A Tandem Repeat Atlas for the Genome of Inbred **Mouse Strains: A Genetic Variation Resource**

Wenlong Ren,¹ Weida Liu,¹ Zhuoqing Fang,¹ Egor Dolzhenko², Ben Weisburd,³ Zhuanfen Cheng,¹ 1 2 and Gary Peltz 1,4,*

- ¹Department of Anesthesia, Pain and Perioperative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- ²Pacific Biosciences, Menlo Park, CA, USA
- 3 4 5 6 7 8 9 10 ³Program in Medical and Population Genetics, Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
 - ⁴Lead contact
- *Correspondence: gpeltz@stanford.edu

11 SUMMARY

- 12 Tandem repeats (TRs) are a significant source of genetic variation in the human population; and TR
- 13 alleles are responsible for over 60 human genetic diseases and for inter-individual differences in many
- 14 biomedical traits. Therefore, we utilized long-read sequencing and state of the art computational
- 15 programs to produce a database with 2,528,854 TRs covering 39 inbred mouse strains. As in humans,
- 16 murine TRs are abundant and were primarily located in intergenic regions. However, there were important
- 17 species differences: murine TRs did not have the extensive number of repeat expansions like those
- 18 associated with human repeat expansion diseases and they were not associated with transposable
- 19 elements. We demonstrate by analysis of two biomedical phenotypes, which were identified over 40
- 20 years ago, that this TR database can enhance our ability to characterize the genetic basis for trait
- 21 differences among the inbred strains.
- 22

23 **INTRODUCTION**

24 Tandem Repeats (TR) are highly polymorphic sequences that contain repeated copies of a short motif.

- 25 which are distributed throughout the genome ^{1,2}. Over 15 years ago, it was postulated that TR alleles
- 26 could be responsible for a significant percentage of the un-identified genetic factors (i.e., 'missing
- heritability') that determine many human trait differences and disease susceptibilities ³. Recently 27
- developed methods for characterizing TR alleles ^{4,5,1} has enabled TR allelic effects to be characterized. 28
- 29 Consistent with their potential to contribute to 'missing heritability', TRs cover 6 to 8% of the human 30 genome ^{6,7}; TR expansions have been associated with 65 neurological and 14 neuromuscular conditions,
- which include Huntington's disease and fragile X syndrome ^{8,9,10}; and most TR expansion diseases were 31
- initially characterized over the last 10 years. Genetic association studies found that TR alleles: had a 32
- 33 strong association with multiple human phenotypes (height, hair morphology, biomarkers, etc.)⁴;
- influenced 58 complex traits; modulated the expression or splicing of a nearby gene (n=18); and were the 34
- largest contributors to glaucoma and colorectal cancer risk⁵. Consistent with their association with brain 35
- 36 diseases, TR alleles affect the expression and splicing of many mRNAs in brain, and brain phenotypes
- 37 (i.e., cortical surface area)¹¹. Characterization of human TR alleles has also uncovered new regulatory
- 38 mechanisms and a potential new treatment for a human disease. TR alleles within cis-regulatory elements can affect gene expression by forming structures that alter transcription factor binding ¹². 39
- 40 Repeat expansions can lead to protein synthesis without AUG initiation codons that occurs from multiple
- 41 reading frames and in multiple directions (i.e., repeat associated non-AUG (or RAN) translation) ¹³. This
- 42 provides a mechanism for some TR expansion diseases. (e.g., myotonic dystrophy type 2 (DM2)) ¹⁴. Also,
- 43 RAN-associated TR expansions form hairpin structures that activate double stranded RNA-dependent
- 44 protein kinase (PKR), which impairs the translation of most proteins but increases RAN translation.
- Moreover, treatment with a widely used diabetes drug (metformin), which decreased RAN translation, 45
- 46 improved the behavioral phenotypes in a mouse model of frontotemporal dementia ¹⁵.

47 Characterization of the genetic architecture of murine models for human diseases has provided insight into many human diseases ¹⁶. We recently demonstrated that characterization of structural variants in the 48

- 49 mouse genome facilitated the identification of a causative genetic factor for a murine lymphoma model
- 50 that was first described over fifty years ago ¹⁷. Given the importance of TR alleles to human disease, we

- 51 used high-fidelity long-read genomic sequencing and new computational tools to comprehensively
- 52 characterize TR alleles in 39 inbred strains. We observed that there was significant diversity among the
- TRs in different mouse strains, and there were significant differences in the properties of the TRs present
- 54 in mice and humans. We demonstrate the importance of TR alleles for genetic discovery by analyzing two
- 55 biomedical phenotypes, which were characterized in inbred strains over 40 years ago, but the causative
- 56 genetic factors for them were not previously identified.
- 57

58 **RESULTS**

59 Genomic sequencing and TR genotyping

60 Long-read (genomic) sequencing (LRS) was performed on 40 inbred strains (30-fold genome coverage per strain) using a PacBio Revio platform equipped with the HiFi system ¹⁸ (Table S1). Perfect tandem repeats 61 62 (TRs) in their genomes were identified using the pipeline shown in Figure 1. In brief, the sequence data was first analyzed using the Tandem Repeat Genotyping Tool ¹⁹, and then variation clustering was 63 performed ²⁰ for 39 strains using C57BL/6 as the reference sequence (GRCm39) to produce a catalog with 64 65 3,494,901 TRs. Since they are commonly used in genetic models, we separately report on the TRs present 66 in the 35 classical inbred strains and those in all 39 sequenced strains, which includes the four wild derived 67 strains (CAST, SPRET, MOLF, WSB). After removing non-polymorphic (i.e., with alleles identical to the 68 reference genome) and potentially mosaic TRs, the final dataset consisted of 2,528,854 (or 1,819,293) TRs 69 in the 39 (or 35 classical) inbred strains (Figure 1; Table S2). The percentage of TR genotypes in this 70 database for the 39 (or 35) inbred strains was 99.3% (or 99.6%), which indicates that there is an extremely 71 low rate (0.4-0.7%) of absent genotypes.

72 TR Characterization

73 More TRs were found in the four wild-derived inbred strains than in the 35 classical inbred strains, and three 74 wild-derived strains (SPRET, CAST and MOLF) had a particularly high number of strain-unique TRs. For 75 example, SPRET mice had 2.5 times more TRs (n=1,773,873) than were found in any of the 35 classical 76 inbred strains; and SPRET mice had the highest number of (n=286,391) strain-unique TRs. Most minor TR 77 alleles are shared by 1 to 3 strains (Figure S1) and the number of TRs decreased as the number of strains 78 sharing a minor TR allele increased (Figure 2). Among the 35 classical inbred strains: CE mice had the 79 highest number of TRs (n=728,155); the strains most closely related to the C57BL/6 reference strain (B10J, n=84.069; and B10D2, n=89.490) had the fewest; and KK mice had the highest number of strain-unique 80 81 TRs (n=21,199), which is ~48 times greater than was found in B10D2 mice. CE (n=18.683), SMJ (n=16,207), 82 and TallyHo (n=14,340) mice also had many strain-unique TRs (Table S3). There was an average of 6.52 83 alleles per TR among the 35 classical inbred strains.

