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Quantum steerability based on 
joint measurability
Zhihua Chen1, Xiangjun Ye2,3 & Shao-Ming Fei4,5

Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) 
steering has attracted increasing attention in recent years. Many criteria have been proposed and 
experimentally implemented to characterize EPR-steering. Nevertheless, only a few results are 
available to quantify steerability using analytical results. In this work, we propose a method for 
quantifying the steerability in two-qubit quantum states in the two-setting EPR-steering scenario, 
using the connection between joint measurability and steerability. We derive an analytical formula 
for the steerability of a class of X-states. The sufficient and necessary conditions for two-setting EPR-
steering are presented. Based on these results, a class of asymmetric states, namely, one-way steerable 
states, are obtained.

Quantum nonlocality, EPR-steering and quantum entanglement are important quantum correlations.  
EPR-steering, which was originally presented by Schrodinger in the context of the famous 
Einstein-Podolsky-Rosen (EPR) paradox1, lies between quantum nonlocality and quantum entanglement, which 
means that one observer, by performing a local measurement on one’s subsystem, can nonlocally steer the state 
of the other subsystem. Recently EPR-steering was reformulated by Wiseman et al. who described the hierarchy 
among Bell nonlocality, EPR-steering and quantum entanglement2. EPR-steering has been shown to be advan-
tageous for quantum tasks such as randomness generation, subchannel discrimination, quantum information 
processing and one-sided device-independent processing in quantum key distributions3–7.

Many efforts have been made to detect and measure EPR-steering. Some steering inequalities based on uncer-
tainty relations8–13, inequalities based on steering witnesses and the Clauser-Horne-Shimony-Holt (CHSH)-like 
inequality, and geometric Bell-like inequalities et al.14–20 are constructed to diagnose the steerability, are usu-
ally necessary conditions. In addition to inequalities, all-versus-nothing proof without inequalities, were also 
presented to detect steerability21. However only a few methods are available to quantify EPR-steering based on 
maximal violation of steering inequalities22, steering weight23 and steering robustness. In these cases semi-definite 
programming is necessary to calculate the measures. Recently, the radius of a super quantum hidden state model 
was proposed to evaluate the steerability24 by finding the optimal super local hidden states. Nevertheless, it is for-
midably difficult to find the optimal super quantum hidden states. A critical radius was proposed via the geomet-
rical method, and the critical radius of T-states was calculated explicitly25. The closed formulas for steering were 
derived in two- and three-measurement scenarios26, which is the case in which Alice and Bob are both allowed 
to measure the observables at their own sites. It has been proven that one-to-one mapping exists between the 
joint measurability and the steerability of any assemblage27–30. Using the connection between steering and joint 
measurability, the closed formula of the measure for two-setting EPR-steering of Bell-diagonal states was given31. 
However, for any two-qubit quantum states, one still lacks a closed formula for the steerability problem, even for 
a 2-setting scenario.

Different from Bell nonlocality and quantum entanglement, steering exhibits asymmetric features, as pro-
posed by Wiseman et al.2. There exist quantum states ABρ , for which Alice can steer Bob’s state but Bob can not 
steer Alice’s state, or vice versa. This distinguishing feature could be useful for some one-way quantum informa-
tion tasks such as quantum cryptography, but until recently only a few asymmetric states have been proposed and 
experimentally demonstrated24,32–34.
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In this work, we investigate the analytical formula for quantification of EPR-steering and obtain the necessary 
and sufficient condition of steerability for a class of quantum states. The asymmetric feature of EPR-steering is 
also investigated.

