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An invariability-area relationship sheds new
light on the spatial scaling of ecological stability
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The spatial scaling of stability is key to understanding ecological sustainability across scales

and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability–

area relationship (IAR) as a novel approach to investigate the spatial scaling of stability.

The shape and slope of IAR are largely determined by patterns of spatial synchrony across

scales. When synchrony decays exponentially with distance, IARs exhibit three phases,

characterized by steeper increases in invariability at both small and large scales. Such

triphasic IARs are observed for primary productivity from plot to continental scales. When

synchrony decays as a power law with distance, IARs are quasilinear on a log–log scale.

Such quasilinear IARs are observed for North American bird biomass at both species and

community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on

population and ecosystem stability and to detect regime shifts in spatial ecological systems,

which are goals of relevance to conservation and policy.
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S
tability is a central problem in ecology. Over the past half
century, major advances have been achieved in under-
standing the stability of local ecological systems and its

relationship with biodiversity1–4. But sustaining the structure,
functioning and services of Earth’s ecosystems in the face
of global environmental changes requires an improved
understanding of stability at large spatial scales. Ecosystem
stability at large scales is of particular relevance to human
societies as global food security depends on the stability of crop
and fish production at regional and global scales5–8. The stability
of population dynamics at large scales is also critical for the long-
term persistence of species9,10.

Spatial scaling of stability is key to understanding ecological
sustainability across scales and predicting the consequences
of habitat destruction for long-term ecological dynamics. The
idea that stability changes with scale was first acknowledged by
Peterson et al.11, who suggested that the resilience of ecosystems
might increase with spatial scale due to scale-mediated effects of
diversity. Another study used hierarchical theory to predict that
stability (as measured by low variability) at one hierarchical level
should increase proportionally to the number of lower-level
components12. The hierarchical levels used in their study can be
interpreted either as discrete biological organizational levels
(for example, cell, organ, species) or as spatial scales (for example,
local ecosystem, landscape, region). Lastly, using a hierarchical
partition of variability across spatial scales, Wang and Loreau13

predicted that temporal variability should generally decrease with
area. However, a quantitative framework has yet to be developed
to study the spatial scaling of stability.

Here we propose the invariability–area relationship (IAR) as a
novel approach to investigate the spatial scaling of ecological
stability. We conceptually define stability as the invariability
(the inverse of temporal variability) of a measured ecological
variable over time. IAR describes the dependence of population
or ecosystem invariability on the area considered. Quantitatively,
we measure invariability as the reciprocal of the squared
coefficient of variation (CV2) of a population or ecosystem
property (for example, abundance, biomass or productivity)13,14.
This stability metric measures the temporal constancy in the
functioning of ecosystems or in the size of populations, and hence
in the ecosystem services they might deliver to human
societies15,16. The spatial scaling of invariability thus informs us
about how the reliability of ecosystem services may change across
scales.

While mathematicians often define stability as the ability of a
dynamical system to return to some state after a small
perturbation, ecologists have used a wide array of different
stability measures2,4,17. Invariability has a number of merits that
make it an appropriate starting point to investigate the spatial
scaling of stability. First of all, the goal of a stability measure is to
quantify the ability of a system to withstand perturbations4,17.
Stability thus reflects the interplay between intrinsic dynamical
processes and perturbations that act upon a system. Therefore,
understanding the spatial scaling of stability implies
understanding not only the scaling of intrinsic dynamical
processes (for example, species interactions, dispersal, and so
on) but also that of external perturbations (for example, climate
events, fires, and so on). For this purpose, invariability,
which measures the magnitude of an ecosystem’s response to
persistent and erratic environmental perturbations18 and which
can be defined consistently across levels of organization and
scales13,14,19, offers an accessible starting point. Invariability is
also easy to quantify in the field, which makes it by far the most
commonly used measure of stability in empirical studies17. Lastly,
recent theoretical studies have demonstrated that invariability is
intrinsically related to other measures of stability such as

asymptotic resilience18,20, Holling’s resilience21, structural
stability22 and persistence10. Thus, our study based on
invariability may also offer insights into the spatial scaling of
other stability metrics.