84 When their genomic locations were analyzed, most murine TRs were intergenic (n=1,428,904 for the 39 strains) or intronic (n=985,616), which is consistent with the distribution of human TRs ¹⁰. However, some 85 86 mouse TRs were in coding regions: 77,318 (or 53,990) were exonic; 31,140 (or 21,563) were within 3' UTRs; 87 5,876 (or 3810) were in 5' UTRs; and 2,539 (or 1847) TRs were near transcriptional start sites (TSS) in all 88 39 (or 35 classical) inbred strains (Figures 3A and S2A). TRs with motif lengths of 2, 3, or 4 are the most 89 abundant type of TR. The 1,901,163 (or 1,573,675) TRs with a motif length of two present in all 39 (or 35 90 classical) inbred strains significantly surpasses the number of TRs with other motif lengths. In contrast, TRs 91 with motif lengths greater than 6 are much less common. Human TR alleles can be highly polymorphic², 92 but most murine TR alleles have a single motif: 1,947,184 (or 1,283,601) single motif alleles are present in 93 all 39 (or 35 classical) inbred strains. However, murine TR alleles containing 2 to 3 motifs are also relatively 94 frequent (>100,000 of each type), but the number of TR alleles with 4 or more distinct motifs was 95 substantially reduced (Figures 3B-3C and S2B-S2C).

96

Thirty TRs, which included those with single-motif and compound-motif repeats, were validated by PCRamplification and analysis of amplicon size or (when needed) band sequencing in 6 inbred strains (AJ, B10J, CBA, NOD, TH and C57BL/6J), with C57BL/6J serving as the reference (Table S4). For example, a TR at chr6:29099453-29099501 has only a single GT motif [AT(GT)₉G] relative to the [AT(GT)₂₃G] allele in the reference strain, which represents a fourteen-unit contraction in AJ. Similarly, a compound TR at chr1:81132699-81132743 has a TallyHo allele [C(TCTCTG)₃(TC)₆] while C57BL/6 has a

[C(TCTCTG)₄(TC)₁₀] allele, which reflects losses of one TCTCTG and four TC motifs in the TallyHo genome.
 All thirty of these TR loci yielded the expected amplicons from each of the 5 strains for the predicted alleles.
 This result confirms the accuracy of our TR database, which results from the generation of high-fidelity
 genomic sequence, abundant sequence coverage, and from the robustness of the computational pipeline
 used for its construction.

108

109 TRs in murine homologues of human repeat expansion disease causing genes

Since over 65 human diseases results from TR expansions ^{8,9,10}, we characterized the TRs present in 110 murine homologues of human TR expansion disease genes. TR alleles that affected coding regions were 111 112 identified within 31 of these genes. While most were within 3' or 5' UTRs, only 6 genes had exonic TRs 113 (Table S5). Although human diseases appear only when many copies of a TR are present (e.g. 50-11,000 114 repeats for DM2)¹⁰, the number of repeats in murine exonic TR alleles only differed by <2 from the reference strain. Moreover, these murine TR alleles inserted (or removed) 1 or 2 amino acids of the protein sequence 115 116 and did not disrupt the reading frame of the encoded protein. These results indicate that unlike human TRs. the number of copies of a TR in the murine genome is tightly controlled, and pathologic conditions resulting 117 118 from TR expansions are unlikely to develop in the inbred strains.

119

120 Linkage disequilibrium (LD) analysis

121 LD decay analysis for 35 inbred strains was performed using alleles generated from four different sets of 122 genetic variants: (i) 220K structural variants (SVs), (ii) 1.8M TRs, and (iii) 21M or (iv) 220K single nucleotide 123 polymorphisms (SNPs). A selected subset of SNP alleles was analyzed, which was equal the number of 124 SV alleles analyzed, to ensure that any differences did not result from evaluation of different numbers of 125 genetic variants. While the maximum LD values (r²) calculated for the 21M SNP (0.81), 220K SNP (0.76) 126 and 1.8M TR (0.85) datasets were similar; the (r²) calculated for the 220K SV was 0.49. The calculated 127 distance where the LD dropped to half of its maximum value (half decay point) were: 133 kb for the 21M 128 SNPs, 177 kb for the 220K SNPs, 291 kb for the 220K SVs, and 0.1 kb for the 1.8M TRs (Figure 4). There 129 were notable differences in LD decay patterns among the different types of variants. SNPs exhibited a 130 relatively moderate degree of LD decay, they had a higher initial level of LD, and the decay distance ranged 131 from 133 to 177 kb. SVs had a lower initial level of LD (0.49) but had a more extended decay distance (291 132 kb). While TRs had the highest initial level of LD (0.850), they had the most rapid rate of decay; the half

133 maximal LD decay occurred within only 0.1 kb.

134 Murine TRs are not preferentially located near transposable elements (TEs)

In the human genome, TRs occur in regions with TEs, especially the TEs containing Alu elements; but 135 human TRs are not associated with LINE-1 insertions ^{21,22}. Alu elements are not present in the mouse 136 genome; but murine LINE-1 (18% of the genome), B1 (2.7%) and B2 (2.4%) TEs are abundant ²³. Therefore, 137 138 we investigated whether murine TRs were located near LINE-1 elements. Analysis of the TRs in the 35 139 classical inbred strains revealed that 68,744 TRs (3.78% of the total) were entirely within LINE-1 elements; 140 2,332 TRs (0.13%) overlapped with LINE-1 sequences; and 1,435 TRs (0.08%) were proximal (i.e., located 141 within 80 bp) to LINE-1 elements. However, 1,744,506 TRs (96% of the total) were >200 bp away from a 142 LINE-1 element. A similar distribution was observed when TRs in 39 strains were examined: . 94,694 TRs (3.74%) were within LINE-1 elements; 2,517 TRs (0.10%) overlapped with LINE-1 elements; 2,012 TRs 143 144 (0.08%) were proximal to LINE-1 elements; and 2,426,539 TRs (96%) were not located near a LINE-1 145 element. Although ~23% of the mouse genome consists of TEs, less than 4% of murine TRs are located in 146 or near a TE.

