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The brainstem includes many nuclei and fiber tracts that mediate a wide range of
functions. Data from two parallel approaches to the study of autistic spectrum disorder
(ASD) implicate many brainstem structures. The first approach is to identify the functions
affected in ASD and then trace the neural systems mediating those functions. While not
included as core symptoms, three areas of function are frequently impaired in ASD: (1)
Motor control both of the limbs and body and the control of eye movements; (2) Sensory
information processing in vestibular and auditory systems; (3) Control of affect. There are
critical brainstem nuclei mediating each of those functions. There are many nuclei critical
for eye movement control including the superior colliculus. Vestibular information is first
processed in the four nuclei of the vestibular nuclear complex. Auditory information is
relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple
other brainstem nuclei. Critical structures in affect regulation are the brainstem sources
of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second
approach is the analysis of abnormalities from direct study of ASD brains. The structure
most commonly identified as abnormal in neuropathological studies is the cerebellum. It
is classically a major component of the motor system, critical for coordination. It has also
been implicated in cognitive and language functions, among the core symptoms of ASD.
This structure works very closely with the cerebral cortex; the cortex and the cerebellum
show parallel enlargement over evolution. The cerebellum receives input from cortex via
relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from
the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of
the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem
nuclei including the vestibular nuclear complex and the red nucleus. There are thus
multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and
midbrain, that participate in functions affected in ASD. There is direct evidence that the
cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of
these structures could add to our understanding of the neural basis of ASD.

Keywords: inferior olive, arcuate nucleus of the medulla, pontine nuclei, cerebellum, vestibular nuclear complex,
cochlear nuclear complex
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INTRODUCTION

The goal of this review is to consider a possible role of the
brainstem in autism or autistic spectrum disorder (ASD). The
question of brainstem involvement is complex; the “brainstem”
includes many structures and fiber tracts mediating a wide
range of functions including sensory, motor, and affective. To
develop hypotheses about the possible involvement of brainstem
structures in ASD, we will first consider the implications of data
from two complementary experimental approaches. The first
approach has been to describe the functions are impaired in ASD;
the next step then is to look at the neural systems mediating
those functions, focusing on the brainstem components. The
second approach has been to directly identify brain structures
that affected in ASD brains, the next step from those data is to
consider the afferent and efferent connections of those structures,
again with a focus on brainstem relays. The perspective here is on
the participation of the brainstem in circuitry in the adult brain.
Another, complementary, perspective is discussed extensively by
Dadalko and Travers (2018) who consider the role of brainstem
structures in the development of the brain.

The First Question Is What Is ASD?
ASD is a neurodevelopmental disorder, thought to reflect
abnormal brain development (DiCicco-Bloom et al., 2006;
Geschwind, 2011). Symptoms are not usually apparent at birth,
but emerge by about the age of 2–3 years old (Filipek et al., 1999;
DiCicco-Bloom et al., 2006). There are some studies that argue for
subtle earlier manifestations (Zwaigenbaum et al., 2005, 2013).
ASD is a complicated diagnosis with much individual variability
(this has been discussed by many authors, some examples:
Ciaranello and Ciaranello, 1995; Filipek et al., 1999; DiCicco-
Bloom et al., 2006; Grzadzinski et al., 2013; Zwaigenbaum et al.,
2013; Lai et al., 2014; CDC, 2021). The diagnosis is based on
behavioral analysis and not on genetics or biomarkers (discussion
in Geschwind, 2011). At present, the causes of ASD are not
understood; there is clearly a genetic component, but the genetics
are complex (Folstein and Rutter, 1977a,b; Folstein and Rosen-
Sheidley, 2001; Geschwind, 2011; Huguet et al., 2016). Patients
with known genetic syndromes can meet the criteria for an
ASD diagnosis, these syndromes include Down Syndrome, (DS;
trisomy 21, Hepburn et al., 2008), Fragile X syndrome (FXS;
Hoeft et al., 2011), Timothy Syndrome (Bett et al., 2013),
Tuberous Sclerosis (Smalley, 1998), and Rett syndrome (Percy,
2011). In addition, there are many other genes with mutations
associated with a risk of ASD (Campbell et al., 2007; Geschwind,
2011; Jiang et al., 2013; Pinto et al., 2014; Myers et al., 2020;
Chawner et al., 2021). Data from twin studies suggest that there
are non-genetic in addition to genetic factors determining the
emergence of ASD (Kates et al., 2004). ASD is also associated
with other neurological conditions like seizure disorders (about
39%) and intellectual disability (ID, about 45% Wegiel et al.,
2012). Finally, ASD is a sexually dimorphic disorder, affecting
more males than females (about 4:1, Folstein and Rosen-Sheidley,
2001; Yamasue et al., 2009), raising the possibility of sexually
dimorphic effects in the brain. Thus the ASD population is
medically, behaviorally, and genetically very heterogeneous.