We start with a simple spatial model to derive IARs in
two-dimensional landscapes. This model predicts that IARs are
largely determined by patterns of spatial synchrony across scales.
In particular, IARs exhibit triphasic curves when spatial
synchrony decays exponentially with distance, but are quasilinear
when spatial synchrony decays as a power law. We then
investigate IARs empirically using long-term continental-scale
data of primary productivity and bird biomass. These two data
sets, which exhibit triphasic and quasilinear IARs respectively,
provide contrasting examples of how different spatial synchrony
patterns can generate different IARs. Our work provides a
quantitative theory of the spatial scaling of ecological stability.
As such it is likely to have significant implications in both
ecological research and conservation management. We hope that
IAR will open new research prospects similar to the classical
species–area relationship (SAR)23, with potentially as wide and
important applications.

Results
IARs in model spatial ecosystems. We use a simple spatial model
to derive IARs in two-dimensional landscapes. The landscape
consists of regularly distributed square patches, each with unit
patch area, in which local biomass (or any other population or
ecosystem property) fluctuates due to various ecological factors.
For simplicity, we assume that all patches have identical temporal
mean (m) and variance (s2) of biomass, and hence identical
variability: CV1

2¼s2/m2. Between patches, biomass fluctuations
can exhibit spatial synchrony due to environmental correlation
and/or dispersal23,24. We denote rx,y as the temporal correlation
between patches x and y, which is assumed to depend only on the
distance dx,y between them, that is, rx,y¼ r(dx,y). Under these
assumptions, ecosystem invariability in a study area A is
(see Methods):

I Að Þ ¼ 1
CV2ðAÞ ¼ I1 �

A
A� 1ð Þ�rAþ 1

ð1Þ

Here, I1¼ 1/CV1
2 represents the invariability of a single patch, and

�rA is the average temporal correlation between any two patches in
area A.

Equation (1) shows that IAR is essentially governed by patterns
of spatial synchrony across the landscape, which determines �rA.
Two limiting cases occur when the between-patch correlation is
either 0 or 1 regardless of distance. In the absence of correlation
(that is, rx,y¼ 0), equation (1) becomes I(A)¼ I1A: invariability
increases proportionally to area, and thus the slope of IAR on a
log–log scale is 1 (Fig. 1). When patches are perfectly correlated
(that is, rx,y¼ 1), equation (1) becomes I(A)¼ I1: invariability
does not change with area because all patches fluctuate in a
perfectly synchronous manner, and the slope of IAR is 0 (Fig. 1).
In nature, however, spatial synchrony generally decreases with
distance due to reduced environmental correlation, dispersal,
and/or community similarity24–27.

We consider two types of correlation–distance functions to
predict IARs under more realistic scenarios. The first assumes
an exponential decay (‘light-tail’) of correlation with distance:
r(d)¼ r1� e� (d� 1)/L, where r1 represents local correlation, that
is, the correlation between two neighbouring patches. L is the
characteristic correlation length beyond which correlation
decreases steeply with distance, while 1/L measures the decay
rate of correlation with distance. On a log–log scale, IARs then
exhibit a triphasic curve, that is, invariability first increases steeply
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with area, then increases more slowly, and eventually increases
steeply again beyond an area around L2 (Fig. 1a). The triphasic
IAR can be understood as follows. Within the area L2, between-
patch correlation changes slightly with distance and stays at
the magnitude of r1; this relationship results in a relatively
fast increase of invariability with area at the beginning,
but the increase slows down and tends to saturate near
L2 (see Supplementary Note 1). Beyond L2, between-patch
correlation declines rapidly towards zero; invariability thus
increases steeply with area, with a universal asymptotic slope of
1 (see Methods). The second function assumes a power-law decay
(‘heavy-tail’): r(d)¼r1� d� a, where a is the power-law
exponent. In this case, IARs are quasilinear on a log–log
scale (Fig. 1b). The initial slope is higher when r1 is smaller,
and the asymptotic slope converges to either a/2 (when a o 2) or
1 (when a Z 2) (see Methods).

Thus, the shape of IAR depends on the patterns of spatial
synchrony across scales. On a log–log scale, the slope of IAR
at area A is determined by, and decreases with, the correlation
between two neighbouring ecosystems with an area A
(see Methods). In particular, the initial slope of IAR decreases
as local correlation (r1) increases. The asymptotic slope of
IAR increases with the exponent (a) under the power-law
correlation–distance function, and the pace of convergence to its
universal asymptotic slope (that is, 1) increases with the decay
rate (1/L) under the exponential function. Lastly, if, for any
practical reason, one wants to describe IAR as a linear function
on a log–log scale (as is often done for SAR23), the slope will
decrease with local correlation (r1) and increase with either the
exponential decay rate (1/L) or the power-law exponent (a)
(Supplementary Fig. 1).