147 Phylogenetic analyses

The phylogenetic trees constructed for 40 inbred strains using three types of genetic variants [SNP, structural variant (SV), and TR alleles] generally reflected the known evolutionary and phylogenetic relationships among the strains (**Figure S3**). As examples, the four wild-derived strains (WSB, MOLF, SPRET, and CAST) were separated from the classical inbred strains; the NZW, NZO, and NZB strains were within the same branch; and the DBA1J and DBA2J strains formed their own grouping. However, there were some differences in the phylogenetic trees produced using the different types of genetic variants. The SNP- and SV-based analyses grouped C57BL/6J, B10J, and B10.D2 mice together, which reflects their

155 close genetic relationship. However, the TR-based analysis placed C57BL/6J in a separate branch, which

may be due to the use of C57BL/6J as the reference sequence. Also, the phylogenetic trees had different clustering patterns for CE, TH, SMJ and a few other strains. These differences may be attributed to the different mutational mechanisms underlying the generation of SNP, SV, and TR alleles and the timing of their occurrence during the evolution of the different strains ^{24,25}.

160

161 TR alleles for two biomedical phenotypes

To determine if this murine TR database could be used to identify unknown genetic factors for biomedical 162 traits (i.e., account for some missing heritability), we investigated whether strain-specific high impact TR 163 164 alleles could provide genetic candidates for two strain-specific phenotypes that were both identified over 165 40 years ago. In 1981, PL/J mice were found to produce sperm with a high frequency (42%) of 166 morphologic abnormalities, which include having an abnormally shaped head or completely lacking a 167 head. PL/J sperm also have a high frequency of aneuploidy and abnormal spindle formation, and a reduced rate of crossing over. Analysis of PL/J intercross progeny indicated that the PL/J genetic factors 168 causing these abnormalities are recessive and oligogenic 26,27, but none have yet been identified. We 169 170 identified a large PL/J-unique TR allele in Prdm9 that alters the amino acids at positions 664 to 847 of the 171 PL/J protein, which contains six zinc finger C2H2-type domains that are critical for DNA-binding (Figure 5A). Prdm9 encodes a zinc finger protein that binds to DNA at specific sites and trimethylates histone H3 172 at lysines 4 and 36 (H3K4me3 and H3K36me3)²⁸. During meiosis, Prdm9 determines the location of 173 174 recombination hotspots, which control the sites for genetic recombination. It also determines where 175 programmed DNA double strand breaks (DSBs) occur, which give rise to genetic exchange between 176 chromosomes. In Prdm9 knockout (KO) mice, meiotic cells make DSBs at residual H3K4me3 sites, but 177 they are not repaired successfully; this causes them to undergo pachytene arrest and apoptosis, which results in a failure to produce sperm and eggs ^{29,30}. Given the *Prdm9* KO-induced effects on sperm, the 178 179 PL/J Prdm9 TR allele is a likely genetic contributor to its abnormal sperm production.

180

181 As a second example, NZB mice have developmental brain abnormalities that were noted in multiple 182 papers published since 1985. The abnormalities consist of ectopic collections of layer 1 neurons with 183 displacement of the underlying and adjacent cortical layers, which are often unilateral and located in somatosensory cortical areas ³¹⁻³³. Moreover, NZB mice have a significant deficit in reversal learning, and 184 exhibit a high level of spatial memory in the Morris water maze test ³⁴. Although NZB mice are not a strain 185 that is used for modeling Autism Spectral Disorder (ASD), their resistance to change a learned pattern of 186 187 behavior reflects one feature of ASD. We identified a NZB-unique TR allele in Cacna2d3, which encodes the auxiliary (α2δ3) subunit of voltage-gated calcium channels (VGCCs) that are is expressed throughout 188 the CNS ³⁵. The NZB-unique TR allele alters amino acids 25 to 264, which is within a highly conserved 189 region of Cacna2d3 (Figure 5B). Cacna2d3 regulates the surface expression and function of VGCCs, 190 which is critical for neurotransmitter release; and it regulates synapse formation and synapse efficiency ³⁶. 191 CACNA2D3 was identified as a potential cause of human ASD in multiple studies ³⁷⁻³⁹; and a conditional 192 193 Cacna2d3 knockout in parvalbumin-expressing interneurons produces key ASD behaviors that included 194 an increase in repetitive behavior and improved spatial memory ⁴⁰. Based upon the phenotypes exhibited 195 by Cacna2d3 knockout mice, the reversal learning deficits and high spatial memory exhibited by NZB mice are consistent with an effect of a NZB-unique TR allele that impairs Cacna2d3 function. This effect is 196 197 also consistent with the recent finding that human TR alleles impact brain phenotypes, which include 198 cortical surface area ¹¹.

199

200 DISCUSSION

201 Many properties of the murine TRs characterized here are consistent with those observed in humans and 202 other species. (i) TRs are a source of genetic variation; they exhibit high rates of polymorphism within 203 members of a species and are frequently multi-allelic. (ii) TRs result from chromosomal misalignment that leads to polymerase slippage, which generates stepwise changes in repeat numbers. (iii) TRs within 204 205 protein coding regions or those that produce frameshift or termination mutations are rare ^{41,42}. (iv) There is a high level of variation within TRs in the human genome, which is especially common in the non-coding 206 regions of the genome ⁴³. The mutation rate within human or yeast ⁴² TRs is 100 to 10,000-fold greater 207 208 than that of SNPs, and TR mutations usually alter repeat copy number such that long alleles tend to contract and short alleles expand ⁴⁴. Of note, the frequency of polymorphisms within TRs tend to correlate 209

with paternal age ⁴⁵,⁴⁴. The high rate of polymorphism within TRs explains the relatively high number of
 alleles (n=6.52) per TR. The very low level of LD between murine TRs could be explained by the high
 level of polymorphism at TR sites that would disrupt LD between TRs.

213 We found that only 3.1% of murine TRs reside within protein-coding exons, whereas the majority are in 214 intergenic (57%) or intronic regions (39%). This pattern suggests that the impact of murine TR alleles is 215 not primarily to alter protein sequences, but they may play a role in modulating gene expression or 216 chromatin structure ⁴⁶. The motif length for 91% of the murine TRs contains four or fewer base pairs. 217 Hence, a selection pressure favoring shorter motifs may be driven by a need to maintain replication 218 fidelity since shorter motifs are less susceptible to replication slippage and introduction of structural 219 variants, which minimizes the risk of mutational disruptions and enhances genome maintenance. In 220 humans, only TRs with highly expanded repeats are linked with pathogenic outcomes, whereas many human repeat expansions do not cause disease ¹⁰. Our ability to characterize the impact of mouse (or 221 other species) TR alleles is limited by the absence of computational tools for predicting their functional 222 impact on a genome-wide scale. Machine learning algorithms ⁴⁷ that were developed using human 223 224 pathogenic loci as the training data set cannot be readily applied to murine datasets. The lack of 225 positional correlation between murine TRs and LINE-1 elements indicates that we do not fully understand 226 genomic context for TRs. However, murine TRs should be viewed as integral components of the genomic 227 landscape that contribute to genetic diversity and evolutionary adaptability. Our analysis of two biomedical phenotypes in mouse strains, which were identified over 40 years ago but their genetic basis had not 228 229 been determined, demonstrates the importance of characterizing TR alleles among the inbred strains. 230 The impact of both of the identified TR alleles on the strain-specific phenotypes were validated by the 231 effects observed in previously generated gene knockout mice. This work lays the foundation for future 232 studies that will uncover the molecular mechanisms by which TRs influence genome stability, evolution 233 and phenotypes. These investigations are essential for advancing fundamental biological research and for 234 translational medicine.