Setting up the stage
Consider a bipartite qubit system ρAB shared by Alice and Bob with reduced density states ρA and ρB. Alice per-
forms positive-operator-valued measures (POVMs) nΠκ|→ on subsystem A, where σΠ = + − → ⋅ →

κ
κ

|→ n(I ( 1) ),n
1
2 2  

I2 is the identity matrix and ( , , )x y zσ σ σ σ→ =  are the Pauli matrices. Alice obtains the result κ κ =( 0,1) when 
measuring along the direction n→. Bob’s unnormalized conditional state is Tr [ ( I )]n A AB n 2ρ ρ= Π ⊗κ κ|→ |→

. Bob’s 
unconditional state ρ ρ ρ= = ∑κ κ|→TrB A AB n

 remains unchanged under any measurement direction. A state assem-
blage 


ρκ|→n  is unsteerable if there exists a local hidden state model (LHSM) with the state ensemble of pi iρ  satisfy-

ing P n i p( , )n i i i
ρ κ ρ= ∑ |→κ|→

, where ρ ρ= ∑ pB i i i and κ∑ |→ = .κP n i( , ) 1  The quantum state ABρ  is unsteerable from 
A to B if for all local POVMs, the state assemblages are all unsteerable. The quantum state ρAB is steerable from A 
to B if there exist measurements in Alice’s case that produce an assemblage that demonstrates steerability.

The corresponding local hidden state model and the joint measurement observables are connected through 

ρ=κ ρ κ ρ|→ →O n n

1
,

1

B B
 and ρ=

ρ ρ
G pi i i

1 1

B B
 by the one-to-one mapping between the joint measurement problem 

and the steerability problem, whenever ρB is invertible27. The steerability can be detected through the joint meas-
urability of the observables.

Two-setting steering scenario: Any two-qubit quantum state can be expressed by ρ σ= + → ⋅ →⊗I a(AB 4
I I b c )/4i i i i2 2

3σ σ σ+ ⊗
→

⋅ → + ∑ ⊗  under local unitary equivalence, where a b c R, , 3→ → → ∈ , x1σ σ= , y2σ σ= , 
z3σ σ= , σ σ σ σ→ = { , , }1 2 3 , =C c c cDiag{ , , }1 2 3  is the correlation matrix.

When Alice performs two sets of POVMs I n( ( 1) )/2n i2i
σΠ = + − → ⋅ →

κ
κ

|→  i( 0, 1, 0, 1)κ= =  on A with 
n (sin cos , sin sin , cos ),i i i i i iα β α β α→ =  Bob’s unnormalized conditional states are ρ ρ= +κ κ|→ |→Tr[ ](In n 2i i

 

σ− → ⋅ →κ
κs( 1) )/2i, , where a nTr[ ] (1 ( 1) )/2n ii


ρ = + − → ⋅ →
κ

κ
|→

 and 

ρ→ =

→
+ − ⋅ →

κ
κ

κ|→s b C n( ( 1) )/(2Tr[ ])i i n, i
. When 

| | ≠b 1, the measurement assemblages are

O x g x g( , ) 1 1 1
2

((1 ( 1) )I ( 1) ),i i
B

n
B

i i2i


ρ
ρ

ρ
σ→ = = + − + − → ⋅ →

κ κ
κ κ

|→

where → = →g U n ,i i  = →x V ni i  with

=
→→

| | −
+

− + − | |
→→

| | | | −
+

− | |
U b a

b
b b b C

b b
C

b1
( 1 1 )

( 1) 1
,

T T

2

2

2 2 2

and = .
→ −

→

− | |
V a b C

b1

T T

2
 Thus, ρκ κ|→{ }n i,i

 are unsteerable assemblages if and only if →
κ κO x g{ ( , )}i i i,  are jointly measura-

ble35–37, namely,

( )F F x
F

x
F

g g x x1 1 ( ) 0,
(1)

x x
x x

2 2 0
2

2
1
2

2 0 1 0 1
2

0 1
0 1

− −





− −






− → ⋅ → − ≤

where F x g x g( (1 ) (1 ) ),x i i i i
1
2

2 2 2 2
i
= + − + − −  = |→|.g gi i

(1) gives rise to the condition for Alice to steer Bob’s state. If Bob performs two sets of POVMs ni
Πκ|→ on his 

system to steer Alice’s state, the corresponding condition can be similarly written by changing a b→ →
→

, 
→

→ →b a  
and C CT→  in (1).