Application of IAR to dataset on primary productivity. We
combined field28,29 and remote sensing30 data to derive IARs of
primary productivity over the period 1985–2014. On a log–log
scale, IARs exhibited triphasic curves from plot to continental
scales (Fig. 2a). At the smallest scales (that is, below 1 km2), the
invariability of primary productivity increased steeply with area at
a decelerating rate. Beyond 1 km2, in all five continents,
invariability first increased slowly with area, and then increased
steeply beyond 5� 105 km2. The slope varied more than 20-fold,
between 0.03 and 0.8, depending on the spatial scale considered

(Table 1). The spatial synchrony of primary productivity
generally decreased with distance (Fig. 2b,c). From intermediate
to continental scales, spatial synchrony exhibited an exponential
decay with distance, with estimates of L in the range 570–792 km
for four continents and 1,732 km for Australia (Table 1). As
predicted by our model, the value of L2 (that is, 3.3� 105 B
6.3� 105 km2 for the four continents) was consistent with the
scale beyond which invariability increases steeply with area (that
is, around 5� 105 km2; see Fig. 2). Finally, note that spatial
synchrony in the remote sensing data was much higher than that
in the field data (Fig. 2b,c). This is because spatial synchrony
depends not only on distance, but also on grain size. As grain
size increases, spatial synchrony increases (see Supplementary
Note 2).

Application of IAR to dataset on North American bird biomass.
We also used data from the North American Breeding Bird
Survey31 to investigate IARs of total community biomass and
individual species biomass. We selected 406 routes that had no
missing records during the period 1990–2010 and that are located
east of 100o W (see Methods). We used the number of survey
routes as a surrogate for sampled area. The invariability of total
community biomass increased quasilinearly with the number of
routes, with a slope of 0.45 overall on a log–log scale. This slope,
however, was larger at small scales (z¼ 0.62 from 1 to 32 routes)
than at large scales (z¼ 0.25 from 32 to 406 routes) (Fig. 3a). The
spatial synchrony of biomass fluctuations decayed as a power law
with distance (Fig. 3b). We also derived species-level IARs for 121
bird species that were recorded at least twice during 1990–2010 in
at least 100 routes. These IARs had slopes in the range 0.3 B 1,
with a mean value of 0.69 (Fig. 3). Interspecific variations in IAR
slopes were related to those of spatial synchrony, as predicted by
our model. Across species, IAR slopes decreased with the biomass
correlation at 50 km (that is, the average distance of one route to
its nearest neighbour) and increased with the power-law
exponent of correlation decay (Fig. 3c,d).

The sampling scheme can potentially influence the calculation
of invariability and hence the empirical patterns of IARs
(see Supplementary Note 2). In the bird survey, although the
hundreds of sampling routes cover the whole extent of eastern
North America, the total sampling area represents only a
relatively small proportion of the whole continent. Our
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Figure 1 | IARs in two-dimensional landscapes. (a,b) IARs under exponential and power correlation-distance functions, respectively. r1 represents the

correlation between two neighbouring patches (r1¼0.1 in solid lines and 0.5 in dashed lines), L is the characteristic length of the exponential decay

(L¼8 in blue, 16 in red and 32 in black), and a represents the exponent of the power-law decay (a¼0.1 in green, 0.5 in red and 0.9 in black). In a, the

exponential decay yields triphasic IARs, that is, invariability increases steeply at small scales, more slowly at intermediate scales and steeply again at large

scales (that is, beyond the area L2, indicated by points/circles in a). In b, the power-law decay yields IARs that look more linear, especially from

intermediate to large scales. Grey dotted lines show IARs under the two limiting cases in which between-patch dynamics are either perfectly correlated

(rx,y¼ 1 for all x a y; flat grey dotted lines) or independent (rx,y¼0 for all x a y; beveled grey dotted lines).
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theoretical model shows that incomplete spatial sampling could
potentially increase the slope of IAR (see Supplementary Fig. 2).
Thus, the reported slopes for community- and species-level IARs
of bird biomass are likely to be higher than those based on full
censuses; the latter, however, are impractical to obtain. The
temporal sampling scheme may also influence the scaling patterns
of invariability (see Supplementary Note 2)32,33. With the bird
data, we examined how observation length might affect the slope
of IAR. The results show that, over a shorter observation period
(for example, 1990–2000), the IAR of bird community biomass
had a slightly higher intercept and lower slope (Supplementary
Fig. 3). The species-level IARs also exhibited higher intercepts
over a shorter period, but no significant trend was detected for the
slope (Supplementary Fig. 3).