235 Limitations of the study

Despite the comprehensive identification of tandem repeats (TRs) across 40 inbred mouse strains using high-fidelity (HiFi) long-read sequencing, several limitations should be noted. First, since this TR catalog was generated by a reference-sequence guided assembly method, highly divergent TRs that are absent from the reference sequence may have escaped detection or could not be resolved. Second, since most murine TRs are intronic or intergenic, we cannot reliably predict the functional impact of most of the TRs that we identified. Understanding their effects on gene expression or chromatin structure will require experimental testing of the functional effect of selected TRs.

243

251

252

255

256

244 **RESOURCE AVAILABILITY**

245 Lead contact

Requests for further information and resources should be directed to and will be fulfilled by the lead
 contact, Gary Peltz (gpeltz@stanford.edu).

248 Materials availability

249 This study did not generate new unique reagents.

250 Data and code availability

- The catalog and database of tandem repeats have been deposited in Zenodo and are publicly available at https://zenodo.org/records/15313223.
- The long-read sequencing (LRS) data have been deposited at the NCBI BioProject database under accession number PRJNA1250604 and are publicly available as of the date of publication.
 - All software and analytical methods used in this study are publicly available, as listed in the key resources table.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
- 260 ACKNOWLEDGMENTS

- 261 This work was supported by NIH awards (1R01DC021133 and 1 R24 OD035408) to G.P.; The funder had
- 262 no role in the writing of this paper. We thank Dr. Laura Reinholdt (Jackson Labs) for supplying the DNA 263 obtained from several of the inbred strains.
- 264

265 AUTHOR CONTRIBUTIONS

266 Conceptualization, G.P.; methodology, W.R., W.L, Z.F., and G.P.; formal analysis, software, and validation, W.R., W.L., E.D., B.W., Z.C.; visualization, W.R.; writing-original draft, W.R. and G.P.; writing-review & 267

- 268 editing, W.R. and G.P.; funding acquisition, G.P.; supervision, G.P.
- 269

270 **DECLARATION OF INTERESTS**

- 271 W.R., W.L., Z.F, B.W., Z.C., and G.P. declare no conflict of interest. E.D. is an employee and shareholder 272 of Pacific Biosciences.
- 273

274 SUPPLEMENTAL INFORMATION

- 275 Document S1. Figures S1-S3 and Tables S1 and S2
- 276 Table S3. List of strain-unique TRs located in exons or at transcription start sites, related to Figure
- 277 1 and 3. The gene, chromosome, starting and ending position, motifs contained in the TR, genomic
- 278 annotation, strains with the variant allele, and its predicted biotype are shown.
- 279 Table S4. List of 30 TRs that were randomly selected for experimental validation, related to Figure 280 1. The chromosome, start and end positions, reference and alternative TR alleles, motifs contained within 281 each TR, strains with the variant allele, and the forward and reverse primer sequences used for their 282 amplification are shown.
- 283 Table S5. List of the TRs present in murine homologues of human TR expansion disease genes, 284 related to Figure 1. The human gene, disorder, murine homologues gene, chromosome, starting and 285 ending position, reference and alternative allele, genomic location, and strains with the variant allele are 286 shown.
- 287

288 289 REFERENCES

- 1 Tanudisastro, H. A., Deveson, I. W., Dashnow, H. & MacArthur, D. G. Sequencing and 290 291 characterizing short tandem repeats in the human genome. Nat Rev Genet 25, 460-475 (2024). https://doi.org:10.1038/s41576-024-00692-3 292
- 293 2 Rajan-Babu, I. S., Dolzhenko, E., Eberle, M. A. & Friedman, J. M. Sequence composition 294 changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical 295 implications. Nat Rev Genet 25, 476-499 (2024). https://doi.org:10.1038/s41576-024-00696-z 296
- 297 3 Hannan, A. J. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for 'missing heritability'. Trends Genet 26, 59-65 (2010). 298 https://doi.org:10.1016/j.tig.2009.11.008 299
- 4 Mukamel, R. E. et al. Protein-coding repeat polymorphisms strongly shape diverse 300 human phenotypes. Science 373, 1499-1505 (2021). 301
- 302 https://doi.org:10.1126/science.abg8289
- 5 Mukamel, R. E. et al. Repeat polymorphisms underlie top genetic risk loci for glaucoma 303 304 and colorectal cancer. Cell 186, 3659-3673 e3623 (2023).
- 305 https://doi.org:10.1016/j.cell.2023.07.002

