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Autonomous and remotely operated underwater vehicles allow us to reach places

which have previously been inaccessible and perform complex repair, exploration and

analysis tasks. As their navigation is not infallible, they may cause severe damage to

themselves and their often fragile surroundings, such as flooded caves, coral reefs, or

even accompanying divers in case of a collision. In this study, we used a shallow neural

network, consisting of interlinking PID controllers, and trained by a genetic algorithm,

to control a biologically inspired AUV with a soft and compliant exoskeleton. Such a

compliant structure is a versatile and passive solution which reduces the accelerations

induced by collisions to 56% of the original mean value acting upon the system,

thus, notably reducing the stress on its components and resulting reaction forces on

its surroundings. The segmented structure of this spherical exoskeleton protects the

encased system without limiting the use of cameras, sensors or manipulators.

Keywords: exoskeleton, genetic algorithm, compliant structure, shock absorbability, cave diving

INTRODUCTION

In recent years the use of Autonomous Underwater Vehicles (AUVs) and Remotely Operated
Vehicles (ROVs) has become increasingly popular in marine biology and underwater exploration.
These vehicles enable humans to reach depths and areas which would otherwise be too dangerous
for divers or simply inaccessible (Hudson et al., 2005). Yet especially when having to navigate in
complex or confined spaces, such as flooded caves, shipwrecks or coral reefs, conventional ROVs
still show significant practical limitations. Most ROVs are trivially underactuated and therefore
incapable of precisely maneuvering under such circumstances in the first place. The need for a cable
connecting to a control station further reduces an ROVs ability to freely move in confined spaces.
AUVs are free of this restriction, however, due to their limited on-board signal processing and
navigation, they are still often unfit for the interaction with fragile surroundings or are themselves
prone to take damage from unintentional collisions (Hudson et al., 2005; Hernández-Alvarado
et al., 2016). Especially in fragile confined spaces such as underwater caves, a rigid object colliding
with the environment can cause the release of debris or even rocks.

So far, these limitations were addressed using computationally, expensive technical solutions.
Typical implementations include adding a multitude of sensors in order to capture the state of the
system more accurately when planning its trajectory and additionally carrying out local behavior
based strategies (Warren, 1990; Estes et al., 1996; Valavanis et al., 1997; Chyba et al., 2009). However,
any active technical systems can fail, and, in these cases, a passive structure or mechanism should
prevent severe consequences to the system and especially its environment. As a result, there is an
increasing need for a fail-safe, computationally and economically inexpensive solution to allow safe
maneuverability of underwater vehicles in fragile and confined environments.
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Biological Inspiration
In evolutionary terms there are two possible concepts to respond
tomechanical stress: either increase the rigidity of your protective
layer, e.g., an exoskeleton or shell, to prevent any deformation,
or tolerate certain levels of deformation to minimize the risk
of lasting damage (Vincent and Wegst, 2004; Dirks and Taylor,
2012; Wegst et al., 2015).

Especially in unicellular organisms such as ciliates, bacteria
or algae, the “tolerate” principle is dominant (King and Beams,
1941; Stocker, 2011; Persat et al., 2015; Sumpio, 2017). These
organisms are only separated from their environment by a single
membrane or mostly unsclerotised cell walls. Most of these
small organisms are also unable to avoid collisions actively;
however, due to their small mass and since their “skeleton” is
mostly ductile and flexible, they remain unharmed (Persat et al.,
2015). The underlying idea of compliance instead of rigidity is
applied in soft robotics and modern prosthetics (Trivedi et al.,
2008; Belter et al., 2013; Coyle et al., 2018). For underwater
vehicles and diving equipment compliance has been used for
different actuation strategies (Arienti et al., 2013; Kim et al.,
2013; Cianchetti et al., 2015; Laschi et al., 2016), however not
yet for structural-skeletal concepts to enhance existing systems.
A great advantage of this passively compliant mechanism is its
versatility in possible shapes, allowing virtually any system to be
equipped with these segmented structures. Here, we show how
such a soft and compliant exoskeleton can improve the longevity
of an underwater vehicle and reduce the stress, acting upon the
system and its environment, in case of a collision.

An additional challenge, which a truly bio-inspired robust
system faces, is the ability to compensate for a changing
environment, varying carried load, or potential partial system
failure. The growing interest in the application of AUVs for
exploratory, survey, and economic purposes has led to the
development of numerous control strategies, attempting to
improve the robustness of such systems to time-variable ocean
currents or waves (Elhaki and Shojaei, 2018; Zhong et al., 2018;
Shojaei, 2019; Wang et al., 2019; Xia et al., 2019). Recently,
the use of neural networks has become increasingly wide-
spread in such control applications to account for changing
weight distributions of moving manipulators and otherwise
unmodeled hydrodynamics (Hernández-Alvarado et al., 2016;
Elhaki and Shojaei, 2018; Shojaei, 2019). During the last
century, extensive work in the field of biologically inspired
adaptive control models has led to a set of principles that
enable computation or decision making procedures which are
otherwise impractical for traditional mathematical approaches
(Lin and Liu, 2010; Hernández-Alvarado et al., 2016; Meena
and Devanshu, 2017). Depending on the task of the system, the
feedback-based motor controller needs to be adjusted, to work
irrespectively of the attached sensory equipment and additional
manipulators. To allow a robust, autonomous control of our
AUV, we used a genetic algorithm as a means of tuning a
system of interlinking PID controllers as a simple three-layered
neural network. As the number of weight parameters in our
approach is comparably limited, we attempted to use this directed
genetic algorithm as a biologically plausible learning strategy,

as opposed to backpropagation methods, which are usually
employed in more complex network architectures (Riedmiller
and Braun, 1993; Hernández-Alvarado et al., 2016). Using a
decaying step-size within a genetic algorithm leads to a rapid
convergence in its performance over a comparably small number
of generations.

