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Toll-like receptors (TLRs) are at the forefront of pathogen recognition ensuring host fitness

and eliciting protective cellular and humoral responses. Signaling pathways downstream

of TLRs are tightly regulated for preventing collateral damage and loss of tolerance

toward commensals. To trigger effective intracellular signaling, these receptors require

the involvement of adaptor proteins. Among these, Toll/Interleukin-1 receptor domain

containing adaptor protein (Tirap or MAL) plays an important role in establishing immune

responses. Loss of function of MAL was associated with either disease susceptibility

or resistance. These opposite effects reveal paradoxical functions of MAL and their

importance in containing infectious or non-infectious diseases. In this review, we

summarize the current knowledge on the signaling pathways involving MAL in different

pathologies and their impact on inducing protective or non-protective responses.
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INTRODUCTION

Commensal and pathogenic microorganisms contain pathogen-associated molecular patterns
(PAMPs) that are recognized by different families of pattern-recognition receptors (PRRs) (1).
Mammals have distinct classes of PRRs, including Toll-like receptors (TLRs), that are patrolling
both, extracellular and intracellular environments. They are expressed in innate immune cells, such
as dendritic cells (DCs) and macrophages, but also in non-immune cells, such as fibroblasts and
epithelial cells. TLRs are composed of the Toll/Interleukin-1 receptor homology (TIR) domain
capable of binding to intracellular signaling adaptor proteins. For more details on downstream
signaling cascades, we direct the reader to comprehensive reviews (2, 3).

Among a variety of TLRs adaptor proteins, TIR-containing adaptor protein (Tirap), also named
MyD88 adaptor-like protein [MAL, also referred to as megakaryoblastic leukemia (translocation)
1], was mostly reported for its involvement in the regulation of signaling cascades downstream
of TLR-2 and TLR-4 by bridging the adaptor protein myeloid differentiation primary response
88 (MyD88) (4–6). Human MAL consists of 221 amino acids (Figure 1A). At the N-terminus,
there are a phosphatidylinositol 4,5-bisphosphate (PIP2) binding motif (PBM) and a putative
proline, glutamic acid, serine and threonine (PEST) domain associated to short-lived proteins
(7). At the C-terminus, a TIR domain extends from amino acid 84–221 and orchestrates the
signal transduction pathways after TLR and Interleukin-1 (IL-1) receptor engagement. Because
of its analogy with MyD88, MAL signaling was initially confused with that of MyD88. Actually,
it impacts on inflammation and innate immune responses in a TLR- and MyD88-independent
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manner (8), pinpointing its role to other putative cellular
mechanisms, such as vesicular trafficking. Heterozygosity and
homozygosity for some inherited mutations in MAL are
associated with different outcomes in patients, suggesting a
paradoxical role in protection against diseases. This may reflect
the influence of gene-gene and gene-environment interactions
that vary across populations. In this review, we summarize the
current knowledge on cellular mechanisms of MAL/Tirap and
highlight its role in disease predisposition.

FIGURE 1 | MAL structure, pathway and dependent immune responses during infections. (A) Protein structure of MAL, binding sites (above) and regulation sites

(below). P, phosphorylation; Ub, ubiquitination; G, S-glutathionylation. (B) Among other receptors, MAL affects signals downstream of TLR-2, TLR-4, RAGE and

IFNGR. When TLR-4 is activated by LPS, MAL is recruited by its PIP2 binding domain to TLR-4 rich regions of the plasma membrane. MAL then facilitates the

recruitment of MyD88 and the formation of the myddosome, which is important for the activation of the NF-κB pathway, thus inducing inflammation. Signaling

pathway activated downstream of RAGE can also induce NF-κB dependent inflammation. MAL induces the translocation of p65-NF-κB to the nucleus through AKT

phosphorylation, independently from MyD88 signaling. Also, independently from MyD88, MAL can activate CREB via p38-MAPK and Mitogen-activated protein

kinase kinase (MKK) signaling pathways. Another pathway involving MAL is downstream IFNGR, which leads to phosphorylation of p38-MAPK. AGEs, Advanced

Glycation End products; DD, Death Domain; P, Phosphate group; LP, Lipopeptide. (C) The Herpes simplex virus (HSV) infection model was used to confirm MAL

signaling from endosomes. TLRs found at the cell surface signal from a PIP2-rich subdomain, and MAL is recruited to that location via interactions with PIP2. TLRs

found on endosomes (TLR-9) signal from a domain rich in PI3P. These lipids direct MAL to endosomes to promote TLR-9 signaling after viral DNA recognition.