Functions Affected in ASD
The criteria for the diagnosis of autism have changed over the
years. The most recent criteria for Autism Spectrum Disorder are
deficits in two areas (1) Social communication and interaction
across multiple contexts and (2) Restricted and repetitive
behaviors (DSM-5, 2013; see also Lai et al., 2014). However,
there are many additional functional deficits that have been
described in subsets of ASD patients. We will focus on three
aspects of function whose neural substrates include brainstem
nuclei: (1) Motor control both of the limbs and body and of
the eyes. (2) Auditory and vestibular information processing. (3)
Control of affect.

Motor Symptoms in ASD: Limbs and Body
While not a core deficit of ASD, problems with different aspects
of motor control have been reported in many studies. Symptoms
described include abnormal development of motor milestones,
difficulties in postural control and gait, toe-walking, difficulty
in learning to ride a bicycle, poor motor coordination and
“clumsiness,” dystonia or hypotonia, difficulties with motor
learning, rigidity and repetitive and stereotyped motor behaviors
like hand-flapping and rocking, and motor memory (Kohenraz
et al., 1992; Ciaranello and Ciaranello, 1995; Teitelbaum et al.,
1998; Dawson et al., 2000; Ming et al., 2007; Albinali et al.,
2009; Boyd et al., 2012; MacDonald et al., 2012; Marko et al.,
2015; Hannant et al., 2016; Eggleston et al., 2017; Bruchage
et al., 2018; Bell et al., 2019; Neely et al., 2019; Bojanek et al.,
2020). Motor symptoms are prevalent enough that some authors
have proposed that motor deficits should be considered among
the core symptoms of ASD (Mosconi and Sweeney, 2015). The
severity of motor symptoms may correlate with impairments in
cognitive and language domains (Bhat, 2021), suggesting that
they reflect the overall atypical brain development. The wide
range of motor symptoms again reflects the heterogeneity of ASD.

Motor Symptoms in ASD: Control of Eye Movements
There are many reports of eye movement abnormalities in
ASD (reviews in Sweeney et al., 2004; Mosconi and Sweeney,
2015). Deficits have been reported in all types of voluntary
eye movements: saccades, smooth pursuit and maintenance
of fixation, but the exact nature of the deficits varies among
studies. For saccadic eye movements, Rosenhall et al. (1988)
tested saccades to targets and found hypometric saccades and
reduced saccade velocity in ASD subjects. Takarae et al. (2004b)
measured the accuracy of visually guided saccades and found
greater variability in saccadic accuracy in ASD but no effects of
saccade latency or velocity. Zalla et al. (2018) used a complex test
of saccadic eye movement accuracy and found reduced saccadic
gain and reduced peak saccade velocity in ASD. For smooth
pursuit, Takarae et al. (2004a, 2008) found deficits in accurate
tracking of moving targets and found longer latency and more
“catch-up” saccades in ASD subjects. Deficits were also found
in “saccadic adaptation” in a task in which the saccade target
is moved before the target is acquired, a task eliciting learning
in typical subjects (Mosconi et al., 2013). Nowinski et al. (2005)
studied the ability to maintain fixation on visual targets and
found more “intrusive saccades” in a task requiring subjects to
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maintain fixation on a “remembered” (no longer visible) target.
Wegiel et al. (2013) reported poor or no eye contact in ASD
subjects. Overall the data support the hypothesis that control of
eye movements is affected in ASD.

Sensory Processing: Auditory and Vestibular Systems
Sensory processing deficits, specifically of auditory and vestibular
information, are also characteristic of ASD (discussion
and additional references in Baranek et al., 2006; Lane
et al., 2010; Mansour and Kulesza, 2020). While peripheral
hearing loss is not found (Beers et al., 2014), there are
many studies showing auditory dysfunction in children
with ASD (references in Rimland and Edelson, 1995; Lukose
et al., 2013; Kozou et al., 2018; Smith et al., 2019). Lukose
et al. (2013) studied the acoustic stapedial reflex (ASR:
contraction of the stapedius muscle of the middle ear in
response to loud sounds) and found lower thresholds and
longer latencies in ASD subjects. A number of auditory
training schemes have been proposed to improve auditory
processing (Rimland and Edelson, 1995; Russo et al., 2010;
Gopal et al., 2020).

