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OBJECTIVE

To examine the previously unknown long-term association between gut micro-
biome composition and incident type 2 diabetes in a representative population
cohort.

RESEARCH DESIGN AND METHODS

We collected fecal samples from 5,572 Finns (mean age 48.7 years; 54.1%
women) in 2002 who were followed up for incident type 2 diabetes until 31
December 2017. The samples were sequenced using shotgun metagenomics. We
examined associations between gut microbiome composition and incident diabe-
tes using multivariable-adjusted Cox regression models.We first used the eastern
Finland subpopulation to obtain initial findings and validated these in the west-
ern Finland subpopulation.

RESULTS

Altogether, 432 cases of incident diabetes occurred over the median follow-up of
15.8 years. We detected four species and two clusters consistently associated
with incident diabetes in the validation models. These four species were Clostrid-
ium citroniae (hazard ratio [HR] 1.21; 95% CI 1.04–1.42), C. bolteae (HR 1.20; 95%
CI 1.04–1.39), Tyzzerella nexilis (HR 1.17; 95% CI 1.01–1.36), and Ruminococcus
gnavus (HR 1.17; 95% CI 1.01–1.36). The positively associated clusters, cluster 1
(HR 1.18; 95% CI 1.02–1.38) and cluster 5 (HR 1.18; 95% CI 1.02–1.36), mostly con-
sisted of these same species.

CONCLUSIONS

We observed robust species-level taxonomic features predictive of incident type
2 diabetes over long-term follow-up. These findings build on and extend previous
mainly cross-sectional evidence and further support links between dietary habits,
metabolic diseases, and type 2 diabetes that are modulated by the gut micro-
biome. The gut microbiome can potentially be used to improve disease prediction
and uncover novel therapeutic targets for diabetes.

The roles of host genetics and environmental factors in the pathogenesis of type 2
diabetes have been widely studied (1,2). Recently, several studies have reported a
link between gut microbiome composition and type 2 diabetes (3–5). This associa-
tion may involve several mechanisms, such as modulation of inflammation,
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increased gut permeability, interactions
with dietary constituents, glucose and
lipid metabolisms, insulin sensitivity,
and effects on overall energy homeosta-
sis of the host (5). Specifically, type 2 dia-
betes has been reported to be associated
with lower relative abundances of buty-
rate-producing microbes and increases in
various opportunistic pathogens (4,6).

Most prior studies on the association
between gut microbiome and type 2 dia-
betes have been limited by their cross-
sectional designs (3,5). While these stud-
ies have begun to elucidate the role of
the gut microbiome in type 2 diabetes
pathogenesis, they are subject to selec-
tion bias and have not included prospec-
tive data on incident diabetes. As a
result, such analyses provide limited infor-
mation on how the gut microbiome could
be used in the prediction of the develop-
ment of diabetes. Prospective studies
have thus far been conducted rarely, with
short-term follow-up (7), or only in the
context of diurnal oscillation of gut bacte-
ria (8). In addition, growing evidence indi-
cates that some previous results from
cross-sectional studies might have been
confounded by the use of antidiabetic
drugs that can influence gut microbiome
composition, such as metformin (9,10).

We analyzed the long-term associa-
tion between gut microbiome composi-
tion and incident type 2 diabetes in a
well-phenotyped and representative
Finnish population sample (N = 5,572).
The follow-up spanned 16 years after
sampling (11). Notably, participants with
prevalent diabetes at baseline, including
those taking antidiabetic drugs such as
metformin, were excluded from our
study. The FINRISK 2002 cohort features
participants both from eastern and west-
ern Finland with differences in genetics,
lifestyle, and morbidity and mortality
rates (12). To improve the robustness of
our results, we performed feature selec-
tion separately in data from eastern Fin-
land and evaluated the findings in
participants from western Finland to
establish robust microbial signals predic-
tive of incident type 2 diabetes.