To provide a frame of reference for a successfully auto-tuned
system, we compared the performance of this approach to the
popular heuristic Ziegler-Nichols method for PID tuning (Ho,
1991; Valério and da Costa, 2006). As a proof of concept, we
quantified the stabilization performance of the genetic tuning
algorithm for the pitch and roll components of the system.
Due to the symmetrical shape and weight distribution of our
prototype, its behavior is known to be sufficiently predictable to
enable an approximated tuning success when using the classic
Ziegler-Nichols method (Ho, 1991). In the following sections, we
briefly explain the design choices of our newly developed SAUV,
outline the implementation and performance of the employed
genetic PID tuning algorithm, and quantify the effectiveness of
the biologically inspired soft and compliant exoskeleton.

MATERIALS AND METHODS

To demonstrate the effect of the compliant exoskeleton
principle, derived from unicellular organisms, on a larger scale,
a fully functional prototype was built. The resulting ability to
absorb kinetic energy was experimentally evaluated using this
prototype. To be equally agile in six degrees of freedom, we
designed a spherical system with six bidirectional thrusters.
This almost holonomic design also eliminates the need for
a preferable direction of movement as its drag coefficient
remains constant, regardless of the system’s orientation
(Turton and Levenspiel, 1986).

The AUV
The AUV has a total of six NTM Prop Drive 1000 KV brushless
motors (by HobbyKing, Hong Kong) which are each connected
to a Turnigy MultiStar 30 ampere electronic speed controller
(by HobbyKing, Hong Kong). These ESCs were chosen for their
ability to reverse the direction of the brushless motors, using
the OneShot125 3D protocol. This principle allows generating
thrust in either direction when required, especially in the case of
rapid descent or aggressive orientation correction. Four motors
are positioned in equal distance to each other and the center of
mass, facing upwards. To cancel out the angular momentum,
neighboring motors spin in opposite directions, as indicated in
the control loop diagram, which is explained in detail in Figure 3.
A further two motors are positioned facing forwards on either
side of the system. These motors are required to move the
system forwards or backwards without adjusting the pitch and
to improve upon the system’s ability to turn on the spot. CAD
renderings of the complete system are shown in Figure 1.

Two ultrasonic distance measuring modules were installed,
one in the front, facing forwards, and one in the lower center of
the system, facing downwards. These sensors provide the system
with readings necessary for primitive obstacle avoidance and,
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FIGURE 1 | Renderings of constructed SAUV: Soft Autonomous Underwater Vehicle with the compliant exoskeleton (blue, transparent) fitted around it. (A) front view,

(B) top view, (C) isometric view. Up to four cameras may be mounted in the lower section of the SAUV. The system is connected to a ground station via a water proof

CAT6 connector during the conducted trials to visualize current sensor readings and start the control protocol.

if desired, to keep a constant relative position to the floor. In
addition, an altimeter (MS5803 _ 14BA by Sparkfun, Boulder,
Colorado, United States) is located in the back of the system to
monitor the actual depth relative to the water level by measuring
the current water pressure. Two 11.3V lithium polymer batteries,
connected in parallel, are located in a water-sealed container
(HPL806 by iSi Deutschland GmbH, Solingen, Germany) in the
lower section of the AUV. All other electronic components are
contained in a secondary container of the same type in the
upper section.

The entire system, at its current stage, is controlled by
a Raspberry Pi 3 Model B (by Raspberry Pi Foundation,
Cambridge, United Kingdom, Debian release V9.2) which is used
to read all sensor input and send motor output commands using
i²c protocol. For ease of handling, in all experiments conducted
underwater, the Raspberry Pi was placed outside the towing
tank and connected via a data transmission cable. During the
experiments, however, there was no interaction with any of the
control components.

Genetic Algorithm and Preliminary Trials
The stabilization and position tracking are achieved through
a shallow neural network consisting of 4 interlinking PID
controllers which were tuned through a simple genetic algorithm
following to a (1, 5)20 evolution strategy (Rechenberg, 1989,
2000) (Figure 2). These 4 PID controllers are responsible for
correcting and stabilizing the systems (1) pitch & roll, (2)
yaw, (3) depth, and (4) frontal distance to an obstacle or
object of interest. Due to the spherical shape of the system,
the weights of the pitch and roll components are shared and
thus tuned simultaneously. In general, our tuning approach is
executed for one control segment at a time. In this genetic
tuning algorithm an “individual,” is represented by a set of
corresponding weights for each PID controller within the control
loop, and an associated fitness, based on the resulting position
tracking performance. The strategy itself can be divided into
four distinctive steps: (i) Reproduction. Five copies of the fittest
offspring of the previous generation are generated. (ii)Mutation.