However, it is generally quite difficult to address condition (1) and obtain explicit conditions to judge the 
steerability for an arbitrary given two-qubit state. For Bell-diagonal states, a necessary and sufficient condition 
of steerability has been derived from the relations between steerability and the joint measurability problem31. In 
the following, we study the steerability of any arbitrary given two-qubit states. We present analytical steerability 
conditions for classes of two-qubit X-state.

Results
Steerability of two-qubit states. First, based on the jointly measurable condition (1) of O x g{ ( , )}i i i,

→
κ κ  for 

the two-setting steering scenario, we define the steerability of two-qubit states ABρ  by the following

= −
α β

S S Smax {max( ),0},
(2),

1 2
i i

where = − − − −S F F(1 )(1 )x x
x

F

x

F1
2 2

x x0 1
0
2

0
2

1
2

1
2

, = → ⋅ → −S g g x x( )2 0 1 0 1
2, and the maximization runs over all of the 

measurements Πκ|→ni
, namely, over the parameters iα  and iβ , =i 0,1. It is obvious that S lies between 0 and 1 and 

ABρ  is steerable if and only if >S 0.
For general two-qubit states, a global search can be used to obtain the global minimum values of S. The Matlab 

code is supplied in the supplementary material.
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Due to the relationship between the joint measurements and steerability, local hidden states 

ρκ|→ni

 are repre-
sented as GB v Bρ ρµ  v( 1, 1),µ = ± = ±  where µ µ µ µ σ= + + + + → + → + → →

µG x vx vZ v z g v g(1 ( ) )v
1
4 0 1 0 1  

which are all possible sets of four measurements satisfying the marginal constraints for any two jointly measura-
ble observables →

κ κO x g{ ( , )}i i i,
35–37. The steering radius R( )ABρ 24 can be calculated by optimizing →z  and Z.

In the following, we analytically calculate the steerability S for some X-states Xρ . We define a class of two-qubit 
X-states to be zero-states zeroρ  if the X-states ρX satisfy the condition that the maximum points (stationary points) 
of S1 belong to the zero points of S2 with respect to the measurement parameters αi and β =i, ( 1,2)i .

For any two-qubit X-state, ρ σ σ σ σ= + ⊗ + ⊗ + ∑ ⊗I a I b I c( )X i i i i
1
4 4 3 3 2 3 2 3

3 , we have =U u u uDiag{ , , },1 2 3  

=V t[0, 0, ]3 , where u c b/ 11 1 3
2= − , = −u c b/ 12 2 3

2 , u a b c b( )/( 1 )3 3 3 3 3
2= − − +  and = −t a b c( )/3 3 3 3  

− .b(1 )3
2 We obtain the following results:

Theorem. For the zero-states zeroρ , the analytical formula of the steerability is given by

S max { , , , 0}, (3)1 2 3= ∆ ∆ ∆

where ∆ = + −u u 1,1 1
2

2
2  u u t u u t u t u t u[ ( ) 1 (1 ) ((1 ) )((1 ) ) ],2

1
2 1

2
3
2

3
2

1
2

3
2

3
2

1
2

3
2

3
2

3
2

3
2∆ = − + + + − − − − − + −  

∆ = − + + + − − − ×u u t u u t u[ ( ) 1 (1 )3
1
2 2

2
3
2

3
2

2
2

3
2

3
2

2
2 − − + − .t u t u((1 ) )((1 ) ) ]3

2
3
2

3
2

3
2  When S 0,>  

the optimal measurements that give rise to maximal S are σx  and σy  if ∆ > ∆ ∆max{ , ,0},1 2 3  σx  and zσ  if 
∆ > ∆ ∆max { , , 0},2 1 3  and σy and σz if max{ , ,0}3 1 2∆ > ∆ ∆ .