Several observations also suggest differences in processing
vestibular stimuli (Kern et al., 2007). Some ASD behaviors like
rocking (Dawson et al., 2000; Albinali et al., 2009) would increase
vestibular input. Vestibular input is also critical for several
motor functions including postural stability, another function
affected in ASD (Molloy et al., 2003; Bojanek et al., 2020).
Vestibular therapy is often proposed for children with ASD
(Smoot Reinert et al., 2015).

Regulation of Affect
Atypical regulation of affect and attention are well-documented
ASD symptoms (Harris et al., 1999; Konstantareas and Stewart,
2006; Mazefsky et al., 2013; Mazefsky and White, 2014).

We will return to a consideration of the circuitry underlying
these functions after looking at what is known about changes in
the brain in ASD.

The Brain in ASD
Many hypotheses about the neural basis of ASD postulate
that the diverse symptoms reflect dysfunction in multiple
(but, importantly, not all) brain regions and/or systems.
Such dysfunction could have multiple manifestations: (1)
Macroscopic structural differences in specific brain regions,
including differences in axon tracts (numbers or diameters
of axons). (2) Microscopic differences in neuronal structure.
(3) Physiological differences affecting the action of critical
circuits; such could arise from abnormalities in transmitters,
receptors, and/or transporters. This perspective differentiates
ASD from other genetically determined neurological diseases,
e.g., Krabbe disease (Hunter’sHope, 2021) or FXS (Hagerman
et al., 2017) where a single gene mutation affecting a single
protein results in global effects on most or all neurons across
multiple systems and structures.

There are many constraints in studying the human brain;
invasive physiological and neuroanatomical (especially tract-
tracing) techniques so extensively used in animal studies cannot

be used in humans. The two major approaches for studying
the human brain are (1) Postmortem examination of brains
using histological techniques and (2) Analysis of brains in living
subjects using imaging techniques.

Neuropathological Studies
Postmortem study of individual brains allows direct histological
examination of the brain at the cellular/neurochemical level.
The limitations of these studies are that only a few brains
have been available for study, and the information about the
range of ASD symptoms in any individual may be limited.
The diversity of ASD symptoms and causes is mirrored
by a diversity of neuropathological reports (summary in
Palmen et al., 2004).

Imaging Studies in ASD
Imaging techniques include MRI to show structure, fMRI to
show functional activation and DT-MRI to show connections.
These studies can include relatively large numbers of ASD
subjects and usually also include equivalent numbers of
control subjects (review and references in Ecker, 2017;
Dadalko and Travers, 2018).

Limitations: Subject selection
Integrating data from the many imaging, behavioral, and
neuroanatomical studies of ASD is complicated by the fact
that different studies use very different criteria for selection
of subjects and of controls. Some studies include subjects
with syndromes associated with ASD like DS or FXS (e.g.,
Kaufmann et al., 2003). Other studies explicitly exclude such
subjects (for example Müller et al., 2001; Nowinski et al., 2005;
Neely et al., 2019; Unruh et al., 2019). The neuroanatomical
substrates for ASD in genetically different populations may be
different. Hoeft et al. (2011) found differences between FXS and
idiopathic ASD boys in the volume of cerebral gray matter and
white matter in different cortical regions. Many behavioral and
imaging studies are limited to subjects who are “high-functioning
autistic”/Asperger’s Syndrome (examples include Nowinski et al.,
2005; Langen et al., 2007; Takarae et al., 2007; Catani et al., 2008).
Some include only people with normal IQs (e.g., Hua et al.,
2013; Oldehinkel et al., 2019). “Lower-functioning” individuals
may have had behavior incompatible with the demands of
behavioral or imaging studies, and in fact some studies have
used sedation for structural imaging of ASD subjects (Sparks
et al., 2002; Carper and Courchesne, 2005; Schumann et al.,
2009; Zielinski et al., 2014; Lange et al., 2015); the necessity
for sedation could further limit subject selection. The problems
with the selection of appropriate controls have been thoughtfully
discussed by Jarrold and Brock (2004). Therefore, there may
be a population of lower IQ/behaviorally challenging ASD
individuals excluded from many studies, especially imaging
studies with behavioral demands. Post-mortem brain analyses
probably include a higher percentage of ASD with Intellectual
Disability (ID, for example Bailey et al., 1998) and/or behavioral
challenges than do imaging studies. These issues complicate the
efforts of trying to understand the biological basis of ASD in light
of the heterogeneity in ASD characteristics and correlates.
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Another concern with subject selection is that many studies
use only male subjects (some examples: Müller et al., 2001;
Schumann et al., 2004; Catani et al., 2008; Zielinski et al., 2014;
Igelstrom et al., 2017), potentially missing sexually dimorphic
anomalies. That such may exist is suggested by Libero et al. (2016)
who found differences in “disproportionate megalencephaly”
between girls and boys, with the boys affected and the girls not.
A related problem concerns the variability in criteria that have
been used for establishing an ASD diagnosis; issues of diagnosis
and subject selection are summarized by Simmons et al. (2009).