306 307	6	English, A. C. <i>et al.</i> Analysis and benchmarking of small and large genomic variants across tandem repeats. <i>Nat Biotechnol</i> (2024). <u>https://doi.org:10.1038/s41587-024-</u>
308		<u>02225-z</u>
309	7	Zhang, S. et al. Genome-wide investigation of VNTR motif polymorphisms in 8,222
310		genomes: Implications for biological regulation and human traits. Cell Genom, 100699
311		(2024). https://doi.org:10.1016/j.xgen.2024.100699
312	8	Paulson, H. Repeat expansion diseases. Handbook of clinical neurology 147, 105-123
313		(2018). https://doi.org:10.1016/B978-0-444-63233-3.00009-9
314	9	Zhou, Z. D., Jankovic, J., Ashizawa, T. & Tan, E. K. Neurodegenerative diseases
315		associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 18, 145-
316		157 (2022). https://doi.org:10.1038/s41582-021-00612-7
317	10	Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: What have we
318		learned and what are the remaining challenges? Am J Hum Genet 108, 764-785 (2021).
319		https://doi.org:10.1016/j.ajhg.2021.03.011
320	11	Cui, Y. et al. Multi-omic quantitative trait loci link tandem repeat size variation to gene
321		regulation in human brain. Nat Genet (2025). https://doi.org:10.1038/s41588-024-02057-
322		2
323	12	Horton, C. A. <i>et al.</i> Short tandem repeats bind transcription factors to tune eukaryotic
324		gene expression. Science 381, eadd1250 (2023).
325		https://doi.org:10.1126/science.add1250
326	13	Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc
327		Natl Acad Sci U S A 108, 260-265 (2011). https://doi.org:10.1073/pnas.1013343108
328	14	Cleary, J. D., Pattamatta, A. & Ranum, L. P. W. Repeat-associated non-ATG (RAN)
329		translation. J Biol Chem 293, 16127-16141 (2018).
330		https://doi.org:10.1074/jbc.R118.003237
330 331	15	https://doi.org:10.1074/jbc.R118.003237 Zu, T. et al. Metformin inhibits RAN translation through PKR pathway and mitigates
330 331 332	15	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020).
330 331 332 333	15	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117
330 331 332 333 334	15 16	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point.
330 331 332 333 334 335	15 16	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3
330 331 332 333 334 335 336	15 16 17	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture
330 331 332 333 334 335 336 337	15 16 17	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i>
330 331 332 333 334 335 336 337 338	15 16 17	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025).
330 331 332 333 334 335 336 337 338 339	15 16 17	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1
330 331 332 333 334 335 336 337 338 339 340	15 16 17 18	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1
330 331 332 333 334 335 336 337 338 339 340 341	15 16 17 18	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i>
330 331 332 333 334 335 336 337 338 339 340 341 342	15 16 17 18	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219
330 331 332 333 334 335 336 337 338 339 340 341 342 343	15 16 17 18 19	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome-
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344	15 16 17 18 19	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024).
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345	15 16 17 18 19	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346	15 16 17 18 19 20	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses for genome-
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	15 16 17 18 19 20	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> , 10.04.615514 (2024).
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	15 16 17 18 19 20	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org:https://doi.org/10.1101/2024.10.04.615514
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349	15 16 17 18 19 20 21	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 10.04.615514 (2024). https://doi.org/10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org/10.1101/2024.10.04.615514 Ahmed, M. & Liang, P. Transposable elements are a significant contributor to tandem
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	15 16 17 18 19 20 21	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org:10.1101/2024.10.01.615514 Ahmed, M. & Liang, P. Transposable elements are a significant contributor to tandem repeats in the human genome. <i>Comp Funct Genomics</i> 2012, 947089 (2012).
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351	 15 16 17 18 19 20 21 22 	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> 10.04.615514 (2024). https://doi.org:10.1101/2024.10.01.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org:10.1101/2024.10.01.615514 Ahmed, M. & Liang, P. Transposable elements are a significant contributor to tandem repeats in the human genome. <i>Comp Funct Genomics</i> 2012, 947089 (2012). https://doi.org:10.1155/2012/947089
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352	15 16 17 18 19 20 21 22	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org:thtps://doi.org/10.1101/2024.10.04.615514 Ahmed, M. & Liang, P. Transposable elements are a significant contributor to tandem repeats in the human genome. <i>Comp Funct Genomics</i> 2012, 947089 (2012). https://doi.org:10.1155/2012/947089 Steely, C. J., Watkins, W. S., Baird, L. & Jorde, L. B. The mutational dynamics of short text.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353	15 16 17 18 19 20 21 21 22	https://doi.org:10.1074/jbc.R118.003237 Zu, T. <i>et al.</i> Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice. <i>Proc Natl Acad Sci U S A</i> 117 , 18591-18599 (2020). https://doi.org:10.1073/pnas.2005748117 Fang, Z. & Peltz, G. Twenty-first century mouse genetics is again at an inflection point. <i>Lab Animal</i> (2025). https://doi.org:10.1038/s41684-024-01491-3 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>BioRxiv</i> https://biorxiv.org/cgi/content/short/2025.01.09.632219v1 (2025). https://doi.org:biorxiv.org/cgi/content/short/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219v1 Ren, W. <i>et al.</i> A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. <i>bioRxiv</i> (2025). https://doi.org:10.1101/2025.01.09.632219 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>bioRxiv</i> , 2024.2010.2004.615514 (2024). https://doi.org:10.1101/2024.10.04.615514 Weisburd, B. <i>et al.</i> Defining a tandem repeat catalog and variation clusters for genome- wide analyses and population databases. <i>BioRxiv</i> 10.04.615514 (2024). https://doi.org:10.1101/2024.10.01101/2024.10.04.615514 Ahmed, M. & Liang, P. Transposable elements are a significant contributor to tandem repeats in the human genome. <i>Comp Funct Genomics</i> 2012, 947089 (2012). https://doi.org:10.1155/2012/947089 Steely, C. J., Watkins, W. S., Baird, L. & Jorde, L. B. The mutational dynamics of short tandem repeats in large, multigenerational families. <i>Genome Biol</i> 23, 253 (2022).

355 356	23	Richardson, S. R. <i>et al.</i> The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. <i>Microbiol Spectr</i> 3 , MDNA3-0061-2014 (2015).
357		https://doi.org:10.1128/microbiolspec.MDNA3-0061-2014
358	24	Mortazavi, M. et al. SNPs, short tandem repeats, and structural variants are responsible
359		for differential gene expression across C57BL/6 and C57BL/10 substrains. Cell Genom 2
360		(2022). https://doi.org:10.1016/j.xgen.2022.100102
361	25	Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in
362		genomic disorders. <i>Nat Rev Genet</i> 17 , 224-238 (2016).
363		https://doi.org:10.1038/nrg.2015.25
364	26	Burkhart, J. G. & Malling, H. V. Sperm Abnormalities in the PL/J Mouse Strain: A
365		Desription and Proposed Mechanism for Malformation. Gamete Research 4, 171-183
366		(1981).
367	27	Pyle, A. & Handel, M. A. Meiosis in male PL/J mice: a genetic model for gametic
368		aneuploidy. Mol Reprod Dev 64, 471-481 (2003). https://doi.org:10.1002/mrd.10231
369	28	Paigen, K. & Petkov, P. M. PRDM9 and Its Role in Genetic Recombination. Trends
370		Genet 34, 291-300 (2018), https://doi.org:10.1016/i.tig.2017.12.017
371	29	Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R. D. & Petukhova, G. V. Genetic
372	_•	recombination is directed away from functional genomic elements in mice Nature 485
373		642-645 (2012) https://doi.org.10.1038/nature11089
374	30	Thibault-Sennett, S. et al. Interrogating the Functions of PRDM9 Domains in Meiosis
375	00	Genetics 209 475-487 (2018) https://doi.org/10.1534/genetics.118.300565
376	31	Sherman G F Galaburda A M Behan P O & Rosen G D Neuroanatomical
377	01	anomalies in autoimmune mice. Acta Neuronathol 74 , 239-242 (1987)
378		https://doi.org/10.1007/BE00688187
370	32	Sherman G F Galaburda A M & Geschwind N Cortical anomalies in brains of New
380	02	Zealand mice: a neuronathologic model of dyslexia? Proc Natl Acad Sci 11 S A 82 8072-
381		8074 (1985) https://doi.org/10.1073/ppas.82.23.8072
382	33	Zilles K in Senile dementia of the Alzheimer type (eds.) Traher & W.W. Gispen) 355-
383	00	365 (Springer 1985)
384	34	Mov S S et al. Social approach and repetitive behavior in eleven inbred mouse strains
385	01	Behav Brain Res 191 118-129 (2008) https://doi.org.10.1016/j.bbr.2008.03.015
386	35	Dolphin A. C. Calcium channel auxiliary alpha2delta and beta subunits: trafficking and
387	00	one step beyond Nat Rev Neurosci 13 542-555 (2012) https://doi.org/10.1038/prp3311
388	36	Honna M B Lana B Margas W Dolphin A C & Ryan T A alpha2delta expression
280	50	sets presynantic calcium channel abundance and release probability. Nature 186 , 122-
300		125 (2012) https://doi.org/10.1038/pature11033
301	37	De Rubeis S et al Synantic transcriptional and chromatin genes disrupted in autism
202	57	Nature 515 200-215 (2014) https://doi.org/10.1038/nature13772
202	38	Satterstrom F K et al. Large-Scale Exome Sequencing Study Implicates Both
201	50	Developmental and Eurotional Changes in the Neurobiology of Autism Coll 180 568
294 205		584 o523 (2020) https://doi.org/10.1016/j.coll.2010.12.026
395	20	Cirinaian S. at al. Definement and discovery of new betanets of appy number variation
207	39	oliniajan, S. et al. Reinfernent and discovery of new holspois of copy-humber variation
200		https://doi.org/10.1016/j.oibg.2012.12.016
200	40	Shap W. at al. Delations of Coope2d2 in participum expressing neurope leads to
399	40	Sildo, W. et al. Deletions of Cachazus in parvaiburnin-expressing neurons leads to
400 401		autistic-like prierotypes in filice. <i>Neurochem III</i> 109 , 100009 (2020). (2020) .
401 402	11	Verbiast M. at al. Mutation and calaction processes regulating short tender research
40Z	41	verbiest, ivi. et al. iviutation and selection processes regulating short tandem repeats
403		give rise to genetic and phenotypic diversity across species. <i>J Evol Biol</i> 30 , 321-336 (2022), https://doi.org/10.1111/job.14106
404		(2023). <u>https://doi.org.10.1111/jeb.14100</u>