RESEARCH DESIGN AND METHODS

The FINRISK study has been conducted
in Finland to investigate risk factors for
cardiovascular disease every 5 years
since 1972 (11). In 2002, the study
included participants from six areas:

North Karelia, Northern Savo, Oulu, Lap-
land, Turku and Loimaa, and Helsinki
and Vantaa. These areas can be geo-
graphically divided roughly into western
Finland (Turku and Loimaa and Helsinki
and Vantaa), and eastern Finland cate-
gories (North Karelia, Northern Savo,
Oulu, and Lapland). A random sample
stratified by sex and 10-year age-groups
among the population aged 24–74 years
was taken in each study area. Of the
13,498 invitees, 8,783 participated in
the study. Of these participants, 7,231
donated fecal samples. In the current
study, we excluded individuals with one
or more exclusion factors: prevalent dia-
betes (n = 698), pregnancy (n = 40),
<50,000 mapped reads (n = 20), or
antibiotic use in the past 6 months (n =
907). After these exclusions, samples
from 5,572 participants were eligible for
this study.

The health status of the participants
was assessed at baseline in 2002 (11).
Physical examination and blood sampling
were performed at local health centers or
other survey sites by nurses specially
trained for the survey methods. Data
were collected for physiologic measures,
biomarkers, and dietary, demographic,
and lifestyle factors (11). Willing partici-
pants were given a stool sampling kit
with detailed instructions. Samples were
mailed overnight under Finnish winter
conditions to the laboratory, where they
were immediately stored at �20�C. The
samples were stored unthawed until
2017, when they were shipped to the
University of California San Diego for
sequencing. The Coordinating Ethics Com-
mittee of the Helsinki University Hospital
District (Helsinki, Finland) approved the
study protocol for FINRISK 2002 (ref. no.
558/E3/2001), and all participants pro-
vided written informed consent.

National health care registers in Finland
enable combining of the data in FINRISK
with subsequent in- and outpatient dis-
ease diagnoses and drug prescriptions
based on individual personal identity
codes. Prevalent and incident diabetes
were defined based on ICD-10 codes
E10–E14, ICD-9 code 250, or ICD-8 code
250 in the nationwide Care Register for
Health Care. In addition, prevalent diabe-
tes was based on three or more drug
purchases with Anatomical Therapeutic
Chemical drug code A10 in the nation-
wide Drug Reimbursement Register prior
to baseline. This drug code (and therefore

the exclusion) includes metformin, which
is widely reported to alter gut microbiota
(10). The register data were amended
with the patient’s self-report, measured
fasting plasma glucose $7.0 mmol/L, 2-h
oral glucose tolerance test plasma glucose
$11.1 mmol/L, or HbA1c $48 mmol/mol
at baseline examination. A glucose toler-
ance test was available only for 3,378 par-
ticipants and HbA1c for 4,096 participants
(of 5,572). The participants were followed
through 31 December 2017.

Earth Microbiome Project protocols
were used for DNA extraction with the
MagAttract PowerSoil DNA Kit (Qiagen),
as described previously (13). Library gen-
eration was performed with a miniatur-
ized version of the Kapa HyperPlus
Illumina-compatible library prep kit (Kapa
Biosystems) (14). An Echo 550 acoustic
liquid-handling robot (Labcyte, Inc.) was
used to normalize DNA extracts to 5 ng
total input per sample. With a Mosquito
HV liquid-handling robot (TTP Labtech,
Ltd), 1/10 scale enzymatic fragmentation,
end-repair, and adapter-ligation reactions
were performed. Sequencing adapters
were based on the iTru protocol (15),
where ligation of short universal adapter
stubs is followed by addition of sample-
specific barcoded sequences in a subse-
quent PCR step. PicoGreen assay was
used to quantify amplified and barcoded
libraries, which were pooled in approxi-
mately equimolar ratios before being
sequenced on an Illumina HiSEq 4000
instrument. An average read count of
900,000 reads per sample was achieved
with this protocol. Atropos was used for
quality trimming of the sequences and
removal of sequencing adapters (16).
Bowtie2 (17) was used to remove host
reads by mapping them against the
human genome assembly GRCh38. SHO-
GUN version 1.0.5 (18) was used to assign
taxonomy to the reads using National
Center for Biotechnology Information
RefSeq version 82 (8 May 2017), which
contains complete bacterial, archaeal, and
viral genomes, together with plasmid
sequences.