WHAT DO WE KNOW ABOUT THE BRAIN
IN ASD: CANDIDATE STRUCTURES AND
THEIR CONNECTIONS

The Cerebellum in ASD
Many studies have found abnormalities of the cerebellum in
ASD; data come from both neuropathological and imaging
studies (Ritvo et al., 1986; Murakami et al., 1989; Bauman, 1991;
Courchesne et al., 1994, 2011; Ciesielski et al., 1997; Bailey et al.,
1998; Levitt et al., 1999; Purcell et al., 2001; Fatemi et al., 2002,
2012; Kaufmann et al., 2003; Allen et al., 2004; Palmen et al.,
2004; Allen, 2005; Catani et al., 2008; Whitney et al., 2009;
Yip et al., 2009; Wegiel et al., 2010, 2012, 2014; Donovan and
Basson, 2017; Bruchage et al., 2018). However, different studies
report different cerebellar abnormalities. The most common
deficits seen in microscopic analysis of the cerebellum are loss
of Purkinje cells and granule cells in cerebellar cortex, loss or
abnormal appearance of neurons in the deep cerebellar nuclei
and differences in the size of vermal lobules (Bauman, 1991;
Kemper and Bauman, 2002; Whitney et al., 2009; Wegiel et al.,
2014). Wegiel et al. (2013) reported dysplasia of the flocculus,
a part of the cerebellum involved in eye movement control
(Zee et al., 1981).

Structural imaging studies likewise have found differences in
the size of parts of the vermis, but which lobules were affected
and in which direction (bigger vs. smaller than in controls) varies
among studies (Courchesne et al., 1994; Harris et al., 1999; Levitt
et al., 1999; Kaufmann et al., 2003; Kates et al., 2004; Marko
et al., 2015). Cerebellar hemispheres, as well as the vermis, may be
smaller (Murakami et al., 1989). Catani et al. (2008) reported that
the efferent pathway from the cerebellum, the superior cerebellar
peduncle, is smaller in ASD. Hanaie et al. (2013) using DTI
found structural differences in the superior cerebellar peduncles
between ASD and control subjects; differences correlated with
deficits in motor skills. Functional imaging data also confirm
differences in cerebellar involvement between control and ASD
subjects in a simple motor task (Allen et al., 2004).

Connections of the Cerebellum: The
Brainstem
There is thus strong and consistent evidence that the cerebellum
is affected in ASD. What is the significance of this result? The
classical role of the cerebellum is in motor control (Evarts and
Thach, 1969), including the control of eye movements (Robinson

and Fuchs, 2001; Blazquez and Pastor, 2013). More recently,
a role of the cerebellum in language and cognition has been
proposed on the basis of anatomical and clinical studies (Strick
et al., 2009; Buckner, 2013). Cerebellar dysfunction in ASD
could therefore contribute to cognitive/language as well as motor
deficits (Allen, 2005).

The findings of cerebellar abnormalities in ASD dictate
consideration of its connections, and these connections make a
compelling argument for the role of the brainstem in ASD. The
cerebellum is connected to the brain by relays in brainstem and
diencephalon. The cerebellum receives information from several
“precerebellar” brainstem relays; the output of the cerebellum
is via the neurons of the cerebellar deep nuclei that project to
multiple brainstem structures (Asanuma et al., 1983a). Thus the
neuroanatomical data suggest that both precerebellar brainstem
structures as well as the brainstem targets of cerebellar outflow
might be affected in ASD brains. What are these structures?
Figure 1 summarizes the critical connections of the cerebellum.