405 406 407	42	Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. Intragenic tandem repeats generate functional variability. <i>Nat Genet</i> 37 , 986-990 (2005). https://doi.org:10.1038/ng1618
408	43	Duitama, J. et al. Large-scale analysis of tandem repeat variability in the human
409		genome. Nucleic Acids Res 42, 5728-5741 (2014), https://doi.org:10.1093/nar/gku212
410	44	Sun, J. X. et al. A direct characterization of human mutation based on microsatellites.
411		Nat Genet 44, 1161-1165 (2012). https://doi.org:10.1038/ng.2398
412	45	Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism.
413		Nature 589, 246-250 (2021). https://doi.org:10.1038/s41586-020-03078-7
414	46	Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. Nat
415		Rev Genet 19, 286-298 (2018). https://doi.org:10.1038/nrg.2017.115
416	47	Fazal, S. et al. RExPRT: a machine learning tool to predict pathogenicity of tandem
417		repeat loci. Genome Biol 25, 39 (2024). https://doi.org:10.1186/s13059-024-03171-4
418	48	Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10 (2021).
419		https://doi.org:10.1093/gigascience/giab008
420	49	Dolzhenko, E. et al. Characterization and visualization of tandem repeats at genome
421		scale. Nat Biotechnol (2024). https://doi.org:10.1038/s41587-023-02057-3
422	50	Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and
423		effective tool for linkage disequilibrium decay analysis based on variant call format files.
424		Bioinformatics 35, 1786-1788 (2019). https://doi.org:10.1093/bioinformatics/bty875
425	51	Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
426		datasets. Gigascience 4, 7 (2015). https://doi.org:10.1186/s13742-015-0047-8
427	52	Gkanogiannis, A. fastreeR: Phylogenetic, Distance and Other Calculations on VCF and
428		Fasta Files. <u>https://bioconductor.org/packages/fastreeR</u> . R package version 1.12.0
429		(2025). https://doi.org:doi:10.18129/B9.bioc.fastreeR
430	53	Penzkofer, T. et al. L1Base 2: more retrotransposition-active LINE-1s, more mammalian
431		genomes. <i>Nucleic Acids Res</i> 45 , D68-D73 (2017). <u>https://doi.org:10.1093/nar/gkw925</u>
432	54	Perez, G. et al. The UCSC Genome Browser database: 2025 update. Nucleic Acids Res
433		53, D1243-D1249 (2025). <u>https://doi.org:10.1093/nar/gkae974</u>
434	55	Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving
435		bioscience research reporting: the ARRIVE guidelines for reporting animal research.
436		<i>PLoS Biol</i> 8 , e1000412 (2010). <u>https://doi.org:10.1371/journal.pbio.1000412</u>
437		

438

Figure 1. Overview of the pipeline used to analyze the genomic sequences of 40 inbred mouse strains to generate the TR database.

Long Read Sequencing (LRS) was performed on 40 inbred strains, and C57BL/6 was used as the reference sequence. The programs used to generate the TR catalog and for TR genotyping are shown. The TRs in all 39 (or 35 classical) inbred strains were merged. The TRs in all strains matching the reference sequence (i.e., non-polymorphic TRs) or where heterozygous alternative alleles (i.e., potential mosaic TRs) were detected were removed. A TR database with 2,528,854 (1,819,293) was established. The numbers within

446 parenthesis indicate the number of TRs present in the 35 classical inbred strains.

447

448

449 Figure 2. The distribution and characteristics of TRs in 35 classical inbred strains.

- 450 (A and B) The total number of TRs (A) and the number of strain-unique TRs (B) are shown for each strain.
- 451 Four strains (CE, KK, SMJ, and TallyHo (TH)) possess a greater number of strain-unique TRs.

452 (C) The number of TRs where a minor allele is shared by the indicated number of strains is shown. Most of 453 the minor TR alleles are shared by 1-3 strains.

454

455 Figure 3. The genomic distribution and properties of TRs in the 35 classical inbred strains.

456 (A) The distribution of TRs in different types of genomic regions.

(B) The number of TRs with different motif lengths. Most TRs are <7 bp (left), while TRs with motifs >6 bp
 are rarer (right).

459 (C) The number of TRs with alleles with the indicated number of motifs. The Y-axis is log₁₀ transformed.