Discussion
Our theoretical and empirical analyses demonstrate a basic, yet
fundamental, scaling pattern of ecological stability. While the
spatial scaling of species diversity (that is, SAR) depends on the
spatial distribution of species, that of invariability (that is, IAR) is
mainly determined by the spatial synchrony of ecological

dynamics. The IARs of primary productivity exhibits triphasic
curves, characterized by steeper increases in invariability at both
small and large scales (Fig. 2). This relationship resembles the
triphasic SARs for the world’s flora and avifauna34–37. Although
the remote sensing-based NPP estimates might be biased at small
scales (for example, B 1 km2) (ref. 38), their reliability has
been well validated at relatively larger scales (for example, 4
50 km2) (refs 39,40). Thus, uncertainty in NPP estimates should
not affect the reported triphasic curve. The triphasic IARs may
reflect the scale dependence of the determinants of spatial
synchrony (see Supplementary Note 3). At the smallest scales,
demographic stochasticity and observation error are likely to be
prominent41. These factors are independent across space, which
explains why spatial synchrony (between small grids, for example,
100 m2) is low and invariability first increases steeply with area.
At intermediate scales, the spatial correlation of environmental
factors is likely to cause a relatively high spatial synchrony
(between intermediate-size grids, for example, 1 km2) (refs 24,25)
and, consequently, a slower increase of invariability with area. At
the largest scales, the spatial synchrony is low again due to a
strong decorrelation of the environment and species composition
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Figure 2 | IARs and correlation–distance relationships of primary productivity. (a) IARs of primary productivity from plot to continental scales (unit of

area: km2). Data are from field investigations of two 50-hectare tropical forest plots28,29 (scale: 10�4–0.5 km2) and remote sensing NPP products from
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relationships of primary productivity in the two tropical forest plots. Each point represents the average correlation between all subplot pairs (grid size:

10� 10 m2) corresponding to some distance category. (c) Correlation–distance relationships of primary productivity in the five continents based on MODIS

data. Each point represents the average correlation between all grid pairs (grid size: 1o� 1o) corresponding to some distance category. Curves are fitted

exponential functions: r(d)¼r1� e� (d� 1)/L (see Table 1 for parameter values). The grey box in c indicates the range of the parameter L for the four

continents except Australia, which lies between 570 and 792 km. The grey box in a indicates the square of this range (L2), that is, between 3.3� 105 and

6.3� 105 km2.

Table 1 | Correlation–distance relationships and IARs of primary productivity in five continents.

Correlation–distance relationships
q(d)¼ q1� e� (d� 1)/L

Invariability–area relationships (IARs)

q1 L R2 z (1oAo5� 105 km2) z (A45� 105 km2) z (A42� 106 km2)

North America 1.00 7.51 0.998 0.032 0.503 0.596
South America 0.97 5.70 0.995 0.039 0.459 0.642
Africa 1.00 7.92 0.983 0.040 0.540 0.682
Eurasia 0.95 5.96 0.998 0.033 0.677 0.804
Australia 0.95 17.32 0.987 0.029 0.340 0.597

The relationships between average correlation (r) and distance (d) are modelled by an exponential function: r(d)¼ r1� e� (d� 1)/L, where r1 represents the correlation between two neighbouring grids
and L represents the characteristic correlation length. The unit of d and L is 100 km. For IARs, z represents the log–log slope between invariability and area on respective scales.
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beyond some correlation length (for example, L in Table 1); this
results in a steep increase of invariability with area. Furthermore,
the upward inflection point of IARs of primary productivity
(that is, 570 B 792 km in four continents; see Table 1) is
comparable to that of plant SARs (ca. 837 km)36, implying that
the correlation length of plant ecosystem dynamics is similar to
that of the biogeography of the world’s flora. Whether this
parallel is due to ecological factors affecting both patterns, SAR
affecting IAR, or mere coincidence remains to be explored.