Precerebellar Brainstem Structures:
Inferior Olive, Pontine Nuclei, and the
Arcuate Nucleus
The cerebellum receives two kinds of afferent fibers, mossy
fibers and climbing fibers (Eccles, 1967). The inferior olive is
the sole source of climbing fibers that innervate the cerebellum
and is also the recipient of feedback projections from the
cerebellum. There is evidence for IO abnormalities in ASD
in a few neuropathological cases (Bailey et al., 1998; Kemper
and Bauman, 2002). However, interpretation of the results for
the IO is complex. We found individual variability in the
appearance of neurons and in the expression of calcium-binding
proteins in normal subjects (Baizer et al., 2011b, 2018b). The
age-pigment lipofuscin is especially prominent in IO neurons,
and may correlate with age-related degenerative changes in IO
neurons affecting protein expression (Mann and Yates, 1974;

FIGURE 1 | The brainstem inputs and outputs of the cerebellum. cf, climbing
fibers; mf, mossy fibers.
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Mann et al., 1978). Figure 2 illustrates the variability in shape and
neurochemical properties of the IOpr in humans.

The Pontine Nuclei and the Cerebral
Cortex
The pontine nuclei are a critical relay between the cerebral
cortex and the cerebellum. The input to the pontine nuclei
is from layer 5 pyramidal cells of various regions of the
cerebral cortex (Brodal, 1968a,b,c, 1972a,b,c, 1978a,b; Glickstein
et al., 1972, 1985; Gibson et al., 1977; Bjaalie, 1986; Legg
et al., 1989; Bjaalie and Brodal, 1997; Bjaalie et al., 1997;
Brodal and Bjaalie, 1992, 1997; Leergaard and Bjaalie, 2007).
The pontine nuclei then project to the cerebellum. The
pontine nuclei are implicated in ASD for two reasons, first
the documented involvement of their target structure, the
cerebellum, and second, the fact that many studies that
have found involvement of their input structure, the cerebral
cortex. We will therefore briefly review the role of the
cerebral cortex in ASD.

FIGURE 2 | Variability in the shape of the IOpr in humans. (A–D) The IOpr in
cresyl violet stained transverse sections of the brainstem in four cases. Note
the differences in the folding pattern among cases and the left-right
asymmetry in each case. Scale bars = 1 mm. (E,F) Variability in the density of
neurons expressing the calcium-binding protein calretinin (CR) illustrated in
two cases. The arrow in (F) shows a region with few immunostained neurons.
Scale bars = 250 µm. CR, calretinin; DAO, dorsal accessory olive; IOpr,
principal nucleus of the inferior olive. Figures 2, 3, 6, and 8 show
photomicrographs of sections that were prepared for several different projects
on the human brainstem. Details of the methods are given in earlier
publications (Baizer and Broussard, 2010; Baizer et al., 2011a,b, 2014,
2018a,b, 2021).

The Cerebellum, the Cerebral Cortex,
and ASD
Different studies have found different cortical abnormalities
in ASD. One finding has been brain overgrowth in some, but
not all, very young ASD children that resolves at later ages
(Courchesne et al., 2007, 2011; Libero et al., 2016). Overgrowth
of specific regions (especially dorsolateral prefrontal cortex,
DLPFC) of the cerebral cortex is a major contributor to
differences in overall brain size (Carper and Courchesne,
2005; Courchesne and Pierce, 2005). Projections from the
DLPFC to the pontine nuclei have been demonstrated in the
monkey (Schmahmann and Pandya, 1997). Other investigators
focused on the functional organization of the temporoparietal
junction, and suggested differences in connectivity of this
region with the cerebellum (Igelstrom et al., 2017). Alterations
in cortical circuitry and the structure of cortical columns
have also been reported (Casanova et al., 2003). These
cortical differences might be reflected in corticopontine
projections in the numbers or diameters of axons, or the
distribution of projections.

The Cerebral Cortex and the Corpus
Callosum
We have already considered one major efferent pathway from
the cerebral cortex, the corticospinal/pontine tract. Another
efferent pathway is the corpus callosum (CC). It interconnects
the two cerebral hemispheres; neurons of origin are pyramidal
cells found primarily in layers 3 and 5 (Jacobson and
Trojanowski, 1974). Several studies have noted abnormalities
in the CC in ASD, (additional references in Fingher et al.,
2017) further evidence that the projections from cortex
may be affected.

The Arcuate Nucleus
Another source of mossy fiber input to the cerebellum is from a
structure unique to the human brain, the arcuate nucleus of the
medulla (Essick, 1912; Baizer and Broussard, 2010; Baizer, 2014;
Baizer et al., 2021). The arcuate has classically been considered
a precerebellar structure (Essick, 1912). We have shown its size
and shape to be very variable among normal human cases, again
a complicating factor in interpreting data from ASD brains.
Figure 3 illustrates the variability of the size and shape of the
arcuate nucleus in humans. In one report (Bailey et al., 1998)
the arcuate was described as “larger than usual” but it was
unclear what it was compared to. It too could be added to
the list of structures to be analyzed in future postmortem or
imaging brain studies.