FIGURE 2 | Employed (1, 5)20 Evolutionary strategy, depicted using symbols

by Rechenberg (Rechenberg, 1989, 2000). (i) A single set of variables is

duplicated 5 times to produce a new generation. (ii) Each offspring is mutated

and (iii) its fitness is computed based on the MSE (Equation 3.2) of the

position tracking performance. (iv) From this population the offspring with the

lowest MSE is selected and used as the parent of the next generation. This

process is repeated over 20 generations at which point the best performing

set of the last generation is determined and the tuning process ends.

Each new offspring is randomly mutated, following Equation
3.1. A randomly generated value −1 ≤ M ≤ 1 divided by
the number of generations and multiplied by the range specific
to the component (Rp = 100, Ri = 10,Rd = 10) is added
to the previous weight wjgen−1 of the set, respectively. (iii)

Evaluation. After generating these sets, each is applied to the
network of controllers and the system, and the fitness of the
set is computed over an interval of 5 s in terms of the resulting
Mean Squared Error (MSE) in the position or angular tracking
performance Equation 3.2. The controller error, ectrl, used in
this function corresponds to the currently tuned controller, e.g.,
epitch+ eroll, when pitch and roll weights are tuned. (iv) Selection.
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FIGURE 3 | Control diagram of the developed system, consisting of 4 interlinking PID controllers, to allow for accurate position tracking in pitch & roll (PIDpr ), yaw

(PIDy ), depth (PIDd ) and distance to an obstacle or object of interest in front of the SAUV (PIDf ). At the beginning of each increment of the control loop the current

state of the system in terms of the vector s(t) and the desired, or reference, state r(t) is determined. The reference state can either be the result of direct user input via a

gamepad, a pre-programmed route to follow, or a state to maintain. The deviation from the desired state yields the current error of the system e(t), consisting of the

respective values for each controller to correct for. The responses are then mapped to each motor according to the motors’ rotation direction (lower left) by

converting the summed outputs of the PID block xi into pulse width modulated signals for each ESC denoted as yi . (lower right) Each PID controller consists of three

components: a proportional Pctrl , an integral Ictrl , and a derivative Dctrl component. Their respective weights wp, wi, wd are tuned by a genetic algorithm, depicted in

Figure 2.

The individual containing the set of values resulting in the lowest
MSE is selected as the fittest offspring and becomes the parent
of the successor generation. The process is then repeated over 20
generations in total. As this selection method is purely based on
the system’s accelerometer, gyroscope, ultrasonic and altimeter
measurements, it does not require manual tracking or user input
to execute the tuning process.

wjgen
= wjgen−1 +

M · Rj

gen
(3.1)

MSE (ectrl) =

∑n
i= 0 (ectrl)

2

n
(3.2)

To demonstrate the effectiveness of the genetic algorithm, a set
of preliminary trials were conducted in a custom-built 60 × 60
× 80 cm (width × length × height) aquarium. This setup was
chosen to test the algorithm, as in case of unstable behavior, the
system could be easily recovered. In front of the aquarium, at
a distance of 52 cm between the lens and the front-facing wall
of the aquarium, a GoPro Hero 5 Black (by GoPro Inc., San
Mateo, United States) on a tripodwas positioned in portrait mode
(vertically oriented) to record the prototype system within the
aquarium (1,920 × 1,080 px at 59,94 fps). To compensate for
the lens distortion, all footage was recorded with the integrated
field of view set to linear. For later visual tracking of the
system within the aquarium, a set of colored 4 × 4 Lego bricks
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were attached to the top of the horizontally facing tubes o
the prototype.

The system was calibrated outside of the water on a level
surface before being lowered into the aquarium. Afterwards,
the training program loop was executed, and all sensor data
and the fittest PID weights of each generation were saved
directly onto the Raspberry Pi. The desired state of the system,
in this case, was a constant vertical position, 30 cm above
the floor of the aquarium, and a level orientation, without
changes in the pitch or roll axis. This mode is referred to
as “Hold Position.” After 20 successfully executed generations
over the course of 8min and 20 s, the program was terminated
automatically, and the system was lifted out of the water
and onto the level surface again. For the next iteration,
the system was recalibrated, its batteries recharged and it
began with a newly randomized set of input weights. This
process was repeated until five iterations had been executed
without interference.

For comparison, the heuristic Ziegler-Nichols PID Tuning
method (Ziegler and Nichols, 1942) was used as a reference
point to which the performance of the genetic algorithm was
compared for the pitch and roll components of the controller
network. To this end, the respective weights of the pitch and
roll nodes were initially set to wprd = wpri = 0 with the
exception of the proportional gain being set to wprp = 1. This
value was continuously increased until the system reached a
stable oscillation, denoted by the constant Ku , the ultimate gain.

FIGURE 4 | Depicted is a cell shaded rendering of the experimental setup for

the conducted “wet” impact trials. The SAUV is lowered into the towing tank at

position (A) and records all IMU data while accelerating toward position (B)

where it collides with the towing tank wall. After registering the impact, the

SAUV stops its motors and backs away from the wall before ascending to the

water surface for the following trial. These trials are recorded by two cameras;

camera 1—GoPro Hero 3+ silver, located 200mm above the water level,

camera 2—GoPro Hero 5 black, located underwater at the same depth as

the SAUV.