The proof is given in the supplementary material.
It is obvious that any X-state with =t 03  belongs to ρzero, e.g., a a00 1 112ϕ| 〉 = | 〉 + − | 〉 a(0 1)< | | <  and 

the Bell-diagonal state ρ σ σ σ σ σ σ= + ⊗ + ⊗ + ⊗c c c(I )1
4 1 1 1 2 2 2 3 3 3  are all the zero states. For ϕ| 〉, we have 

S 1= .
For the Bell-diagonal state, interestingly, the steerability S is given by the non-locality characterized by the 

maximal violation of the CHSH inequality. Let CHSH  denote the Bell operator for the CHSH inequality38, 
A B A B A B A BCHSH 1 1 1 2 2 1 2 2 = ⊗ + ⊗ + ⊗ − ⊗ , where A ai i σ= → ⋅ →, σ=

→
⋅ →B bi i , →ai and 

→
bi , i 1, 2= , are 

unit vectors. Thus, the the maximal violation of the CHSH inequality is given by39

N max 2 ,
(4)1 2B

B
CHSH

CHSH

τ τ= |〈 〉 |= +ρ

where τ1 and 2τ  are the two largest eigenvalues of the matrix †T T , T  is the matrix with entries ρ σ σ= ⊗αβ α βT tr[ ], 
α β =, 1,2,3, † indicates transpose and conjugation. For the Bell-diagonal state, we have =N

+ + −c c c c c c2 min { , , }1
2

2
2

3
2

1
2

2
2

3
2 . From (3), we find that the steerability of Bell-diagonal state is given by 

= −S 1N
4

2
.

For t 03 ≠ , we give the explicit conditions of the zero states in the supplementary material.
In the following, we present the maximum value of the steerability S for a given N of ρzero.

Corollary 1: For zero-states ρzero with given N, N0 2≤ ≤ , we have S N
2

≤ . Moreover, S N /2=  is attained when 
= − +a c b1 ,3 3 3  b 1,3 → −  c b c b(1 )( ) ,1 3 3 3= + −  c c ,2 1= −  i.e., zeroρ  has the following form,

ρ =







+
±

+ −

−

±
+ − −







.

b b c b

c

b c b c b

1
2

0 0
(1 )( )

2

0 1
2

0 0

0 0 0 0
(1 )( )

2
0 0

2 (5)

X

3 3 3 3

3

3 3 3 3 3

0

The following corollary gives the conditions at which we obtain the minimal value of S for a given N.

Corollary 2: For zero-states zeroρ  with given CHSH value N, S obtains the minimal value when a 03=  and b 03=  or 
| + | = + − −a b c c c(1 ) ( )3 3 3

2
1 2

2  or | − | = − − +a b c c c(1 ) ( )3 3 3
2

1 2
2 .

The proofs of Corollary 1 and Corollary 2 are given in the supplementary material. In Fig. 1, we give a descrip-
tion for the boundaries of the steerability S for a given value of N. From Fig. 1, we observe that for any given N 
with ≤ ≤N0 2, the lower bound of S is always 0 and the upper bound of S is always less than 2 (light blue), and 
for N 2,>  the lower bound of S is always greater than 0, and the upper bound of S is always 2 (dark blue).

For zero-states ,zeroρ  the steering radius R( )zeroρ  can be obtained when Alice measures her qubit along the direc-
tions σx and σ ,y  or σx and ,zσ  or σy and σ .z  Indeed, from the construction of joint measurements35, when Alice 
measures her qubit along the directions of σx and σ ,z  the local hidden states can be expressed as follows

σ σ
µ

+
+

+ + +
I

m m
a v b z Z

1
2

(
1 ( )

),x x z z
2

3 3 3
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where m v c b z( 1 ),x 1 3
2

1µ µ= + −  µ= + + +m b c v z b Z( ),z 3 3 3 3  v1, 1µ = ± = ± . Therefore

ρ ρ ρ ρ=R r r r( ) max { ( ) , ( ) , ( ) }, (6)zero x xy x xz x yz

where

ρ ρ ρ= + + = =

= = .