In contrast, the spatial synchrony of bird biomass does not
exhibit an accelerated decline at large scales, and the correspond-
ing IARs do not exhibit the third stage of steep increase in
invariability (Fig. 3). This might be due to the limited scale of the
bird data we used. The correlation length of biogeographic
processes of the world’s avifauna, that is, the upward inflection
point of its SAR, is about 1,585 km (ref. 36); this is comparable to
the extent of our bird data (for example, 90% route pairs
have a distance o 1,900 km). At a larger scale (for example,
beyond North America), bird biomass might exhibit a rapid
de-correlation and a steep increase in invariability.

The scale dependence of invariability has important implica-
tions for ecological research. Values of invariability need to be
reported relative to the sample area (for example, quadrat size),
just as species richness is relative to area. To investigate the effects
of ecological factors (for example, species diversity) on invaria-
bility, one should compare sites with the same sampling scheme

and acknowledge the scale dependence of effect size, just as with
biodiversity42. Moreover, IAR theory could be developed to
generate the equivalent of rarefaction curves in order to compare
studies with different sampling sizes, sampling intensities and
time-series length33,43,44.

IAR provides a novel tool for biodiversity conservation and
ecosystem management. In particular, IARs could be used to
predict the loss of population or ecosystem stability due to habitat
destruction, in the same way as SARs have been used to predict
species extinctions45,46. For instance, a power function I(A)¼ cAz

could be used to predict changes in bird population invariability
following habitat loss. Bird species exhibit large interspecific
variations in their IARs, and disentangling their drivers
would help us understand how different bird species may
respond to habitat destruction differently. Similarly, IAR allows
conservationists and managers to identify the minimum area
needed to reduce uncertainty in the provision of ecosystem
services below some threshold, for example, in agriculture and
fishery5–8, or the minimum area required for the long-term
persistence of populations. Our study presented two examples of
IARs on continuous and noncontinuous grids (that is, plant and
avian communities, respectively). New studies are needed to
generalize our results to other taxa and landscape structures,
such as islands and island fragments, in order to apply IAR for
real-world conservation and management47. Although large-scale
spatio-temporal data are still very limited, this situation may
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Figure 3 | IARs and correlation–distance relationships of bird biomass. (a) IARs of bird biomass across eastern North America31. Area is measured by

the number of sampling routes (total number: 406). The red line shows median invariability of total community biomass across 406 replicates, and the red

shade shows 25 and 75% quantiles. Grey curves show the IARs of individual species biomass for 121 bird species. (b) Correlation–distance relationships of

bird biomass. The red points represent the average correlation of total community biomass corresponding to different distance categories. The red line is a

fitted power function: r(d)¼0.45� d�0.55 (unit of d: 1 km), with red shade representing 95% confidence intervals. Grey lines are fitted power functions for

121 bird species. (c,d) Relationship between the slope of species-level IARs and spatial correlation at a distance of 50 km (c) and the power-law exponent of

correlation decay (d). The lines in c,d are least-square fits for species-level data, with blue shades representing 95% confidence intervals. The red points

in c,d show values for community-level data.
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improve with the development of new techniques such as
airborne light detection and ranging (LiDAR)48,49.

IAR also has potential as a new tool to predict regime shifts
(that is, Holling’s resilience21) in spatial ecological systems.
Spatial correlation has been used as an early warning signal for
regime shifts in spatially structured ecosystems as correlations
between neighbouring and distant patches are bound to increase
prior to a shift50. These changes in spatial correlations in turn
modify the shape of IAR qualitatively: in the proximity of a
regime shift, the intercept of IAR, its initial and final slopes,
all decrease so that the triphasic shape gradually diminishes
(see Supplementary Fig. 4 and Supplementary Note 4).
Furthermore, the decrease in the slope of IAR follows a specific
pattern across scales. Spatial correlations propagate gradually
through space, such that the initial slope of IAR decreases first,
while the final slope decreases only close to the regime shift
(Supplementary Note 4).

Our study provides an important first step towards under-
standing the spatial scaling of ecological stability. The findings
here could serve as a benchmark for future research, and
could be extended to compare the spatial scaling of different
stability metrics and reveal their underlying mechanisms.
While invariability is by far the most commonly used stability
metric in empirical studies, theoretical research has mainly
focused on asymptotic resilience17. Extending the IAR approach
to investigate the spatial scaling of asymptotic resilience and
other stability metrics4,51 may contribute to developing
multidimensional stability-area relationships, and thereby a
more comprehensive understanding of the spatial scaling of
stability. Future research also needs to explore spatial synchrony
across scales quantitatively, in order to disentangle the drivers of
IARs in theory and data. Such new body of research will
contribute to transforming IAR into a practical tool for predicting
the long-term responses of species and ecosystems to habitat and
environmental changes.