Afterwards, the individual gains for the controller are calculated
as described in the original publication (Ziegler and Nichols,
1942) by determining Tu, the period of the oscillation at Ku from
the recorded video.

wprp = 0.6 · Ku (3.3)

wpri = Ti · wprp =
Tu

2
· 0.6 · Ku (3.4)

wprd = Td · wprp =
Tu

8
· 0.6 · Ku (3.5)

To compare the position-tracking performance of the two
tuning methods, the system was recalibrated, lowered into
the aquarium, and the “Hold position” script is executed. The
program loop was then initiated, and after 10 s the recording was
started. This time is required, as the system propels itself upwards
from the aquarium floor and settles at the desired position. From
this point on, the video was recorded over a duration of 10 s,
resulting in 599 images for each run. Furthermore, a second
condition was tested, in which the system was to ascend and
descend rapidly, named “Alter Position.” Under this condition
the desired vertical position was switched every 5 s between
30 and 45 cm above the aquarium floor to provoke unstable
behavior over a duration of 60 s, resulting in 3,594 images. The
performance of all evolutionary iterations after 20 generations
and the Ziegler-Nichols method were tested in 5 repetitions in
“Hold Position” mode. After showing that all iterations converged
regarding their resulting position tracking performance (see
Figure 6), only iteration one and the Ziegler-Nichols method
were then compared in 5 repetitions in “Alter Position” mode for
the second half of the preliminary trials.

Exoskeleton
The model of the soft and compliant exoskeleton consists
of a total of 10 interchangeable parts, which, when mounted
onto the AUV, lead to an overall spherical shape. These parts
were manufactured with a dual extruder 3D printer (Dual
Extruder Metal Frame BIBO 2, Bibo Automatic Equipment
Co., Ltd, Shaoxing, China) using a thermoplastic polyurethane
filament (Flexible TPU Transparent, SainSmart Ltd., Lenexa,
USA). Additionally, the thruster ducts of the AUVwere elongated
to provide connecting points for the exoskeleton whereas the
elongated sections were created from the same material as the
exoskeleton. These elongated sections ensure an equally elastic
and compliant behavior of the system regardless of the direction
of impact. All other structural components were 3D printed
using a ZoneStar Prusa i3 filament printer (ZoneStar Innovation
Technology Co., Ltd, Shenzhen, China) with clear PLA filament
(by filamentworld, Neu-Ulm).

The radius of the resulting sphere of constant width was
chosen to allow at least 30mm of deformation in any direction
before a rigid component would come into contact with its
surroundings. The only exceptions to this rule are the mounting
points of the laterally placed thruster ducts, in case of a direct 90◦

impact from either side. As the area, for which this is the case,
is negligibly small, compared to the overall size of the system, a
smaller circumference of the exoskeleton was favored.
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Evaluation of Exoskeleton Performance
Before conducting velocity and impact trials, the system’s
motor controller was tuned, using the above described genetic
algorithm, with the exoskeleton attached and not retrained for
trials without it, as the exoskeleton’s effect on the systems
total mass is negligible. Furthermore, due to its symmetry, the
exoskeleton does not affect the system’s center of mass. The total
weight of the system, excluding the exoskeleton, is 2,279 g, while
the exoskeleton weighs 283 g.

In order to quantify the dampening effect of the soft and
compliant exoskeleton, impact trials were conducted in a 1.2
× 2.2 m (depth x width) section of a towing tank. The
movement of the AUV was recorded using two synchronized
cameras (top, side, 1,920 × 1,080 pixels, 59,94 fps, a shutter
speed of 1/120 s, GoPro Hero 5 black and Hero 3+ black,
San Mateo, United States). The experimental setup is shown
in Figure 4.

The recorded video files were imported into Blender (release
2.79b, GNU General Public License, blender foundation) and
analyzed using its internal pattern motion tracking. The resulting
trajectories of multiple markers with known distances, to
compensate for lens distortion when computing the absolute
velocity, were then exported as pixel coordinates using a custom
plugin (Blender Motion Tracking Export Plugin, MIT license,
www.github.com/BiYonic/blenderMotionExport). An automatic
analysis tool for this data was then written in Python 3.6 to
compute vmax and tvmax , as well as to plot the velocity profile of
each run.

To determine the maximum velocity, the AUVs motors were
set to accelerate to 70% of their maximum velocity to determine
vmax and the required time tvmax to reach it. As the voltage of
the two LiPo batteries affects the maximum velocity, they were
fully recharged in between impact trials with and without the
attached exoskeleton. At the beginning of each trial, the AUV
was lowered into the towing tank at a distance of approximately
1.2m from a wall of the tank, facing it directly. The AUV
automatically positioned itself at a depth of 0.5m below the
water level and corrected its drift and orientation steadily for
5 s, settling at a steady position before beginning to accelerate
toward the wall in front of it. The AUV then set its horizontally
oriented thrusters to 70% of their maximum output to allow for
yaw corrections while driving forwards and began logging the
acceleration and angular velocity of the system from its inertial
measurement unit (IMU) at a refresh rate of 59 Hz ± 1.3.
The thrust was kept constant until an impact was registered
by the IMU which prompted the horizontal motors to stop
and then reverse their direction to move away from the wall.
After moving backwards for 1 s, the system was set to hold its
current position for 5 s before stopping the recording of IMU
data and ascending to the water surface to be redeployed for the
next trial.