Brucella infection: Brucella interferes with immune responses by producing TcpB, which targets MAL to inhibit NF-κB activation. TcpB also targets CLIP70 inducing

MAL ubiquitination and degradation by the proteasome. Staphylococcus infection: Lipoteichoic acid (LTA), a toxin produced by Staphylococcus bacteria, is

recognized by TLR-2. TLR-2 activation induces MAL signaling to eliminate the toxin/bacteria. LTA is also recognized by antibodies (aLTA Ab), which are recognized by

CD32 (Fcγ receptor II). In patients carrying the R121W mutation in MAL, adaptive immunity can compensate for defects in MAL function. Mycobacterium infection:

Killing M. tuberculosis requires activation of TLR-2- and IFNGR-dependent signaling pathways within phagocytes to induce phagosome maturation and autophagy.

MAL SIGNALING PATHWAYS
DOWNSTREAM TLR-2 AND TLR-4

MAL recruitment at the plasma membrane occurs upon binding
to PIP2 prior to its interaction with TLRs (Figure 1B) (9). MAL
is then phosphorylated by Burton tyrosine kinase (Btk), which
facilitates its interaction with the TIR domain of TLRs and
consequently MyD88 to initiate the transduction signal (10).
Recently, it has been shown that MAL is S-glutathionylated on
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Cys91 to facilitate the interaction with MyD88 (11). Notably,
it is possible that the MAL-MyD88 tandem is prepositioned
on the membrane awaiting ligand-induced TLR activation.
Upon activation, MyD88 oligomerizes to form a large signaling
platform called the “myddosome,” which also contains members
of the Interleukin-1-Receptor-Associated Kinase (IRAK) family.
The N-terminal Death Domain of MyD88 recruits firstly IRAK4
and then IRAK1 and IRAK2, which are phosphorylated to
interact with the TNF receptor-associated factor 6 (TRAF6).
TRAF6 is an E3 ubiquitin ligase able to generate K63-
linked polyubiquitination chains. The linear ubiquitin assembly
complex can bind these chains to recruit preassembled kinase
complexes containing TAK1, TAB1, TAB2, and TAB3. This
leads to nuclear factor kappa B (NF-κB) translocation to the
nucleus after inhibitor of NF-κB (IKB) proteolytic degradation.
Concomitantly, this complex controls the mitogen-activated
protein kinase (MAPK) signaling that activates members of the
activator protein-1 (AP1) transcription factor family, Jun and
Fos, resulting in cytokine production, initiation of inflammation
and metabolic cell polarization (6, 12).

Thus, MAL is an important actor in the establishment of
inflammation. Over the last decade, a large number of clinical and
experimental studies focused on the role of MAL in the control of
infectious and non-infectious diseases (Table 1). Unexpectedly,
as shown in Table 1, genetic variation in MAL was associated
with either protection or susceptibility to diseases. Recent studies
have shown that MAL is involved in other processes besides TLR-
2 and TLR-4 making its biology more complex than expected.
These new functions, discussed below, will make it possible
to emit new hypotheses explaining the paradoxical behavior
of MAL.

DOES MAL SIGNAL THROUGH
ENDOSOMAL TLRs?