All statistical analyses were per-
formed with R version 3.6.1 (19). The
data were first divided into participants
from eastern Finland (n = 3,871) and
western Finland (n = 1,701). These sub-
populations were selected because of
their well-known differences in genetic
background, lifestyle, and mortality rate
(12). Because of the larger number of
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participants in eastern Finland, we used
this data set to discover associations,
followed by validation of the findings
with western Finland data. a-Diversity of
the microbiomes was assessed with raw
counts per taxon and Shannon diversity.
b-Diversity was calculated separately in
the data from eastern and western Fin-
land subpopulations by applying a cen-
tered log-ratio (CLR) transformation on
the taxon counts followed by principal
component (PC) analysis. Rare taxa were
filtered out in eastern Finland data, with
the cutoffs set at detection >0.1% and
prevalence >10% of raw (untransformed)
mapped reads. Taxa were then subset to
this filtered set (119 taxa) and CLR trans-
formed in all of the data.
Cox proportional hazards regression

models for survival time were first con-
structed solely in data from eastern Fin-
land with the R package survival version
3.2.11 (20). Models were constructed
for 1) observed counts (total number of
raw taxon matches), 2) Shannon diver-
sity, 3) first 10 PC axes (10 separate
models), and 4) relative taxon abundan-
ces (119 separate models). Each model
was adjusted for baseline age, BMI, sex,
systolic blood pressure, non-HDL choles-
terol, triglycerides, and current smoking
status of the participants. Features sig-
nificantly associated with incident type
2 diabetes were filtered at a level P <
0.05 after applying Benjamini-Hochberg
correction. Instead of correlation, we
analyzed the compositionally valid mea-
sure, proportionality (r), between the
significantly associated taxa using the R
package propr version 4.2.6 (21). The
taxa were then clustered based on pro-
portionality with the Ward minimum vari-
ance method, and the optimal number of
clusters was defined with Kelley-Gardner-
Sutcliffe penalty function in the R package
maptree version 1.4.7 (22). Heatmaps of
the proportionality between taxa and
associated clusters and hazard ratios
(HRs) were visualized with the R pack-
age ComplexHeatmap version 2.7.11
(23). Relative abundances of the clus-
ters were calculated by combining
and CLR transforming the raw counts
of the taxa within the data from east-
ern Finland.
Following the screening and selection

of significant features in the data from
eastern Finland, models were constructed
identically and separately for western Fin-
land. A feature selected in data from

eastern Finland was considered to be
robustly predictive of incident type 2 dia-
betes in the western subpopulation if the
95% CI of its HR did not overlap 1.0
(unadjusted P < 0.05). Finally, Kaplan-
Meier curves were constructed for rel-
ative abundance quantiles of these
robustly predictive features in data
from western Finland with the R pack-
age rms version 6.2.0 (24).

Gut microbiomes of participants with
undiagnosed type 2 diabetes at the base-
line examination and sampling might have
been affected by undiagnosed dysglyce-
mia (9). It is, however, likely that these
participants would have been diagnosed
with type 2 diabetes during the early fol-
low-up period. Therefore, an additional
analysis was conducted by excluding par-
ticipants diagnosed with type 2 diabetes
within the first 2 years of follow-up.

Data and Resource Availability
The source code used to analyze the
data and produce our results is included
in the Supplementary Material and avail-
able under a permanent DOI in Zenodo:
https://doi.org/10.5281/zenodo.5901114.
Because of the sensitive health informa-
tion of individuals, the data sets analyzed
during the current study are not public
but are available based on a written
application to the Finnish Institute for
Health and Welfare Biobank as instructed
in https://thl.fi/en/web/thl-biobank/for-
researchers.

RESULTS

The characteristics of the study partici-
pants are reported in Table 1. A total of
432 (7.8%) participants were diagnosed
with type 2 diabetes over a median fol-
low-up of 15.8 years.

In the data from eastern Finland, of
the 119 taxa remaining after filtering,
the relative abundances of 18 were sig-
nificantly associated with incident type
2 diabetes (adjusted P < 0.05) (Figs. 1
and 2 and Supplementary Table 1). Fif-
teen taxa had positive associations with
incident type 2 diabetes, and three taxa
were negatively associated. Most of the
positively associated taxa were from the
family Lachnospiraceae, with several
representatives of genus Clostridium.
Two of the three negatively associated
taxa were from genus Alistipes. a-Diversity
was not significantly associated with inci-
dent type 2 diabetes (adjusted P > 0.05).