To derive the true net acceleration and to compute the
resulting velocity from the recorded IMU data, gravity and
orientation compensation was performed according to Nistler
and Selekwa (2011) and implemented in python 3.6. This way
the effects of the tilt in the pitch, roll, and yaw axes on the
acceleration in cartesian space were accounted for and the

position relative to the starting point of the system, as well as
its velocity, could be computed accurately. Both inertial and
gyroscope measurements are required for this correction. The
recorded duration of a single trial does not exceed 20 s; thus,
no additional filters were applied to compensate for possible
sensor drift, as it is negligible. The compared magnitude of
the net acceleration, as shown in Equation 3.7 is dependent

on the following components: −̈→r xyz , the corrected acceleration

vector, −̈→r XYZ , the input acceleration vector including gravity, as

recorded by the inertial measurement unit, −̇→r XYZ , the computed
velocity vector, −→r XYZ , the computed relative position vector,
and J, the X- Y- Z rotation matrix, in Equation 3.6. For further
details, refer to the original publication by (Nistler and Selekwa,
2011).

−̈→r xyz = J−̈→r XYZ + 2J̇−̇→r XYZ + J̈−→r XYZ (3.6)

∣

∣

∣

−̈→r xyz

∣

∣

∣
=

√

−̈→r
2

x +
−̈→r

2

y +
−̈→r

2

z (3.7)

To quantify the effect of the soft and compliant exoskeleton
itself, also “dry” impact trials were conducted with the SAUV
as a simple gravity pendulum and a rigid wall, depicted in
Figure 5. The initial value problem-setup was taken with a
length of the pendulum of l = 75 cm, the SAUV itself was

FIGURE 5 | “dry” Experimental setup of the gravity pendulum. The SAUV is

assumed to be a point mass m, initially at rest prior to release (ϕ̇0 = 0) at an

angle of ϕ0 = 15◦ ±0.2◦. The maximum angle ϕ1 after the impact with a rigid

wall is measured to compute the coefficient of restitution of CR.

Frontiers in Neurorobotics | www.frontiersin.org 6 February 2020 | Volume 14 | Article 8

www.github.com/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Plum et al. SAUV

assumed to be a point mass and the initial conditions ϕ0 =

15 ± 0.2 and ϕ̇0 = 0. The impact trials were conducted
with and without the attached exoskeleton parts with n = 5,
respectively, to record the resulting maximum angle after a
collision, denoted as ϕ1. The true net acceleration was also plotted
according to Equations (3.6) and (3.7) with 20 repetitions in
each condition.

Statistical Evaluation
During the described preliminary trials, the Shapiro-Wilk
test was used to test for normal distribution. Whenever
more than two samples were tested for homogeneity of
variances, the Levene’s test was performed. Otherwise, a
two-sample F-Test was used. For multi-sample comparison
of the mean values, the Kruskal–Wallis rank-sum test was
used. If significance occurred either the Dunn’s test or the
Wilcoxon rank-sum test was used post-hoc to identify the
responsible subgroups. Whenever normally distributed samples
with homogeneity of variances were found between two
samples, the Welch Two Sample t-test was used to test
their mean.

To compare the computed net acceleration and velocities
in trials with and without the mounted soft and compliant
exoskeleton, the following cascade of tests was performed; The
Shapiro–Wilk test was used to test for normal distribution in each
data set, followed by the Barnett test to test for homogeneity of
variances. Since in all tests, both criteria were met, a two-sample
student t-test was performed to compare the mean between the
two samples. For every velocity and impact test, the sample
size was n ≥ 10 with a significance level of α = 5%. All

statistical evaluations were performed in python 3.6, using the
library scipy.stats.

RESULTS

Genetic Algorithm Performance in
Preliminary Trials
Over the course of 20 generations in 5 separate iterations, a
total number of 500 individual value sets have been applied and
tested in “Hold Position” mode during the genetic algorithm
tuning phase. The fitness of each individual was determined by its
resulting MSE, computed during the runtime of the tuning phase
by directly comparing the filtered sensor deviation of the inertial
measurement unit within each generation. By comparing the
MSE after 20 generations of all iterations in “Hold Position” mode
to one another, convergence could be shown for the performance
of the genetic algorithm tuning (Kruskal–Wallis = 0.81231, p =

0.9368), (Figures 6, 7).
During our preliminary trials, for comparison, the system

was tuned using the classic Ziegler-Nichols method. Steady
oscillation of the system was achieved when the proportional
gain of the pitch and roll segment wprp reached Ku = 125.
The oscillation period at that point was determined by an
analysis of the footage obtained executing “Hold Position.” Tu
is therefore equal to 0.825. The approximated deviation (t),
in terms of the vertical distance between the rear and front
tracking points of the system, can be described by d (t) =

sin( 2π ·t
Tu

) and a comparison to the recorded video data is
shown in Figure 7A. After calculating wprp , wpri , and wprd , the
stabilization performance in “Hold Position” mode led to anMSE

FIGURE 6 | The MSE(epitch) of the best performing parameter sets in the pitch component over 20 generations is shown, recorded during the genetic algorithm tuning

process. The light blue area indicates the range of resulting position tracking performances over the 5 repeated iterations and the dark blue line the mean performance

in each generation.
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of 0.15463 ± 0.0772. An example of this stabilization method
and the performance achieved through the genetic algorithm are
shown in Figure 7B.