µ
µ

µ
µ

µ

µ µ

µ µ

µ µ

µ

+ − + + + +

+ + +

+ − + + + +

+ + +

( ) ( )

r c c b r r r r

r r

( ) ; ( ) min max ; ( ) min max ;

;

zero xy zero xz
z z Z v

v
xz

zero yz
z z Z v

v
yz

v
xz

c b z b c v z b Z

a v b z Z v
yz

c b z b c v z b Z

a v b z Z

1
2

2
2

3
2

, , ,
,

, , ,
,

,

1 ( ( ))

(1 ( )) ,

1 ( ( ))

(1 ( ))

1 3 1 3

1 3
2

1

2

3 3 3 3
2

3 3 3
2

2 3
2

1

2

3 3 3 3
2

3 3 3
2

It is not easy to calculate ρr( )zero xz and ρr( )zero yz analytically. We give the analytical results for R( )zeroρ  for some 
special states in the following.

Asymmetric two-setting EPR-steering. Different from Bell-nonlocality and quantum entanglement, 
EPR-steering has the asymmetric property of one-way EPR steering: Alice may steer Bob’s state but not vice versa. 
The demonstration of asymmetric steerability has practical implications in quantum communication networks40. 
Until now, only a few asymmetric steering states have been found24,32–34. In this work we present a class of asym-
metric steering states of the form ρX0

 in (5).
If Alice performs measurements on her qubit, the steerability is given by ρ = − −

−
S max( ) { ,0}X

c b
b

2 1
10

3 3

3
 which 

approaches c3 when b3 approaches 1−  and >c 03 . If Bob performs measurements on his qubit, the related steera-
bility is given by the following

S b b c
b c

( ) max (1 )( )
(2 )

, 0X
3 3 3

3 3
20

ρ =






+ +
+ −







which is equal to zero as long as + + ≤b b c(1 )( ) 03 3 3 . Therefore, when c b0 3 3< < −  and → −b 1,3  Alice can 
always steer Bob’s state, but Bob can never steer Alice’s state (see Fig. 2 for the asymmetric EPR-steering for 
b 0 9993 = − . ). We note that Alice can always steer Bob’s state, but Bob can not steer Alice’s state.

Figure 1. Regions of the values taken on by steerability S for given N.

Figure 2. Steerability S versus c3 for = − .b 0 9993 . The dashed line indicates Alice steering Bob’s state, and the 
solid line (horizontal coordinate) denotes Bob steering Alice’s state.
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In the following subsection, we investigate the geometric features of the asymmetric steering state- x0
ρ  in terms 

of the steering ellipsoid41. The steering ellipsoid of X0
ρ  when Alice performs POVMs is quite different from that 

when Bob performs POVMs. The centre of the steering ellipsoid εB for Alice performing POVMs on her qubit is 
− −b a c a(0,0,( )/(1 ))3 3 3 3

2 , which goes to (0,0, 1)−  when → −b 1, and the volume of the steering ellipsoid εB is 
given as follows

π π| − |
−

=
+

− +
c c c a b

a
b

c b
4
3

( )
(1 )

4
3

(1 )
(2 )

,1 2 3 3 3

3
2 2

3
2

3 3
2

In this case the steering ellipsoid is tangent to the Bloch sphere. The centre of the steering ellipsoid Aε  for Bob 
performing POVMs on his qubit is

a b c
b

c
b

0,0,
1

0,0,1
1

,3 3 3

3
2

3

3






−
−

=
−
−






which goes to − c(1 )/23  when → −b 13 . The volume of the steering ellipsoid εA is given by the following