Projection Targets of the Cerebellum
Targets of cerebellar outflow include thalamic nuclei and several
brainstem structures including the red nucleus, the vestibular
nuclear complex (VNC), the IO (Asanuma et al., 1983a,b;
Hazrati and Parent, 1992) and the superior colliculus (Roldan
and Reinoso-Suarez, 1981). The VNC will be considered in the
context of vestibular information processing and the control of
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FIGURE 3 | Variability in the arcuate nucleus. (A–F) The arcuate nucleus (Arc, arrows) on cresyl violet stained transverse sections of the human brainstem. Note the
differences in size and shape among cases, and the left-right asymmetry within cases. Scale bar = 0.5 mm. Arc, arcuate nucleus; IOpr, principal nucleus of the
inferior olive; py, pyramidal tract.

eye movements, the IO was discussed above as it is also an
input structure.

Red Nucleus
The red nucleus is a midbrain structure with a role in reaching
and grasping (van Kan and McCurdy, 2001, 2002a,b). The red
nucleus has two components, a parvocellular and a magnocellular
division; the relative sizes of the two components has changed
over evolution and the magnocellular component is much smaller
in humans than in other mammals (Massion, 1967; Hicks and
Onodera, 2012). It has not been specifically mentioned in the
neuropathology of ASD, and may not have been examined.

We will now return to the question of possible brainstem
involvement in the other functional deficits in autism: control
of eye movements, sensory processing of auditory and vestibular
information, and control of affect.

The Brainstem and the Control of Eye
Movements
As discussed earlier, abnormal control of eye movements is
often mentioned as an ASD symptom. The control of eye
movements is mediated by many complexly interconnected brain
structures (summary in Figure 4). Key regions include cortical
frontal and supplemental eye fields (Robinson and Fuchs, 1969;
Schiller et al., 1987; Fukushima et al., 2004; Roesch and Olson,
2005), the flocculus and vermis of the cerebellum (Lisberger
and Fuchs, 1974; Kojima et al., 2010a,b,c, 2011), the superior
colliculus of the midbrain (Wurtz and Goldberg, 1971, 1972;
Stryker and Schiller, 1975), the substantia nigra pars reticulata
(SNr; Hikosaka and Wurtz, 1983a,b, 1985) and the four nuclei
of the vestibular nuclear complex, the VNC (Chubb and Fuchs,
1982; Chubb et al., 1984; Waespe and Henn, 1977, 1979, 1985).
While abnormalities have been described of the cerebellum in
ASD, the superior colliculus, the substantia nigra and the VNC
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FIGURE 4 | Schematic of brainstem nuclei critical for eye movement control.
Cranial nerve nuclei 3-oculomotor, 4-trochlear, 6-abducens; EW,
Edinger-Westphal nucleus; iC, interstitial nucleus of Cajal; PrH, nucleus
prepositus hypoglossi; PPRF, paramedian pontine reticular formation; riMLF,
rostral interstitial nucleus of the medial longitudinal fasciculus; SNr, substantia
nigra, pars reticulata.

have not been implicated in neuropathological studies (Bauman,
1991; Bauman et al., 1995; Bailey et al., 1998; Palmen et al.,
2004). There are many other brainstem structures critical in
eye movement control include cranial nerve nuclei 3, 4, and 6,
(Fuchs and Luschei, 1970, 1971), premotor neurons in midbrain,
pons, and medulla (Horn and Büttner-Ennever, 1998), the
paramedian pontine reticular formation, (PPRF; Keller, 1974);
the nucleus prepositus hypoglossi (PrH; Kaneko, 1992, 1997,
1999); the rostral interstitial nucleus of the medial longitudinal
fasciculus (riMLF; Wang and Spencer, 1996; Sparks, 2002) and
the Edinger-Westphal nucleus (EW; May et al., 2008). Many of
the studies of these nuclei establishing their participation eye
movement control have been electrophysiological. It is possible
that differences in these structures in ASD brains might be
detectable only physiologically, as altered functional circuitry, but
not anatomically.