In the b-diversity analysis, the first PC axis
had a significant association (HR 0.82;
95% CI 0.69–0.88; adjusted P = 0.01).
Significantly associated taxa could be
grouped by proportional abundance into
five clusters (Fig. 1). Four taxa and two
clusters were positively associated with
incident type 2 diabetes in the western
Finland subpopulation (Fig. 2 and Supp-
lementary Table 1). These taxa were Clos-
tridium citroniae (eastern Finland: HR
1.21; 95% CI 1.09–1.35; western Finland:
HR 1.21; 95% CI 1.04–1.42; unadjusted
P = 0.02), C. bolteae (eastern Finland: HR
1.18; 95% CI 1.07–1.30; western Finland:
HR 1.20; 95% CI 1.04–1.39; unadjusted
P = 0.01), Tyzzerella nexilis (eastern Fin-
land: HR 1.16; 95% CI 1.05–1.29; western
Finland: HR 1.17; 95% CI 1.01–1.36; unad-
justed P = 0.03), and Ruminococcus gna-
vus (eastern Finland: HR 1.18; 95% CI
1.06–1.30; western Finland: HR 1.17; 95%
CI 1.01–1.36; unadjusted P = 0.04). The
directions of these associations were the
same as those in eastern Finland. Cluster-
ing the 18 selected taxa by proportional
abundance separately in data of each sub-
population also produced clusters with
identical taxon membership (Fig. 1). Three
of the associated taxa, C. citroniae, C. bol-
tae, and R. gnavus, were grouped in clus-
ter 1 (western Finland: HR 1.18; 95% CI
1.02–1.38; unadjusted P = 0.03) with one
additional taxon in the cluster, E. lenta,
which was not associated with type 2 dia-
betes in western Finland data as an indi-
vidual predictor. T. nexilis was grouped in
cluster 5 (western Finland: HR 1.18; 95%
CI 1.02–1.36; unadjusted P = 0.03) with
two additional taxa in the cluster, C. sym-
biosum and C. glycyrrhizinilyticum, which
were not individually associated with type
2 diabetes in western Finland data. In the
b-diversity analysis, the first PC axis did
not show an association with incident
type 2 diabetes in the western Finland
data (HR 0.94; 95% CI 0.79–1.11; unad-
justed P = 0.45). Fewer participants in
western Finland with a relative abundance
of C. citroniae below quartile 1 (Q1) devel-
oped incident type 2 diabetes during the
follow-up period than those above this
quartile (Fig. 3). For all other microbial
features, fewer participants in western
Finland with a relative abundance below
the median (Q2) of each feature devel-
oped incident type 2 diabetes than those
with an abundance above the median.

In an additional analysis of the data,
we excluded 44 participants (33 from
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western and 11 from eastern Finland)
diagnosed with type 2 diabetes within
the initial 2 years of follow-up. Of the
18 taxa passing the P value filtering in

the full data from eastern Finland, 17
passed the same filter (adjusted P < 0.05)
in the subset data (Supplementary Fig. 1
and Supplementary Table 2). Additionally,

four other species passed this filter in the
subset data in eastern Finland. These 21
species clustered by proportional abun-
dance in the eastern Finland data into six

Table 1—Baseline statistics of the participants in FINRISK 2002 after exclusions

Variable Total

Incident type 2 diabetes Geographic area

Yes No P* Eastern Finland Western Finland P*

Participants 5,572 432 (7.8) 5,140 (92.3) — 3,871 (69.5) 1,701 (30.5) —

Women 3,013 (54.1) 218 (50.5) 2,795 (54.4) 0.12 2,074 (53.6) 939 (55.2) 0.72

From eastern Finland 3,871 (69.5) 293 (67.8) 3,578 (69.6) 0.45 — — —

With incident type 2 diabetes 432 (7.8) — — — 293 (7.6) 139 (8.2) 0.45

Baseline age, years 48.7 ± 12.8 52.8 ± 10.6 48.4 ± 13.0 1.0 × 10�11 48.7 ± 12.9 48.7 ± 12.8 0.99

BMI, kg/m2 26.6 ± 4.4 30.7 ± 5.2 26.3 ± 4.2 1.2 × 10�71 26.8 ± 4.4 26.2 ± 4.4 3.4 × 10�7

Systolic blood pressure, mmHg 135.2 ± 19.8 141.7 ± 20.4 134.6 ± 19.6 6.4 × 10�13 135.9 ± 20 133.5 ± 19.2 2.8 × 10�5