π π| − |
−

=
−

−
c c c a b

b
c b

b
4
3

( )
(1 )

4 ( )
3(1 )

,1 2 3 3 3

3
2 2

3 3
2

3
2

which goes to π + c(1 )
3

3
2
 when b 13 → − . The steering ellipsoid is also tangent to the Bloch sphere. In this case the 

ellipsoid shows some peculiar features, i.e., when b 13 → −  and c 03 → , the ellipsoid Bε  is nearly 0, but Alice can 
still steer Bob; however, when → −b 13  and → −c b3 3, the ellipsoid εA is almost the entire Bloch sphere, but Bob 
can not steer Alice.

As a special case of ρ ,X0
 we take a 1 2 (1 ),3 η χ= − −  b 2 1,3 ηχ= −  η= −c 2 1,3  η χ χ= − = − −c c 2 (1 )1 2 . 

The state has the following form,

ηχ η χ χ
η

η χ χ η χ

=







− −
−

− − −







.η
χW

0 0 (1 )
0 1 0 0
0 0 0 0
(1 ) 0 0 (1 ) (7)

From the theorem, we obtain the following when Alice measures her qubit,

S W( ) max 1 ( 2 )
1

, (1 ( 2 ))( 1 )
(1 )

,02
η χ

ηχ
η η χ χ

ηχ
=






+ − +
− +

+ − + − +
−






.η
χ

The sufficient and necessary condition in the two-setting steering scenario is 1/(2 )η χ> −  for Alice to steer 
Bob’s state. The corresponding optimal measurements are σx and σ .y

If Bob measures his qubit, the steerability is given by the following

S W( ) max ( 1 )
(1 ( 1 ))

, 1
1 ( 1 )

,02
ηχ η ηχ

η χ
η ηχ

η χ
=






− + +
+ − +

− + +
+ − +






.η
χ

Figure 3. Parameter region for which Alice (Bob) can steer Bob’s (Alice’s) state for the state η
χW . In region I, 

Alice can steer Bob’s state, and Bob can also steer Alice’s state. In region II (III), Alice (Bob) can steer Bob’s 
(Alice’s) state, but Bob (Alice) can not steer Alice’s (Bob’s) state. In region IV, Alice can not steer Bob’s state, and 
Bob can not steer Alice’s state.
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The sufficient and necessary condition for Bob to steer Alice’s state is η χ> +1/(1 ). The related optimal measure-
ments are σx and σ .y  The asymmetric property in quantum steering given by this example is shown in Figs 3 and 4. 
The steering radius is 1 4 (1 (2 ))ηχ η χ− − −  when Alice measures her qubit, and η χ η ηχ− − − −1 4 (1 )(1 )  
when Bob measures his qubit.

As another example showing the asymmetry of quantum steering, we consider the state θWV
24,

ψ ψ ψ ψ= | 〉〈 | + − | 〉〈 |θW V V(1 ) , (8)V 1 1 2 2

where ψ θ θ| 〉 = | 〉 + | 〉cos 00 sin 11 ,1  ψ θ θ| 〉 = | 〉 + | 〉cos 10 sin 01 ,2  V(0, /2), [0, 1/2) (1/2, 1]∪θ π∈ ∈ . θWV  is 
a zero state. From our theorem, we know that when Alice performs measurements on her qubit, 

= −θS W V( ) (1 2 )V
2. The optimal measurements are σ ,x  yσ  or σ ,x  zσ . This state is always steerable for Alice except 

when V 1/2= .
When Bob performs two projective measurements on his qubit, we have the following

θ
θ

θ θ
θ

=






− −
− −

− −
− −






.θS W V
V

V
V

( ) max (1 2 ) cos 2
1 (1 2 ) cos 2

, sin2 ((1 2 ) cos 2 )
(1 (1 2 ) cos 2 )

,0
(9)

V

2 2

2 2

2 2 2

2 2 2

The sufficient and necessary condition in the two-setting steering scenario for Bob to steer Alice’s state is 
θ| |<| − |cos V2 2 1 , with the optimal measurements xσ  and yσ . For θW ,V  the corresponding steering radius is 

V1 (1 2 ) sin 22 2 θ+ −  when Alice measures her qubit, and V(1 2 ) sin 22 2 θ− +  when Bob measures his qubit. 
From Fig. 5 we observe that Alice can always steer Bob’s state except when =V 1/2, but Bob can steer Alice’s state 
only for some V depending on θ.