Several studies have investigated whether intracellular TLRs
require MAL to signal. While PIP2 is required for MAL
recruitment at TLR-2 and TLR-4 (10, 52), functional analysis
by Kagan’s group revealed that Phosphatidylinositol 3-phosphate
(PI3P) and Phosphatidylserine (PS) are needed to recruit MAL
to endosomal TLR-9 (21). The authors used MAL-deficient
plasmacytoid DCs, known to respond exclusively via endosomal
TLRs, to demonstrate that MAL is required for production
of type I interferon (IFN) downstream TLR-9 stimulation
with Herpes simplex Virus (HSV) (Figure 1C). Wild type and
MAL-deficient primary bone marrow-derived macrophages were
stimulated with substrains of HSV-1 showing that deficient
cells presented a defective production of IL-1β and IL-6,
specifically downstream of endocytic TLR-9 (21, 53). Since
then, it became clear that multiple targets of the lipid-binding
domain of MAL are functionally important and allow this
adaptor to promote TLR signaling from both plasma membrane
and endosomal compartments. Corroborating this, Shan et al.,
also demonstrated that MAL was recruited as an adaptor to
endosomal compartments by TLR-8 (54). The complexity of the
endosomal system fine-tunes the immune response by ensuring

the proper compartmentalization of intracellular TLRs. The
contribution of MAL downstream of intracellular TLRs increases
the complexity of its biology and further investigations are
needed to fully understand the regulation of endosomal signaling
which could provide new hypotheses explaining the paradoxical
role of MAL.

COULD MAL SIGNALING BE
INDEPENDENT OF TLRs?

Besides the above-mentioned MAL-mediated pathways that
are downstream of TLRs, Keane’s group discovered in
murine macrophages that MAL binds to IFN-γ receptor
(IFNGR), which triggered its interaction with MyD88
(Figure 1B). In the context of Mycobacterium tuberculosis
(Mtb) infection, authors reported that MAL leads to
autophagy and vacuole acidification that kills the bacteria
(Figure 1C). In addition, the S180L polymorphism (this
single-nucleotide polymorphism (SNP) encodes a serine
instead of a leucine), and its murine equivalent S200L,
compromised IFNGR signaling impairing host responses to
Mtb (8).

MAL was also described to interact with Receptor for
Advanced Glycation End products (RAGE), a type I single-
pass transmembrane protein belonging to the immunoglobulin
superfamily (Figure 1B). Upon binding of the extracellular
domain of RAGE to its ligands, the cytoplasmic domain
of this receptor is phosphorylated at Ser391 by PKCζ.
Consequently, this leads to the recruitment of MAL and
MyD88, further inducing a recruitment of IRAK4, activation
of the downstream effector kinases and finally production of
inflammatory cytokines through activation of NF-κB. RAGE
and TLR-2/4 partly share an intracellular signaling pathway.
These receptors display a precise motif in the intracellular
domain (Q residue followed by three successive negatively
charged residues), which, upon phosphorylation, enhances its
affinity to MAL (55, 56). During infection, such as tuberculosis
(Tb), the RAGE pathway is modulated (57). Since MAL
is implicated in this signaling pathway, mutations in the
adaptor could certainly impact on disease severity. It was
shown that PKCζ is upregulated during Tb progression, which
increases effector killing functions (58). As PKCζ facilitates
the recruitment of MAL to RAGE, it becomes an interesting
way of investigation to decipher MAL’s role during Mtb
infection. Furthermore, co-morbidities such as diabetes are
known to increase the amount of RAGE ligands, which could
influence MAL functions during infection (59). Based on these
observations, we can legitimately assume that MAL is implicated
in other unknown pathways.

HOW IS MAL REGULATED AND
DEGRADED?

The PEST domain of MAL undergoes phosphorylation and
polyubiquitination of lysine residues targeting degradation
via the 26S proteasome. Mansell et al., demonstrated that
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TABLE 1 | Effect of MAL deficiency during infectious and non-infectious diseases.