Non-HDL cholesterol, mmol/L 4.1 ± 1.1 4.5 ± 1.3 4.0 ± 1.1 1.1 × 10�14 4.1 ± 1.1 4.0 ± 1.1 1.2 × 10�7

0-h plasma glucose, mmol/L 5.7 ± 0.5 6.1 ± 0.5 5.7 ± 0.5 9.2 × 10�34 5.7 ± 0.5 5.7 ± 0.5 1.1 × 10�3

2-h plasma glucose, mmol/L 6.3 ± 1.7 7.5 ± 1.9 6.2 ± 1.6 8.3 × 10�24 6.3 ± 1.7 6.4 ± 1.7 0.03

Hemoglobin A1c, mmol/mol 35.8 ± 3.6 38.4 ± 3.8 35.5 ± 3.5 4.9 × 10�29 35.6 ± 3.8 36.2 ± 3.1 7.9 × 10�5

Triglycerides, mmol/L 1.4 ± 0.9 1.9 ± 1.3 1.3 ± 0.8 3.4 × 10�38 1.4 ± 0.9 1.4 ± 0.9 0.11

Current smoking 1,327 (23.8) 111 (25.7) 1,216 (23.7) 0.38 914 (23.6) 413 (24.3) 0.63

Data are presented as n (%) (n of participants in indicated category and percentage of total) or mean ± SD. *Mann-Whitney U test was used
for numeric data; Fisher exact test was used for categorical data.

Figure 1—Proportionality between bacterial taxa significantly associated with incident type 2 diabetes in eastern Finland and western Finland.
Annotated HRs and clustering of the taxa were calculated separately in both data groups. Because of identical cluster membership of the taxa, the
cluster numbers and their annotations are harmonized.
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groups, where taxon membership in each
cluster was highly similar to that in the
full data (Supplementary Fig. 1). Notably,
cluster 4 in the full data was divided into
clusters 4 and 5 in the subset data. The
clustering pattern in the subset data also
remained mostly robust between eastern
and western Finland data. Briefly, two
species changed cluster membership, and
clusters 4 and 5 merged into a single clus-
ter in the eastern Finland subset data,
compared with the western Finland sub-
set data (Supplementary Fig. 1). In the
validation of the associations in the west-
ern Finland subset data, the same four
species and clusters 1 and 6 were signifi-
cantly associated with increased risk of
diabetes as in the western Finland full
data (unadjusted P < 0.05) (Supplemen-
tary Fig. 2 and Supplementary Table 2).
Cluster 1 in the subset data included the
same species as cluster 1 in the full data,
together with Dorea sp. 5-2, which was
associated with incident diabetes only in
the eastern Finland subset data. Cluster 6
in the subset data had identical species
membership to cluster 5 in the full data.

Furthermore, the Kaplan-Meier survival
curves of both the individual species and
clusters in western Finland data showed
similar trends to the corresponding
features in the full data (Supplemen-
tary Fig. 3).

CONCLUSIONS

Previous studies have identified several
biometric, genetic, and lifestyle risk fac-
tors for incident type 2 diabetes and
established their role in its development
(25). After adjusting for several known
risk factors, we demonstrated that sev-
eral common taxa in the gut micro-
biome among healthy Finnish adults
were associated with incident type 2
diabetes over long-term follow-up. Spe-
cifically, we identified four species in
the family Lachnospiraceae robustly
associated with a higher type 2 diabetes
risk in two geographically and gene-
tically separate regions of Finland. Three
of these taxa could be clustered
together by proportional abundance in
both geographic areas, and combined

abundance of the four taxa was also
predictive of incident type 2 diabetes.

Our findings are supported by several
prior cross-sectional observations of
microbiome composition related to type
2 diabetes and its risk factors. For exam-
ple, C. citroniae has been positively
associated with production of trimethyl-
amine N-oxide (TMAO), which is a
compound likely connected to intake
of red meat (26). The direct associa-
tion between red meat intake and
type 2 diabetes risk has been known
for >15 years (27). Furthermore, TMAO
has been implicated in adipose tissue
inflammation and impeded hepatic insu-
lin signaling, which are connected to
increased insulin resistance, high blood
glucose levels, and type 2 diabetes (28).
C. bolteae was reported to be enriched
in patients with type 2 diabetes in
a previous cross-sectional study along
with other opportunistic pathogens (4).
Interestingly, the abundance of C. bol-
teae was reduced in patients treated
with acarbose, an a-glucosidase inhibitor
used as an antidiabetic drug (29).