The performance achieved with the use of the genetic
algorithm and the Ziegler–Nichols method was significantly
different during “Hold Position” (Kruskal Wallis = 12.308,
p = 0.00903, with all Dunn p < 0.05). While the MSE
over all iterations after 20 generations was between 0.0188
± 0.0108 for iteration 3, and 0.0316 ± 0.0225 for iteration
5, the MSE for the Ziegler-Nichols Method was 0.15463 ±

0.0772. The MSE for all compared performances, as well as
the maximum absolute error eM are shown in Figure 7C

and Table 1.
Our experiments in “Alter Position” mode, with rapid

vertical position changes, however, showed no significant
difference in the MSE of the pitch and roll stabilization
when comparing the genetic tuning method to the Ziegler-
Nichols method (Kruskal-Wallis = 3.1527, p = 0.0758). A
comparison of the MSE is shown in Figure 7D. There was
also no significant difference between the MSE of iteration 1
in “Hold Position” mode and “Alter Position” mode (Welch
Two Sample t-test = −2.3097, p = 0.0537), or the MSE of
the Ziegler-Nichols Method between “Hold Position” mode and
“Alter Position” mode (Welch Two Sample t-test = 1.5641,
p= 0.1685).

Velocity Profiles
Over a total of 11 initial trials vmax was measured to be
0.168 ± 0.072m/s and the required time to accelerate to
that velocity tvmax was 3.6 ± 0.68 s. A representative velocity
profile is depicted in Figure 8. These results show that when
requiring the velocity of the system to be equal to vmax prior
to the impact, the distance to the wall must be ≥ 0.35m.
As the distance to the wall within the impact trials is ≈

1.2 m the AUV was able to reach the desired velocity in
every trial.

The computed average velocity from the IMU data for both
setups, with and without the mounted exoskeleton, 2 s before the

TABLE 1 | Experimental results of the pitch and roll controller tuning, quantifying

the tracking error ectrl of the system in hold position and alter position mode.

Mode Hold position Alter position

GA ZN GA ZN

MSE

eM

0.025 0.155 0.045 0.091

0.575 0.971 0.741 0.977

The MSE (Mean Squared Error) and eM (maximum absolute error) are shown.GA (Genetic

Algorithm) and ZN (Ziegler-Nichols) refer to the employed tuning method.

A C

B D

FIGURE 7 | Summarizing the findings of the preliminary trials to evaluate the effectiveness of the genetic algorithm for tuning the nodes related to pitch control. (A)

The deviation between the front and rear tracking points in centimeters, located on the rims of the horizontal thruster ducts. The stable oscillation achieved during the

tuning process of the Ziegler-Nichols algorithm can be approximated by a sinusoidal wave with a period of Tu = 0.825. (B) Example stabilization in pitch axis over 10 s

in “Hold Position” mode for the Ziegler-Nichols Tuned nodes compared to the performance of the genetic algorithm after 20 generations. (C) Resulting Mean Square

Error in stabilization performance in “Hold Position” mode for all 5 iterations after 20 generations each compared to the performance of the Ziegler-Nichols method.

(D) Resulting Mean Square Error in stabilization performance in “Alter Position” mode, during rapid vertical position changes, for the genetic algorithm from iteration 1

after 20 generations compared to the performance of the Ziegler-Nichols method.
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FIGURE 8 | Example velocity profile: the measured absolute velocity of the

system is indicated by the gray graph and for the black graph the same data

was used, yet a Butterworth frequency filter was applied to account for the

noise in the tracking data. The red dot indicates the point in time when the

ROV began accelerating and the blue dot marks the instant vmax was reached.

The interval between these points is equivalent to 1tvmax .

registered impact indicates that this is the case. Figure 9 shows
the velocities measured during this time. The velocity 2 s prior
to the impact without the exoskeleton was 0.167 ± 0.012m/s
and with the exoskeleton 0.160 ± 0.0049m/s. Both samples
are normally distributed and have homogeneous variances.
The student t-test returned a p-value of 0.118, indicating no
significant difference in the mean velocity with and without the
mounted exoskeleton.

Impact Trials
In total, 11 “wet” trials with and without the soft exoskeleton
were evaluated. Representative acceleration profiles of the “wet”
trials are shown in Figure 10. These plots were generated to show
the magnitude of the net acceleration, according to Equation
3.7, 1 s before and after the registered impact, over a total
span of 2 s. The recorded peak net acceleration in the trials
without the soft exoskeleton was 0.616 ± 0.141 m/s2 and
in the trials with the soft exoskeleton 0.347 ± 0.05 m/s2 as
shown in Figure 9. Again, both samples are normally distributed
and have homogeneous variances. A students t-test shows a
significantly lower impact acceleration for the trials with the
exoskeleton (p < 0.001).