Methods
Theoretical derivation of IAR. We define ecosystem invariability in a study area
A (I(A)) as the reciprocal of squared coefficient of variation (CV2) of biomass in
area A: I Að Þ ¼ 1=CV2ðAÞ. Consider a two-dimensional landscape that consists of a
grid of regularly distributed local patches (or ecosystems) of unit size. All local
patches are assumed to have identical temporal mean (m) and variance (s2) of total
biomass, that is, the mean and variance of time series of total biomass. We assume
the temporal dynamics are stationary and hence s2 is constant through time,
although empirical data may exhibit non-stationary dynamics. Between patches,
ecosystem dynamics can be correlated with each other. The temporal correlation
between patches x and y is denoted by rx,y. Thus, the temporal variance of biomass
in an area covering A patches is:

Var Að Þ ¼
X

x;y2A

Covðx; yÞ ¼ s2 � Aþ
X

x;y2A;x 6¼ y

rx;y

0
@

1
A ¼ As2 1þ A� 1ð Þ�rAð Þ

ð2Þ
where �rA ¼

P
x;y2A;x 6¼ y

rx;y=½AðA� 1Þ�. The variability of total biomass in area A is
thus:

CV2 Að Þ ¼ VarðAÞ
Amð Þ2

¼ As2 1þ A� 1ð Þ�rAð Þ
Amð Þ2

¼ 1þ A� 1ð Þ�rA

AI1
ð3Þ

where I1¼ m2/s2. Therefore, ecosystem invariability in a study area A is (equation 1):

I Að Þ ¼ 1
CV2ðAÞ ¼ I1 �

A
A� 1ð Þ�rA þ 1

Theoretical analyses of the slope of IAR. On a log–log scale, the slope of IAR
at area A (zA) can be approximated by the change of invariability between areas A
and 2A:

zA ¼
log2 I 2Að Þð Þ� log2 I Að Þð Þ

log2ð2AÞ� log2ðAÞ
¼ log2 I 2Að Þð Þ� log2 I Að Þð Þ ð4Þ

By definition, I(A)¼ (Am)2/Var(A), and I(2A)¼ (2Am)2/Var(2A)¼ (2Am)2/
[2(1þ rAA) �Var(A)]. Here, rAA represents the correlation between two

neighbouring patches with area A, which make up an area of 2A. Substitute
I(A) and I(2A) into equation (4), we have:

zA ¼ log2
2

1þ rAA
¼ 1� log2 1þ rAAð Þ ð5Þ

Therefore, the slope of IAR at area A (zA) decreases with the correlation
between two neighbouring ecosystems both with area A. It is important
to note that, whereas the correlation–distance functions in the main text
(that is, r(d)) represent the correlation between two ecosystems with unit size,
rAA denotes the correlation between two ecosystems with size A. So they are
defined at different grain sizes, although the latter may be derived from
the former. In the Supplementary Note 2, we show that given the distance,
the correlation between two ecosystems increases with ecosystem size.

Below we investigate the initial and asymptotic slopes of IARs under the two
correlation–distance functions considered in the main text. First, the initial slope
(zini) is calculated by the log–log slope between A¼ 1 and A¼ 2. Following
equation (5), we have: zini¼ log2(2/(1þ r1)), where r1 is local correlation, or the
correlation between two neighbouring patches with unit area. So, the initial slope of
IAR decreases with local correlation (r1). Then, to derive the asymptotic slope
(zasym) of IAR, we calculate the log–log slope of IAR as the area A goes to infinity
(see Supplementary Note 1):

zasym ¼
ln IðAÞ

ln A
ffi � ln �rA þA� 1ð Þ

ln A
ð6Þ

In order to obtain zasym, we need to derive the average pairwise correlation �rA.
Consider a square area A¼N2 (that is, a group of grids on {1, 2, y, N}� {1, 2, y,
N}), we have (see Supplementary Note 1):