From our theorem, the analytical results of steerability can be obtained for more detailed zero states, and the 
asymmetric property of steering can be readily studied. In the following, we give two examples of symmetric 
two-setting EPR-steering.

Figure 4. The left figure(the right figure): η
χS W( ) when Alice (Bob) measures her (his) qubit.

Figure 5. S W( )V
θ  versus θ: the blue solid line denotes when Alice measures her qubit, and the red dashed line 

θ = π( )6
, red dotted line θ = π( )8

, and red dot-dashed line ( )16
θ = π  indicate when Bob measures his qubit.
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Example 1. The two-qubit nonmaximally entangled state mixed with colour noise,

V V( ) ( ) 1
2

( 00 00 11 11 ),cnρ ψ θ ψ θ= | 〉〈 | +
−

| 〉〈 | + | 〉〈 |

where ψ θ θ θ| 〉 = | 〉 + | 〉( ) cos 00 sin 11 , (0, /2)θ π∈ , V (0,1]∈ . The steerability is given by ρ θ=S V( ) sin 2 /nc
2 2

V(1 cos2 )2 2θ− . Therefore, ρnc  is steerable if and only if θ ≠ .Vsin2 0
Example 2. The generalized isotropic state, ρ ψ θ ψ θ= | 〉〈 | + −V V( ) ( ) (1 )I/4gi , where ψ θ θ| 〉 = | 〉+( ) cos 00

θ| 〉sin 11 , θ π∈ (0, /2), ∈V (0,1]. The state reduces to the usual isotropic state when θ π= /4. According to our 
theorem, we obtain the analytical steerability of giρ ,

ρ = × .θ θ

θ

θ θ

θ

− + − + −

−

+ − − − + −

−
S( )gi

V V V V
V

V V V V
V

1 cos 4 (1 ) (1 ) 4 cos 2
4(1 cos 2 )

(1 2sin 2 ) 1 (1 ) (1 ) 4 cos 2
1 cos 2

2 2 2 2 2

2 2

2 2 2 2 2

2 2

Hence, the sufficient and necessary condition of steerability is V V V1 (1 ) (1 ) 4 cos 22 2 2 θ+ − + − <
θ+ .V (1 2sin 2 )2 2

Discussion
Based on the one-to-one correspondence between EPR-steering and joint measurability, we have investigated the 
steerability for any two-qubit system in the two-setting measurement scenario. The steerability we introduced 
is invariant under local unitary operations. The analytical formula for steerability has been derived for a class of 
X-states, and the sufficient and necessary conditions for two-setting EPR-steering have been presented. For gen-
eral two-qubit states, it has been shown that the lower and upper bounds of steerability are explicitly connected to 
the non-locality of the states given by the CHSH values of maximal violation. Moreover, we have also presented a 
class of asymmetric steering states by investigating steerability with respect to the measurements from Alice’s and 
Bob’s sides. Our strategy might also be used to study the quantification of steerability for multi-setting scenarios, 
in particular, for three-setting scenarios for which the joint measurability problem of three qubit observables 
has already been investigated42,43. Our method might also be used in continuous variable steering, temporal and 
channel steering, for which the steerability of the state assemblages or the instrument assemblages can be con-
nected to the incompatibility problems of the quantum measurement assemblages44,45. Hence, the steerability of 
the quantum states or the quantum channels might also be studied based on the corresponding measurement 
incompatibility problems.
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