Vestibular Nuclear Complex
Both functional and anatomical evidence suggest that the
vestibular nuclear complex (VNC) may be involved in ASD: (1)
The disruptions of vestibular function, (2) The deficits in eye
movement control, and (3) Connections with the cerebellum.
The eighth cranial nerve distributes vestibular information to the
four nuclei of the vestibular nuclear complex (VNC; Figure 5)
and to the cerebellum (Barmack, 2003). The nuclei of the VNC
are critical for the analysis of vestibular input and are also
involved in the generation of vestibular-triggered eye movements
like vestibular nystagmus and the vestibulo-ocular reflex, (VOR;
Szentagothai, 1950). The VNC also receive projections from
the flocculus (Balaban et al., 1981), an eye-movement related
part of the cerebellum (Zee et al., 1981). The vestibular nuclei
are relatively small structures and could be examined in future

FIGURE 5 | Vestibular input to the vestibular nuclei of the brainstem.

neuropathological analysis of ASD brains. We have studied the
organization and neurochemical composition of the vestibular
nuclear complex in several species including humans, and those
data could be used for comparison with VNC organization
in ASD brains (Baizer and Broussard, 2010; Baizer et al.,
2011a; Baizer, 2014). Figure 6 illustrates neurochemically defined
subdivisions in the human VNC.

The Brainstem and Auditory Processing
There are multiple brainstem nuclei critical for the processing
of auditory information including the cochlear nuclei, the
nucleus of the trapezoid body, superior olivary complex,
nuclei of the lateral lemniscus, and the inferior colliculus
(schematic in Figure 7; Pickles, 2015; Smith et al., 2019). There
are electrophysiological data (measurement of ABR, auditory
brainstem response) suggesting that the brainstem structures
may be affected in ASD (Rosenhall et al., 1988; Kwon et al.,
2007). An early report found severe brainstem abnormalities in
a single case, including aplasia of the superior olivary complex
(SOC) and the seventh nerve nucleus (Rodier et al., 1996).
Subsequent studies of the medial superior olive (MSO) have
found more subtle differences at a cellular level in ASD brains.
Quantitative analysis of the MSO showed hypoplasia with fewer,
smaller and atypically shaped and oriented neurons (Kulesza and
Mangunay, 2008; Smith et al., 2019; Mansour and Kulesza, 2020).
Examination of the other components of the SOC also showed
abnormalities in neuron numbers and shape (Kulesza et al., 2011;
Lukose et al., 2015; Mansour and Kulesza, 2020). Those studies
suggest that a similar cellular analysis of the other main brainstem
auditory nuclei that interconnect with the SOC (cochlear nuclei,
inferior colliculus) might also reveal abnormalities. We have
studied the neurochemical organization of the dorsal and ventral
cochlear nuclei in humans (Baizer et al., 2014, 2018a); these brain
sections are available for comparison with sections from ASD
brains. Figures 8A,B shows the dorsal and ventral cochlear nuclei
in humans.

The Brainstem and Neural Substrates of
Affect
Several studies have found abnormalities in the amygdala
and hippocampus, structures involved in affect and memory
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FIGURE 6 | Compartments in the medial vestibular nucleus (MVe) marked by immunoreactivity to calretinin (CR, A, arrow) and calbindin (CB, B, arrows). Scale
bars = 1 mm. PrH, nucleus prepositus hypoglossi; PMD, nucleus paramedianus dorsalis; SpVe, spinal or inferior vestibular nucleus.

FIGURE 7 | Schematic showing the main brainstem nuclei of the auditory
system. CN, cochlear nuclei; DNLL, dorsal nucleus of the lateral lemniscus;
MNTB, medial nucleus of the trapezoid body; MSO, medial superior olive;
SOC, superior olivary complex; SPON, superior paraolivary nucleus; VNLL
ventral nucleus of the lateral lemniscus; VNTB, ventral nucleus of the trapezoid
body.

(Schumann et al., 2004). However, the regulation of affect
also depends on monoaminergic input to the brain. There are
two critical brainstem nuclei: the raphe nuclei (cells groups
along midline of the brainstem that provide serotonergic input;
Hornung, 2003) and the nucleus called the locus coeruleus
(in the rostral pons, noradrenergic input; Schwarz and Luo,
2015). Drug therapies for mood disorders in ASD have
included SSRIs and SNRIs (selective serotonin or norepinephrine
reuptake inhibitors) (Henry et al., 2009; Nanjappa et al., 2020).
Amitriptyline, which also affects norepinephrine reuptake, has
been used to treat hyperactivity and impulsivity in ASD (Bhatti
et al., 2013). One possible interpretation is inadequate production
of serotonin and/or norepinephrine in ASD, or abnormalities
in the receptors for those transmitters. Several studies provide
anatomical and functional evidence for abnormalities in
serotonergic function in ASD. Azmitia et al. (2011) found
larger numbers of serotonergic fibers in one tract, the medial