The “dry” trials deliver a maximum angle after a collision of
ϕ1 = 6.63 ± 0.75 for the soft trials and ϕ1 = 4.93 ± 0.38
for the rigid ones, which lead to a coefficient of restitution of
CR = 0.432 ± 0.06 for the soft and CR = 0.329 ± 0.02 for
the rigid trials. Representative acceleration profiles are shown in
Figure 11. The recorded peak net acceleration in the “dry” trials
without the soft exoskeleton was 4.1 ±1.09m/s2 and in the trials
with the soft exoskeleton 2.87 ±0.56m/s2 as shown in Figure 12.
Because the soft exoskeleton does not substantially affect themass

of the AUV, the acceleration is proportional to the acting force,
leading to a factor of nearly 1.5.

DISCUSSION

Inspired by the passive and compliant biological concept, we here
present a soft and compliant exoskeleton, fitted to our newly
developed SAUV (Soft Autonomous Underwater Vehicle). The
SAUVs position tracking is accomplished by a shallow artificial
neural network consisting of interlinking PID controllers which
are tuned through a genetic algorithm.

Performance of the Genetic Algorithm to
Control Motor Outputs
Our results show that using our SAUV as a training platform,
application of the Ziegler–Nichols method resulted in an
insufficient stabilization compared to the performance of the
genetic algorithm. The Ziegler-Nichols PID tuning method is
widely used in the controlling of plants, and over the course
of the second half of the twentieth century various adjusted
versions of it have been published for specific use cases (Ho,
1991; Valério and da Costa, 2006). The classic method used in
this research has shown that its aggressive correction due to its
high proportional gain leads to an overcompensation which is in
itself not consistent yet yields an overall higher Mean Squared
Error (MSE).

Other versions of this tuning method take this form of
overshoot into account and provide a more appropriate response
which can be taken into consideration if revisited in a future
study (Ho, 1991). Nevertheless, the fact that such manual tuning
methods take a considerable amount of time to perform with
uncertain results makes it overall impractical for further use
in this scenario. The process of determining Ku at a stable
oscillation with adequately small increments as well as the
evaluation required to compute Tu took a total of 6 h. Applying
the genetic algorithm, following a (1, 5)20 evolutionary strategy
provided significantly better results within only 8:20min. Even if
a reliable outcome, on par with the genetic algorithm method,
could be expected from a heuristically weighted method, the
sheer amount of time going into the tuning process would not
justify its use. Especially when considering that this method
is only applicable in an offline scenario compared to recently
published online applications for PID tuning using neural
networks (Hernández-Alvarado et al., 2016).

As the learning process itself was performed exclusively
during “Hold Position” it is apprehensible that the performance
of this method was less accurate under rapidly changing
conditions in “Alter Position” mode, which aims at producing
large disturbances. To a certain extent, this behavior can be
interpreted as overfitting of the tuning parameters. The purposely
chosen small size of the aquarium might also be the limiting
factor at this point, as after a short period of time the creation
of vortices within the water could be observed when the system
was at work. Because the duration of a single repetition for
“Alter Position” mode was six times longer than the duration
of a “Hold Position” mode repetition, it would have to be
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FIGURE 9 | “Wet” Impact trials (conducted underwater in a towing tank). velocity vmax (Left): The boxplots show the computed velocity in m/s of the system 2 s prior

to the registered impact. Rigid indicates the data produced by ROV without the mounted soft exoskeleton and Soft the data produced with the soft exoskeleton. The

computed velocities are not significantly different, indicating there is no effect of the soft exoskeleton on the maximum velocity. Peak net acceleration amax (Right): The

peak acceleration amax measured during all impact trials with (Soft) and without (Rigid) the mounted soft exoskeleton. A significant difference between the setup with

and without the mounted soft exoskeleton is indicated by *** p returned from a two sample students t-test.

A B

FIGURE 10 | Magnitude of the net acceleration during underwater trials: the black graphs show the magnitude of the net acceleration, corrected for orientation and

gravity, of a representative trial, excluding gravity, in m/s during an impact trial without the soft exoskeleton (A) and with the soft exoskeleton (B). The data is plotted

for 1 s before and after the impact, meaning the onset of the impact was registered by the system at 1 s on the x-axes. The red dots indicate the peak acceleration

measured during this time. The constant non-zero magnitude is caused by motor corrections and minor sensor noise.

further investigated whether a decrease in performance could
be observed over time which would hint at a negative influence
of the testing conditions. It is important to note that the
converging performance was not necessarily due to similar
combinations of weights but rather multiple local minima of
the MSE which all led to acceptable behavior. The simple
genetic algorithm, employing a “winner-takes-all” approach
paired with fitness function determined by a single dimension of
performance, likely needs to include further parameters, training

generations, or greater variability in the training conditions
to approach a more globally optimal behavior (Lin and Liu,
2010; Jayachitra and Vinodha, 2014; Meena and Devanshu,
2017).

In the future, to improve upon the system’s position tracking
performance under more complex conditions, control strategies
explored in recent publications are to be considered. Especially
the current lack of a feed-forward model to control the SAUV,
rather than a purely feedback-based control approach needs to
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A B

FIGURE 11 | Magnitude of the net acceleration during pendulum trials: the black graphs show the magnitude of the net acceleration, corrected for orientation and

gravity, of a representative trial, excluding gravity, in m/s during an impact trial without the soft exoskeleton (A) and with the soft exoskeleton (B). The data is plotted for

the entire duration of the trial, with the release of the system occurring after 3 s and recording until it comes to a rest. The red dots indicate the measured

peak acceleration.