Host Pathogen Disease Genotype Effect References

Mice Escherichia coli Bacteraemia MAL/Tirap Knock-out Protection (13)

Pseudomonas aeruginosa – MAL/Tirap Knock-out None (14)

Klebsiella pneumoniae Pneumonia MAL/Tirap Knock-out Protection (14)

Bordetella pertussis Whooping cough MAL/Tirap Knock-out Protection (15)

Salmonella enterica Salmonellosis MAL/Tirap Knock-out None (16, 17)

MAL/Tirap Knock-out Protection (18)

Mycobacterium tuberculosis Tuberculosis MAL/Tirap Knock-out None (19)

MAL/Tirap S200L Susceptibility (8)

Tripanosoma cruzi Chagas disease MAL/Tirap Knock-out Protection (20)

Herpes simplex Herpes MAL/Tirap Knock-out predicted susceptibility (21)

– Colorectal cancer MAL/Tirap Knock-out Susceptibilty (22)

Human Mycobacterium tuberculosis Tuberculosis MAL/Tirap S180L None (23–27)

MAL/Tirap S180L Susceptibility (28)

MAL/Tirap S180L Protection (29–32)

MAL/Tirap S55N None (23)

MAL/Tirap D96N Susceptibility (26)

MAL/Tirap A186A Susceptibility (23)

Streptococcus pneumoniae Pneumococcal disease MAL/Tirap S180L Protection (24, 33)

MAL/Tirap 180L

homozygous

Susceptibility (33)

Trypanosoma cruzi Chagas disease MAL/Tirap S180L Protection (34)

Plasmodium falciparum Malaria MAL/Tirap S180L Protection (24, 35, 36)

MAL/Tirap S180L None (37)

MAL/Tirap S180L Susceptibility (38, 39)

Haemophilus influenzae B Vaccine failure MAL/Tirap S180L Potection (40, 41)

HIV-1 AIDS MAL/Tirap S180L Protection (42)

Staphylococcus aureus Staphylococcal disease MAL/Tirap R121W Susceptibility (43)

Helicobacter pylory Gastritis and peptic

ulcer

MAL/Tirap S180L Protection (44)

– Lupus Erythematosus MAL/Tirap S180L Protection (25, 45)

– Rheumatoid arthritis MAL/Tirap S180L None (40)

MAL/Tirap

overexpression

Susceptibility (46)

– Behçet’s disease MAL/Tirap S180L Protection (47)

MAL/Tirap S180L None (48)

– Gastric cancer MAL/Tirap C558T Susceptibility (49)

– Lymphoma MAL/Tirap R81C Susceptibility (50)

– Atopic dermatitis MAL/Tirap S180L Protection (51)

MAL/Tirap Q101Q Protection (51)

stimulation of both TLR-2 and TLR-4 induced MAL degradation
within 15–30min after stimulation in order to avoid chronic
inflammation. The degradation of MAL is a consequence of its
polyubiquitination, which occurs via the SH2 domain of SOCS-
1 and subsequent recruitment of the ubiquitin machinery (60).
Tyrosine phosphorylation of MAL via Btk is necessary for the
SOCS-1–mediated degradation. Moreover, MAL ubiquitination
and degradation was also shown to be mediated by Cytoplasmic
Linker Protein 170 (CLIP170) that is implicated in regulation
of microtubule dynamics, cell migration and intracellular
transport (7, 61). A study also demonstrated that MAL
phosphorylation at Thr28 within its PBM reduces PI interactions

and cell membrane targeting, leading to its ubiquitination and
degradation (62).

Moreover, limiting the amount of PIP2 at the
plasma membrane would prevent an exacerbated
inflammation. Aksoy et al., showed in DCs that the
interaction of MAL with phosphoinositol-3 kinases (PI3K)
converts PIP2 to PIP3 and leads to the shedding of its
membrane anchor sites. The change in the PIP2/PIP3
ratio favored the redistribution of MAL into the
cytosol, where it was thus degraded. Moreover, TLR-4
is internalized, inactivating its downstream signaling
pathway (1, 7).
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ARE TLR/MAL-DERIVED INFLAMMATORY
RESPONSES HELPFUL IN FIGHTING
DISEASES?