Figure 2—Comparison of HRs between models for the selected features in eastern and western Finland data. Features with significant associations
in the validation (western Finland) data are indicated in bold, and the taxon colors show their membership in a cluster. The information in this fig-
ure can be found in numeric format in Supplementary Table 1.
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Acarbose works by inhibiting the break-
down of complex polysaccharides in the
small intestine, which makes these com-
pounds available for microbes in the
colon and helps to lower blood glucose
levels through the slower uptake of sim-
ple sugars. Also, the abundance of T. nex-
ilis has been observed to decrease
drastically in response to intake of poly-
dextrose, a soluble fiber (30). Polydex-
trose supplementation in connection
with a high-fat diet has been reported to
increase the concentration of postpran-
dial plasma glucagon-like peptide-1,
which is involved in regulation of blood
glucose levels (31). The abundance of
C. bolteae and T. nexilis appears to be
related to intake and availability of differ-
ent polysaccharides in the colon, which
likely influences their ecologic niche.
However, the mechanistic details of the
link between these taxa and blood glu-
cose levels remains to be clarified in
detail. The abundance of R. gnavus is
potentially related to glucose metabo-
lism regulation and linked to increases in

inflammatory cytokines, both of which
are related to type 2 diabetes patho-
physiology (5,32).

All four observed diabetes-associated
taxa have been previously linked with
other metabolic diseases and risk factors.
For example, R. gnavus has been posi-
tively associated with obesity in animals
(33,34) and humans (35). These taxa have
also been associated with serum g-glu-
tamyl transferase levels, an important
liver disease marker (36). Our previous
cross-sectional study of fatty liver disease
in FINRISK 2002 also features serum
g-glutamyl transferase level as a compo-
nent of the modeled risk index and
detected positive associations of all four
taxa with higher disease risk (37). Thus,
the results of the current study support
several links between dietary habits, met-
abolic diseases, and type 2 diabetes, likely
modulated by the gut microbiome.

While only some of the associations
with individual gut microbiome taxa in
eastern Finland were detected in west-
ern Finland, remarkably, the 18 taxa

associated with type 2 diabetes in the
East clustered identically in the West
(Fig. 1). The association directions of the
features with incident type 2 diabetes
were mostly consistent between data
from eastern and western Finland, as
were features with statistically inconclu-
sive results (Fig. 2). However, there were
also several taxa with inconsistent associ-
ation directions between the two data
groups. The eastern and western Finland
subpopulations had statistically signifi-
cant differences in BMI, systolic blood
pressure, non-HDL cholesterol, and blood
glucose levels (all unadjusted P < 0.05)
(Table 1). It is possible that these differ-
ences contributed to the inconsistencies
in the microbial associations. However,
the geographic distance between the
regions and the differences in ethnic and
lifestyle features of the subpopulations
are more likely to have caused the partly
inconsistent taxon associations (38).

All the robust positive associations of
taxa and clusters were also robust after
the exclusion of participants diagnosed

Figure 3—Kaplan-Meier curves for features with significant effect sizes in both data sets, displaying diabetes-free survival times of participants in
western Finland. Curves are separated by ranges between quartiles of relative abundance of each feature. Distribution of the participants with the
same relative abundance ranges is included as an inlay for each of the features.
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with type 2 diabetes within 2 years of
follow-up. This result indicates that
these microbial signals were likely asso-
ciated with a long-term risk of develop-
ing type 2 diabetes and did not reflect
changes in the gut microbiome caused
by undiagnosed type 2 diabetes or its
treatment (9).
The difference in type 2 diabetes inci-

dence among the relative abundance
quartiles of all robustly associated fea-
tures emerged only after �5 years of fol-
low-up (Fig. 3). Therefore, it might have
been challenging to detect taxon associa-
tions in previous studies with shorter
follow-up times (7) or cross-sectional set-
tings. Furthermore, the relative abun-
dance distributions of all the features
were slightly skewed, with long tails of
higher values. For features other than
C. citroniae, the long-term risk of incident
type 2 diabetes, however, seemed to be
increasing only after relative abundance
values above the median. The relative
abundance of C. citroniae was, however,
quite low compared with the other taxa
(or clusters), and only participants with
relative abundances of this species below
Q1 seemed to have a lower risk of devel-
oping incident type 2 diabetes. Thus, the
metabolism of C. citroniae, including its
potential for TMAO production (26,39),
might be important for the pathogenesis
of type 2 diabetes.
The two species historically classified in