Figure 4. Linkage disequilibrium (LD) decay patterns across different types of genetic variants in
 35 inbred strains. The LD patterns were calculated using:

- 463 (A) 21 million SNPs
- 464 (B) 220K SNPs
- 465 (C) 220K structural variants (SVs)
- 466 (D) 1.8 million tandem repeats (TRs)

The y-axis represents LD values (r²), and the x-axis indicates physical distance (kb). The maximum LD values are 0.811, 0.756, 0.487, and 0.850, with LD decaying to half of these values at 133 kb, 177 kb, 291

- 469 kb, and 0.1 kb, respectively.
- 470

⁴⁷¹ 472

473 Figure 5. The effect of PL/J *Pdrm9* and NZB *Cacna2d3* TR alleles on protein structure.

(A) The Prdm9 protein (residues 1-847) has a conserved *N*-terminal segment (1-664, blue), and a COOH
terminal region (664-847, orange) whose sequence is altered by a PL/J-specific TR allele. The C57BL/6J
(49 bp) and the PL/J (302 bp)TR alleles are shown above the protein diagram. The red rectangles (below)
show the zinc finger C2H2-type domains in Prdm9 with the amino acid numbers for their starting and
ending positions. The expanded PL/J TR allele alters the sequence of all six of these domains, which will
greatly reduce Prdm9's ability to bind to DNA.

(B) The Cacna2d3 protein has a conserved *N*-terminal segment (residues 1-25, blue) and a COOH
terminal region (residues 25-264, orange) whose sequence is altered by a NZB-specific TR allele. The
C57BL/6 (GT)₁₀ and NZB (GT)₈ TR alleles are shown above the protein diagram, and a region with a
conserved sequence is shown by the red rectangle below the protein. The NZB TR allele alters most of
the amino acids in the Cacna2d3 protein sequence, which will compromise channel assembly and
calcium conductance.

⁴⁸⁶

487 STAR★METHODS

488 KEY RESOURCES TABLE

REAGENT OR RESOURCE	SOURCE	IDENTIFIER		
Biological samples				
Mouse strain 129S1/SvImJ	The Jackson Laboratory	RRID:IMSR_JAX: 002448		
Mouse strain A/J	The Jackson Laboratory	RRID:IMSR_JAX: 000646		
Mouse strain AKR/J	The Jackson Laboratory	RRID:IMSR_JAX: 000648		
Mouse strain B10.D2-Hc1 H2d H2-T18c/nSnJ	The Jackson Laboratory	RRID:IMSR_JAX: 000463		
Mouse strain C57BL/10J	The Jackson Laboratory	RRID:IMSR_JAX: 000665		
Mouse strain C57BL/6J	The Jackson Laboratory	RRID:IMSR_JAX: 000664		
Mouse strain BALB/cJ	The Jackson Laboratory	RRID:IMSR_JAX: 000651		
Mouse strain BTBR T+ Itpr3tf/J	The Jackson Laboratory	RRID:IMSR_JAX: 002282		
Mouse strain C3H/HeJ	The Jackson Laboratory	RRID:IMSR_JAX: 000659		
Mouse strain C57L/J	The Jackson Laboratory	RRID:IMSR_JAX: 000668		
Mouse strain CAST/EiJ	The Jackson Laboratory	RRID:IMSR_JAX: 000928		
Mouse strain CBA/J	The Jackson Laboratory	RRID:IMSR_JAX: 000656		
Mouse strain DBA/1J	The Jackson Laboratory	RRID:IMSR_JAX: 000670		
Mouse strain DBA/2J	The Jackson Laboratory	RRID:IMSR_JAX: 000671		
Mouse strain FVB/NJ	The Jackson Laboratory	RRID:IMSR_JAX: 001800		
Mouse strain KK.Cg-Ay/J	The Jackson Laboratory	RRID:IMSR_JAX: 002468		
Mouse strain LP/J	The Jackson Laboratory	RRID:IMSR_JAX: 000676		
Mouse strain MOLF/EiJ	The Jackson Laboratory	RRID:IMSR_JAX: 000550		
Mouse strain MRL/MpJ	The Jackson Laboratory	RRID:IMSR_JAX: 000486		
Mouse strain NOD/ShiLtJ	The Jackson Laboratory	RRID:IMSR_JAX: 001976		
Mouse strain NOR/LtJ	The Jackson Laboratory	RRID:IMSR_JAX: 002050		
Mouse strain NZB/BINJ	The Jackson Laboratory	RRID:IMSR_JAX: 000684		
Mouse strain NZO/HILtJ	The Jackson Laboratory	RRID:IMSR_JAX: 002105		
Mouse strain NZW/LacJ	The Jackson Laboratory	RRID:IMSR_JAX: 001058		
Mouse strain RF/J	The Jackson Laboratory	RRID:IMSR_JAX: 000682		
Mouse strain SJL/J	The Jackson Laboratory	RRID:IMSR_JAX: 000686		
Mouse strain SPRET/EiJ	The Jackson Laboratory	RRID:IMSR_JAX: 001146		
Mouse strain SWR/J	The Jackson Laboratory	RRID:IMSR_JAX: 000689		
Mouse strain TALLYHO/JngJ	The Jackson Laboratory	RRID:IMSR_JAX: 005314		
Mouse strain WSB/EiJ	The Jackson Laboratory	RRID:IMSR_JAX: 001145		
Mouse strain BUB/BnJ	The Jackson Laboratory	RRID:IMSR_JAX: 000653		
Mouse strain C58/J	The Jackson Laboratory	RRID:IMSR_JAX: 000669		
Mouse strain CE/J	The Jackson Laboratory	RRID:IMSR_JAX: 000657		
Mouse strain I/LnJ	The Jackson Laboratory	RRID:IMSR_JAX: 000674		
Mouse strain MA/MyJ	The Jackson Laboratory	RRID:IMSR_JAX: 000677		
Mouse strain P/J	The Jackson Laboratory	RRID:IMSR_JAX: 000679		
Mouse strain PL/J	The Jackson Laboratory	RRID:IMSR_JAX: 000680		
Mouse strain RHJ/LeJ	The Jackson Laboratory	RRID:IMSR_JAX: 001591		
Mouse strain SEA/GnJ	The Jackson Laboratory	RRID:IMSR_JAX: 000644		
Mouse strain SM/J	The Jackson Laboratory	RRID:IMSR_JAX: 000687		
Deposited data				
Tandem Repeat Catalog	This Study	https://doi.org/10.5281/zenodo.15313223		
Tandem Repeat Database	This Study	https://doi.org/10.5281/zenodo.15313223		

Whole genome PacBio HiFi long reads	This Study	NCBI: PRJNA1250604
Software and algorithms		
pbmm2 (1.13.1)	PacBio	https://github.com/PacificBiosciences/pbmm2/
BCFtools (v1.21)	Danecek et al. 48	https://github.com/samtools/bcftools
perfect_repeat_finder.py	Broad Institute of MIT and Harvard	https://github.com/broadinstitute/colab-repeat-finder
vlust	Weisburd et al. 19	https://github.com/PacificBiosciences/vclust
TRGT (v1.3.0)	Dolzhenko et al. 49	https://github.com/PacificBiosciences/trgt/
PopLDdecay (v3.43)	Zhang et al. 50	https://github.com/BGI-shenzhen/PopLDdecay
PLINK (v2.0)	Chang et al. 51	https://www.cog-genomics.org/plink/2.0/
fastreeR (v1.10.0)	Gkanogiannis 52	https://github.com/gkanogiannis/fastreeR
L1Base 2	Penzkofer et al. 53	https://l1base.charite.de/l1base.php
liftOver	Perez et al. 54	https://genome.ucsc.edu/cgi-bin/hgLiftOver
R (v4.4.0)	The R Project	https://www.r-project.org/
Python (v3.10.14)	Python	https://www.python.org/

489

490 METHOD DETAILS

491 Animal experiments

492 All animal experiments were performed according to protocols that were approved by the Stanford

Institutional Animal Care and Use Committee. All mice were obtained from Jackson Labs, and the results
 are reported according to the ARRIVE guidelines ⁵⁵.