In the context of whooping cough, a pulmonary infection caused
by Bordetella pertussis, the absence ofMAL induced susceptibility
to the infection in mouse lungs with exacerbated dissemination
leading to death (15). In this setting, MAL impacted on early local
pro-inflammatory cytokine production by alveolar macrophages
in lungs and prevented apoptosis-induced cell death and
depletion of alveolar macrophages. As expected through this
example, loss of function in MAL decreases the inflammatory
response which leads to susceptibility to the infection. However,
MAL biology is not as straightforward in other models for which
the level of TLR/MAL-derived inflammation will strongly impact
the severity of the disease. The impact of S180L polymorphism
was deeply investigated. In a group of Pakistani population, it
was observed that the 180L allele frequency is higher than that
of the 180S allele in patients infected with Plasmodium, the
causative agent of malaria, demonstrating that MAL deficiency
enhances 3.000 times the chance of acquiring malaria caused by
Plasmodium falciparum (35). In a cohort of adults from India, the
heterozygous S180L mutation led to an optimal release of TNF-
α that was shown to be protective against severe P. falciparum
infection and mortality (36). Several studies also focused on the
implication of MAL S180L polymorphism during Tb resulting
in confusing conclusions. Indeed, S180L SNP has been often
associated with protection. Capparelli et al., demonstrated that
MAL S180L conferred resistance against Tb in heterozygous
individuals, showing that those subjects displayed intermediate
levels of IFN-γ, TNF-α or nitric oxide (NO), which helped to
control the infection (29). Together, these results suggest that an
intermediate level of inflammation decreases the severity of the
pathology leading to a better protection to some pathogens that
normally take advantage of an exacerbated inflammation.

Whereas MAL signaling was long considered important
for antimicrobial immunity, recent studies demonstrated
that genetic impairments in MAL are also associated with
tumorigenesis. Interestingly, MAL overexpression was reported
in ∼20% of investigated lymphoma, and a whole exome
sequencing in human recently revealed that MAL SNP R81C
activated its downstream signaling to enhance NF-κB gene
expression, whose constitutive activity is characteristic of
B cell lymphoma (50, 63). It became clear that TLR/MAL-
dependent inflammation strongly influences disease control with
versatile consequences.

DOES MAL HAVE IMMUNOREGULATORY
PROPERTIES?

Following the hypothesis that negative feedback could
avoid chronic inflammation and septic shock, a putative
immunoregulatory role of MAL was investigated (20, 64).
Mellett et al., demonstrated that MAL is the unique TIR adaptor
protein capable of activating cyclic adenosine monophosphate
(c-AMP) Response Element-binding proteins (CREB), a key

transcription factor that mediates regulation of gene expression.
They showed that MAL-induced phosphorylation of CREB was
induced by LPS that stimulated TLR-4, suggesting a positive
feedback system in dysregulated inflammatory responses, where
MAL induces the production of IL-10 and cyclooxygenase 2
(COX-2). During Trypanosoma cruzi infection, the causative
agent of Chagas disease, it was shown in a mouse model of
infection that MAL deficiency is associated to exacerbated
inflammation, similarly to TLR-2 deficient mice, leading to
decreased parasitemia and delayed mortality (20). Moreover,
authors distinguished between pro-inflammatory LyC6hiTLR2hi

and anti-inflammatory Ly6CloTLR2hi splenic monocytes and
demonstrated that MALwas associated with cytokine production
by the immunosuppressive population after triggering TLR-2
or TLR-9.

The confusing role of MAL could be explained by the
fact that MAL induces both pro-inflammatory and anti-
inflammatory responses depending on the stimulated receptor
and the targeted cell population. For example, Mtb is known
to colonize different cell types and organs depending on the
chronicity of the infection (65), possibly inducing different
levels of inflammation. For instance, Russell’s team demonstrated
that Mtb grows differentially within interstitial macrophages
compared to alveolar macrophages, which aremore permissive to
infection (66). The involvement of MAL in the immune response
toMtb infection in these twomacrophage subtypes could provide
new insights in the versatility of MAL functions.

CAN ADAPTIVE IMMUNE RESPONSES
COMPENSATE A LACK OF INNATE
IMMUNE RESPONSES?

