found that warm season meanMDA8O3, annual mean PM2.5, and NO2
were positively associated with cognitive impairment (CMMSE< 24). The association between O3 and NO2 with
cognitive decline was also supported by the linear mixed effect models. Our findings underscore the imperative
for the next iteration of China's Air Pollution Prevention and Control Action Plan to broaden its focus to
encompass gaseous air pollutants rather than PM2.5 alone, since mitigating single air pollutant is insufficient in the
context of population aging. Besides, the biological mechanisms underlying the association between air pollution
and cognitive impairment are yet to be fully understood. Future studies are encouraged to explore these mech-
anisms so that intervention approaches might be applied to mitigate the cognitive impairment caused by air
pollution.
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