495 Genomic Sequencing

496 Genomic DNA obtained from forty inbred strains (Table S1) were subject to LRS using the HiFi REVIO
 497 system (PacBIO) at the DNA Technologies Core of the Genome Center, University of California Davis,
 498 using methods that were fully described in ¹⁸.

499 Generation of the TR catalog

500 Perfect repeats in the GRCm39 genome were identified using the Python script perfect_repeat_finder.py

501 (https://github.com/broadinstitute/colab-repeat-finder) with the following parameters: a minimum repeat

502 count of 3, a minimum spanning length of 9, a minimum motif size of 2, and a maximum motif size of 100. 503 Subsequently, variation clusters--defined as contiguous regions containing variations across a given set

504 of genome were detected using vlust¹⁹. Finally, the output from the vlust command was converted into

- 505 BED file format. Sample code is as follows:
- 506 python3 perfect_repeat_finder.py --min-repeats 3 --min-span 9 --min-motif-size 2 \
- 507 --max-motif-size 100 --output-prefix mm39.perfect.repeat \
- 508 --show-progress-bar mm39.fa
- vclust --genome mm39.fa --reads strain1.bam strain2.bam strain3.bam ... strain39.bam \
- 510 --regions mm39.perfect.repeat.bed > extended_regions txt
- 511 grep -v "NA" extended_regions.txt \
- 512 | awk '{OFS="\t"; print \$5, \$1}' | awk -F "[\t:-]" '{OFS="\t"; print \$1, \$2, \$3, \$0}' \
- 513 | cut -f 1-3,5 | sort -k 1,1 -k 2,2n -k 3,3n | bedtools merge -d -1 -c 4 -o distinct \
- 514 | awk '{OFS="\t"; print \$1, \$2, \$3, "ID="\$1"_"\$2"_"\$3";MOTIFS="\$4";STRUC=<TR>"}' \
- 515 > trs.bed

516 Genotype TR using TRGT

- 517 Using the TR catalog (named trs.bed), genotyping of the TR alleles in each of the 39 strains relative to the
- 518 C57B/6 reference sequence was performed using TRGT (v1.3.0¹⁹. All single-sample VCFs were then
- 519 merged into a joint multi-sample VCF using the 'trgt merge' command. Filtering was performed to exclude
- 520 TRs that were non-polymorphic across all strains, i.e., those that shared the reference allele in every

- 521 strain. TRs exhibiting a genotype pattern of n1/n2 (where $n1 \neq n2$) in all strains, which was indicative of 522 potentially mosaic TRs, were also excluded. The main example code is as follows:
- 523 trgt genotype --genome mm39.fa --repeats trs.bed \
- 524 --reads sample.align.sort.pbmm2.bam \
- 525 --output-prefix sample --threads 128
- 526 trgt merge --vcf *vcf.gz --genome mm39.fa --output-type z --output s39.vcf.gz

527 Linkage disequilibrium (LD) decay

528 For analysis of the 35 inbred strains, PopLDdecay (v3.43) with default parameters were used to calculate 529 LD decay for SNPs, SVs, and TRs ⁵⁰. Four datasets were separately analyzed: 21 million SNPs, 220K

530 SNPs, 220K SVs, and 1.8 million TRs. The 220K SNP subset was selected to assess how LD decay 531 changes when the SNP density is reduced to levels comparable to that of SVs. The SV dataset included 532 only deletions and insertions, and SV genotypes were treated as bi-allelic. Similarly, TR genotypes were 533 only deletions and insertions, and SV genotypes were treated as bi-allelic. Similarly, TR genotypes were 534 only deletions and insertions, and SV genotypes were treated as bi-allelic.

- 533 also treated as bi-allelic although TRs exhibit greater allelic variation, for computational convenience 534 alleles identical to the reference were coded as '0/0', while those differing from the reference were coded
- a s'1/1'. The LD decay plots were generated using the Plot OnePop.pl script provided with PopLDdecay.

536 Phylogenetic tree construction

537 For 40 mouse strains, we first performed LD pruning on the SNP, SV, and TR datasets separately using

- 538 plink 2.0 with the parameters '--indep-pairwise 1000 100 0.2', to enhance computational efficiency and
- 539 more accurately reflect true evolutionary relationships⁵¹. Subsequently, a phylogenetic tree was
- 540 constructed using the R package fastreeR (v1.10.0) ⁵².

541 Distance calculation between TRs and LINE-1 elements

542 Mouse LINE-1 data were downloaded from L1Base 2⁵³; the LINE-1 genome coordinates were converted

543 from the GRCm38 to the GRCm39 reference genome⁵⁴; and the positions of the TRs in our database

544 were compared with those of the LINE-1 elements. Since the LINE-1 elements exceed 6000 bp in length,

which is larger than nearly all the TRs, any TR located within a LINE-1 element was labelled as contained

within that LINE-1. If either end of a LINE-1 element overlapped with a TR, it was classified as an overlap.
 Also, a TR was deemed proximal to a LINE-1 element if the distance from either end of the LINE-1 to the

548 TR was <80 bp; whereas if the distance was >200bp, the TR was not labelled as proximal to the LINE-1.

549 TR Validation

550 Genomic DNA was prepared from liver tissue obtained from AJ, B10J, CBA, NOD, TallyHO and C57BL/6J

551 mice using PacBio's Nanobind tissue kit according to the manufacturer's instructions. For some strains,

552 genomic DNA was prepared from tail tissue that was lysed in QuickExtract DNA Extraction Solution

553 (Biosearch Technologies). PCR amplification of the sequences surrounding 30 selected TRs from

554 genomic DNA was performed using the GoTaq G2 master mix (Promega) and the primers listed in Table

555 **S4** according to the manufacturer's instructions. Amplicons were separated and analyzed using agarose

gels. PCR reactions were sent to McLab (South San Francisco, CA) for sanger sequencing. If the

amplicons were >1 kb, additional internal primers were used for sequencing of those amplicons.