During Staphylococcus aureus infection, the rare human
SNP R121W was identified to impair the interaction of
MAL with MyD88, TLR-2 and TLR-4 (43). The effect of
this SNP, initially predicted deleterious, resulted in increased
compensatory adaptive immune responses and decreased
invasive hematogenous infections in children (Figure 1C). This
demonstrated that MAL not only affects innate immune
responses but also adaptive immunity through not yet
understood mechanisms.

WHAT ARE THE INTERACTIONS BETWEEN
MAL AND PATHOGENS?

To counteract immune response activation triggered by
PAMPs detection by PRRs, several pathogenic bacteria express
virulence factors, such as TIR domain-containing proteins,
to perturb TIR-dependent interactions, which are essential in
the initiation of innate immune responses (67–69). Salcedo’s
team demonstrated that Pseudomonas aeruginosa PA7 has a
TIR domain-containing protein called PumA (Pseudomonas
UBAP1 modulator A) conferring the ability to downmodulate
innate immune responses (70). Indeed, PumA was translocated
into host cells during infection to directly interact with MAL
at the plasma membrane controlling TLR signaling. Similarly,
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Brucella produces a TIR domain-containing protein (TcpB/Btp1)
to selectively target MAL and inhibit NF-κB activation, which
is essential for intracellular Brucella survival and replication
(Figure 1C) (71). Moreover, TcpB/Btp1 was also described
to target CLIP170 enhancing MAL proteasome-mediated
degradation (61). Furthermore, a number of viral proteins were
described to interfere with innate immune signaling, highlighting
the implication of the TLR pathway in antiviral immunity (72).
Among them, the poxvirus protein A46 was identified to inhibit
TLR-4 signaling by interfering physically with MAL (73, 74). It
is of interest to investigate if other pathogens are also able to
physically modulate MAL signaling to determine whether its
deficiency could interfere with the progression of infection. To
answer this question, bioinformatics might be useful to identify
potential effectors that may interact with MAL.

IS MAL ALONE RESPONSIBLE OF ITS
VERSATILITY?

Epistasis is a gene-gene interaction that influences a phenotype.
As MAL interacts with numerous proteins, it is possible
that genetic variations in these partners could modulate its
signaling. Fulgione et al., investigated an epistatic interaction
between MyD88 and MAL during Helicobacter pylori
infection. A cohort study revealed that heterozygosity for
S180L confer increased resistance to infection, which was
found associated with a low level of IL-6, COX-2, TNF-α,
and IL-1β production. Regardless of MAL, polymorphism
in MyD88 alone did not influence the infection. However,
in some combinations with MAL, MyD88 has an effect on
the risk of infection. Together with MAL S180L, certain
polymorphisms in MyD88 confer higher protection providing
evidence of an epistatic interaction occurring between the
two genes (44). The same polymorphic sites have also been
documented to act epistatically against Mtb infection as well
(29). These results showed that epistasis could play a key role in
MAL versatility.

CONCLUSION

Impairment of MAL expression in diseases result in some
controversy. These discrepant findings about the differential
effect of MAL during diseases could simply represent

heterogeneity of association in different populations, which
is well described for many immunogenetic polymorphisms (75).
Frequencies of polymorphisms inMAL can vary among different
races. This difference, along with gene-gene interactions,
environmental and cultural factors, and variations in microbial
strains make understanding the observed differences between
ethnic groups even more complicated. Moreover, the size of
the selected populations in different cohort studies can vary.
This can impact the power of detection of small effects due to a
rare mutation.

More investigations are still needed to characterize the
contribution of MAL in each setting and to reach understanding
of its impact on immune response to infection. In particular,
the severity of the disease and its inflammatory status seem to
have an essential impact. Deeper characterization of the local
environments that are less favorable for the pathogen to survive
may bring some cues.

In the emerging field of host-directed therapies to intracellular
pathogens, TLRs and their adaptor proteins were proposed as
putative targets for the treatment of inflammatory disorders and
to overcome microbial resistance (76). For example, Gefitinib,
Phycocianin and other peptides were recently studied for their
inhibiting effect on MAL in the context of endotoxic injury,
lung cancers and autoimmune diseases, respectively, showing
promising results (77–80).
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