FIGURE 12 | “Dry” Impact trials (gravity pendulum). Comparison Boxplot Peak net acceleration (Left): The peak acceleration amax measured during all impact trials

with (Soft) and without (Rigid) the mounted soft exoskeleton. ϕ1max (Right): The boxplots show the measured maximum assumed angle of the pendulum after the

impact of the system. A significant difference between the setup with and without the mounted soft exoskeleton is indicated by ** for a p-value < 0.01 and *** for a

p-value < 0.001 returned from a two sample students t-test.

be addressed (Elhaki and Shojaei, 2018; Shojaei, 2019;Wang et al.,
2019) as well the potential issue of actuator saturation by utilizing
anti-windup compensators (Galeani et al., 2009; Cui et al., 2016;
Xia et al., 2019).

In general, the preliminary trials have confirmed the
suitability of a biologically plausible genetic algorithm to
automatically tune specific sections or the entirety of the
controller architecture of such an underwater vehicle. The
shallow network structure consisting of interlinking PID
controllers can be effectively tuned after comparably few

generations and performs significantly better than the heuristic
Ziegler-Nichols tuned controller. Major advantages of this
implementation include (a) the ability to retrain the system
quickly when additional equipment is attached, (b) changing
the fitness parameter to include, e.g., the power consumption of
the system to select for energetically efficient control strategies,
and (c) using the previously adapted parameters to fine-tune
the system’s response during use. All of the aforementioned
advantages are to be explored in-depth as the development of the
SAUV continues.
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Performance of the Soft and Compliant
Exoskeleton
The impact trials in this study clearly show that soft exoskeletons
are a viable means to increase the safety and longevity of
underwater vehicles while preserving their performance and
without limiting the use of sensors or the attached cameras’ fields
of view. The conducted experiments show that the biologically
inspired soft and compliant exoskeleton significantly reduces
the net acceleration during an impact without restricting the
AUVs performance in terms of its maximum velocity. A lower
acceleration indicates lower mechanical stress on the system
itself as well as lower reaction forces on its environment.
Secondary peaks in the computed net acceleration, as in
Figure 9, appear whenever there are multiple contact points
with the wall during an impact. These peaks are less dominant
when the soft exoskeleton is attached as its spherical shape
leads to a smaller number of contact points but a larger
overall contact area. The higher coefficient of restitution of
CR = 0.432 ± 0.06 for the soft and compliant exoskeleton
further indicates a greater reversible deformation. The “dry”
trials indicate a reduction in the resulting impact forces
of at least 30% when the exoskeleton is mounted on the
AUV. Furthermore, in the “dry” trials an increase in the
duration of the impact, indicated by the stretched acceleration
curves, allows more time for the system to deform. The
most striking result lies in the “wet” trials, where a mean
reduction of 56% in the occurring peak accelerations can
be demonstrated.

To further analyse the effects of an impact on such a system,
conducting numerical simulations is a fitting approach. Precise
computation of the resulting forces and stresses on the system
cannot be performed from IMU data alone, as parameters such
as stiffness, damping ratios, as well as contact area vary with
the direction and point of impact (Tempelman et al., 2012).
Nevertheless, the peak magnitude of the net acceleration is an
adequate measure of the severity of an impact.

There is a broad spectrum of applications for this soft
exoskeleton. Especially since its use enables divers to safely
interact with almost any existing ROV and AUV of any scale
as they would no longer have to fear the consequences of an
impact by the system. An AUV fitted with a soft exoskeleton
may, for example, accompany divers and provide them with
lighting of their surroundings or objects in focus to ensure the
diver is able to use both of their hands while operating. It is
also feasible to send an AUV alongside divers until they reach
a machine, crevice or archaeological site which is not directly
accessible to the divers. A small AUV with a soft exoskeleton can
enter these areas to collect data or perform other tasks. Using
our constructed SAUV in a flooded mine, we aim to use it for
an automated gathering of omnidirectional video footage for
photogrammetry and ultimately an automated 3D reconstruction
of previously unmapped or inaccessible cave systems.

Another possible application for such an exoskeleton is the
enhancement of scooters and other diving equipment used

to propel divers or keep them at a certain depth. Especially
when more than one person is operating underwater at the
same time, which is a key safety requirement (Buzzacott
et al., 2009), the risk of a collision or interference with
other machinery must be kept to a minimum. The same
principles of the soft exoskeleton may be applied here
which make the overall use of these systems safer. In
conclusion, the application of our proposed soft exoskeletons
results in the following benefits to any underwater vehicle
or appliance:

• greatly improves the ability of ROVs and AUVs to operate in
an unpredictable environment

• allows for safe operation in close contact with human divers
• reduces the risk of damage to the ROV or AUV
• reduces the risk of damage to the fragile

underwater environment
• is a cost-effective means to reduce the need for perfect

obstacle avoidance
• is a cost-effective means to upgrade the operational scope and

safety of existing systems.
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