�rA ¼
4

N2 N2 � 1ð Þ
XN

k¼1

XN

l¼2
N þ 1� kð Þ N þ 1� lð Þ � rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 1ð Þ2 þ l� 1ð Þ2

q
Þ

� �

ð7Þ

where r(.) represents the correlation–distance relationship. By substituting the two
correlation–distance functions into equation (7), we can derive �rA and zasym (see
Supplementary Note 1). Under the exponential function, the asymptotic slope
(zasym) equals 1. Under the power-law function, we have:

zasym ¼
a
2 ao2
1 a � 2

�
ð8Þ

Data sources. Two data sets were used to study the IARs of primary productivity.
The first included two 50-hectare tropical forest plots in Barro Colorado Island
(BCI), Panama28, and in Pasoh, Malaysia29. Both were established in 1980s and
have since been surveyed 6–7 times. In each census, all woody stems with a
diameter at breast height larger than 1 cm were identified, tagged and mapped. The
aboveground biomass of each stem was estimated using an allometric equation52.
Annual primary productivity was then estimated, for each of the 10� 10 m2

subplots, as the total growth of biomass between two censuses divided by the length
of the period (usually 5 years). The second data set consisted of MODIS-based
remote sensing data of terrestrial net primary productivity (NPP) on a global
scale30. For each grid (0.00833o� 0.00833o), the annual NPP was estimated over
the period 2000–2014. The estimation algorithm followed a radiation-use efficiency
approach, and incorporated information on vegetation type and climate
conditions30. This approach provides the first operational, near-real-time
calculation of global NPP39. The MODIS NPP product is one of the most
reliable estimates of vegetation dynamics at the global scale30. Its reliability has
been validated across scales with eddy flux-based estimations and field
measurements38–40,53.

We also used the data set from the North American Breeding Bird Survey31

to study the IARs of bird biomass. We selected routes without missing records
between 1990 and 2010; among these 555 routes, we used the 406 routes that are
located east of 100o W. This is because sampling density was much higher east of
100o W (average distance of one route to its nearest neighbour: B 50 km) than
west (average distance: B 100 km) (Supplementary Fig. 5), and the 100o W parallel
is also the location of sharp gradients of annual precipitation54. For each route, the
population size of each encountered species was recorded and multiplied by its
mean body mass55 to estimate the species biomass. Total community biomass was
obtained by summing up the biomass of all species.

Empirical IARs and correlation–distance relationships. To construct the IARs
of aboveground primary productivity in BCI and Pasoh, we first randomly selected
a starting grid (that is, a 10� 10 m2 subplot), and then increased the area to
200 m2, 400 m2, y, 5� 106 m2, by including the neighbouring grids. The proce-
dure was repeated 500 times. For the satellite-based NPP data, IARs were con-
structed for each of the five continents, with similar procedures as in BCI and
Pasoh (Supplementary Fig. 6). Because the original data were based on a resolution
of 0.00833 degree, surface area differed between grids at high and low latitudes. We
thus converted the longitude-latitude distance to Euclidean distance, and calculated
the area for each grid.
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The IARs of bird biomass were constructed similarly as above. However, the
area in this case was not real area, but the sampled area or the number of routes.
We first calculated the IAR of total community biomass. By taking different routes
as the starting route, we obtained 406 replicates. In each replicate, we started with
one route and increased the number of routes to 2, 4, 8, y, 256, 406 by including
the closest routes. We also derived IARs for 121 bird species that were recorded at
least twice during 1990–2010 in at least 100 routes, with similar procedures as for
total community biomass.

For both data sets, we calculated the temporal correlation for all pairs of grids
(for plant data) or routes (for bird data). We grouped these pairs (of grids or
routes) into different categories according to their distance, and computed the
average correlation for each distance category. For computational reasons, the
calculation for the Modis NPP data was based on a grid size of 1o� 1o; thus, the
distance between two neighbouring grid was about 100 km around the equator and
smaller around the poles. Note that the calculation for the two tropical forest plots
was based on a grid size of 10� 10 m2, much smaller than that for the Modis-NPP
data. In Supplementary Note 2, we showed that, given the distance, spatial
synchrony increased with grid size. This explained why the spatial synchrony of the
Modis NPP data was much larger than that of the forest plot data (Fig. 2b,c).

Data availability. The data that support the findings of this study are available on
request from the BCI Forest Dynamics Plot data set (http://ctfs.si.edu/webatlas/
datasets/bci/), the Pasoh Forest Dynamics Plot data set (http://www.ctfs.si.edu/site/
pasoh/), the MODIS GPP/NPP Project (MOD17) (http://www.ntsg.umt.edu/pro-
ject/mod17) and the North American Breeding Bird Survey (https://
www.pwrc.usgs.gov/bbs/).
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