the genus Clostridium (C. citroniae and
C. bolteae) have recently been reclassified
into a new genus, Enterocloster (40). This
close phylogenetic relatedness might fur-
ther indicate sharing of metabolic traits
between these taxa. Also, other members
of this new genus, such as C. clostridio-
forme, have been associated with meta-
bolic diseases, such as fatty liver disease
(37), and with production of TMAO
(26). Additionally, C. clostridioforme and
C. symbiosum produce 3-methyl-4-(trime-
thylammonio)butanoate and 4-(trimethy-
lammonio)pentanoate, which have been
reported to be mechanistically linked to
type 2 diabetes pathogenesis (41). These
connections could warrant further study
of the members of the new genus Enter-
ocloster and their connections with
chronic diseases. Furthermore, many of
the taxon associations in our study have
only been previously observed with shot-
gun metagenomics (4,26,29,30,36). For
example, to our knowledge C. bolteae
and T. nexilis have not been associated

with type 2 diabetes in studies where
16S rRNA amplicon sequencing has been
used. Studies reporting associations
between type 2 diabetes and gut micro-
biome composition should thus prefera-
bly use, for example, full-length 16S
rRNA gene sequencing or shotgun meta-
genomics instead of 16S rRNA metabar-
coding. The construction of microbiome
risk scores for type 2 diabetes is a prom-
ising approach to aid in its diagnosis and
prevention (7). However, this method
would also benefit from higher taxo-
nomic resolution enabled by shotgun
metagenomics or full-length 16S rRNA
gene sequencing instead of amplicon
sequencing.

The strengths of the current study
include the high taxonomic coverage and
resolution of shotgun sequencing, long
follow-up time, and a large unselected
study sample. Our results were also not
confounded by antidiabetic drugs, includ-
ing metformin. Therefore, the microbial
signals we detected are more likely asso-
ciated with type 2 diabetes progression
or onset than related to the effects of
dysglycemia (9). The associations were
not affected by the exclusion of individu-
als with possibly undiagnosed type 2 dia-
betes (i.e., individuals who developed
diabetes over the first years of follow-up).
In addition, the detected microbial signals
support several previous cross-sectional
observations on connections between the
gut microbiome and type 2 diabetes
detected in different populations. The sig-
nals were also robust in the geographi-
cally and genetically distinct regions in
Finland. The prevalence of type 2 diabe-
tes in Finland is slightly higher than in
other European countries on average
(42). However, the demography and bur-
den of risk factors in Finland are similar
to those in other Nordic countries, which
rank globally highly on a range of sociode-
mographic and health-relevant measures
(43). Nevertheless, we acknowledge that
these factors might affect the generaliza-
tion of our results to other countries. Fur-
thermore, the use of shallow shotgun
metagenomics enables only a description
of associations between taxa and inci-
dent disease, because the depth of the
sequencing prevents genome assembly.
Also, our incident type 2 diabetes defini-
tion combined both in- and outpatient
disease diagnoses, drug prescriptions,
and drug reimbursement data. Although
the completeness and accuracy of these

register data can be considered excellent
(44), it is possible that some cases were
not diagnosed during the follow-up
period, especially at an early stage of dis-
ease progression.

We are not aware of previous long-
term prospective studies of the associa-
tions between type 2 diabetes and the
gut microbiome, similar to the current
study. Therefore, our results should be
further validated with studies in suitable
cohorts to address their generalizability.
Similar prospective studies with long fol-
low-up times of >5 years can be a pow-
erful tool to detect early signals of
diseases with known connections to gut
microbiome composition. Finally, we note
that additional experiments in humans
and animal models could likely establish
the required mechanistic and causal evi-
dence to link specific microbial species
and strains conclusively to type 2 diabetes
pathogenesis. The current study thus
serves as a stepping stone toward the
goal of improved prediction and the
development of effective treatments for
type 2 diabetes through modification of
the gut microbiome.
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