FIGURE 8 | The dorsal (DC, A) and ventral (VCA, B) cochlear nuclei in the
human brain shown on transverse sections immunostained for
non-phosphorylated neurofilament protein (NPNFP). Scale bar = 1 mm.

forebrain bundle, innervating the amygdala, as well as dystrophic
(abnormally large diameter) serotonergic fibers in ASD brains.
Beversdorf et al. (2012) reported a decrease in serotonin receptor-
binding in the thalamus for high-functioning ASD subjects.
Wong et al. (2020) showed that drug-manipulated serotonin
levels affected levels of limbic system activation of ASD but
not control subjects (assessed by fMRI) performing a face-
matching task.

Summary and Future Studies
We have thus identified a large set of brainstem structures that
may be implicated in ASD. How might those structures be
affected? There could be structural differences, at a macroscopic
(size, shape, or organization of a nucleus) or microscopic
(differences in cellular characteristics, e.g., neuron size, dendritic
tree spread, etc.) level. There could also be functional differences,
e.g., in the efficacy of a transmitter, that would be seen at
a physiological but not at a structural level. How can we
investigate these possibilities? Imaging studies may be able
to show abnormalities in the size and shape of larger brain
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structures, but at present cannot reveal subtle differences in
organization or neurochemical changes of smaller ones. Studies
of the relatively small brainstem structures are possible through
studies of individual brains, optimally from patients whose
symptoms and history have been very well-characterized. Ideally,
the brains would be from as uniform as possible a population;
at minimum details like IQ, and the presence or absence of a
seizure disorder would be available. Brains would then be studied
by standard histological techniques, including cell, fiber, and
immunohistochemical staining.

Immunohistochemistry (IHC) would be essential for studying
the serotonergic and noradrenergic transmitter systems. IHC
might be useful at looking at aspects of other transmitter systems
as well, the density and distribution of receptors or transporters
could be examined. Another set of antibodies that might be
useful is those to calcium-binding proteins calbindin, calretinin
and parvalbumin as their levels may reflect the underlying
physiological states of neurons (Blumcke et al., 1990; Celio, 1990;
Arai et al., 1991; Baimbridge et al., 1992; Conde et al., 1994; Baurle
et al., 1997). The level of the analysis of ASD brains could range
from simple examination of cell, fiber, or immunostained sections
at the light microscopic level to more quantitative stereological
analysis (numbers or packing density of neurons in a structure;
for example see Whitney et al., 2009).

However, the analysis needs to be considered carefully. The
basic question is simple: do ASD brain structures differ from
those in “normal” brains, but the analysis is far from simple. The
critical question is how do we define a “normal” brain? There
is much variability among human brains in the location, size,
shape, and sometimes neurochemical properties of neurons in
different brainstem structures (see the data on the IOpr in Baizer
et al., 2011b). There are two approaches to selecting comparison
data. One is to attempt to obtain and process brains in the same
laboratories using the same techniques from controls that are
matched for gender, age, IQ, presence of a seizure disorder, etc.
The second approach is to compare ASD brain sections with
images of “normal” brains as shown either in atlases (Olszewski
and Baxter, 1982; Paxinos and Huang, 1995) or in publications
(for example Baizer and Broussard, 2010; Baizer et al., 2011b).

It also may be useful to narrow the study population by using a
subset of ASD symptoms, e.g., studying only those with particular
motor symptoms or eye movement deficits. The problem then
is acquiring enough brains to get meaningful results. Another
approach is to study a biologically defined population. One
example is Fragile X (FXS) syndrome (Garber et al., 2008; Berry-
Kravis et al., 2018) which has been used as an animal model of
ASD (for example He et al., 2017). However, such studies, in
humans or animals, have major limitations in contributing to an
understanding of the neuroanatomy of ASD. First, the symptoms
of FXS can vary widely, not everyone with FXS is diagnosed as

ASD (Garber et al., 2008; Hagerman et al., 2017). Second, FXS
causes deficits in a single protein (Fragile X mental retardation
protein 1, FMRP, Hagerman et al., 2017). This protein does not
have a neuroanatomically limited distribution (Hagerman et al.,
2017; Telias, 2019). The mutation is likely to cause widespread
functional disruption at the circuit level but it is unlikely that
there would be localized structural differences in the brainstem,
cerebellum or elsewhere in the brain that could be visualized by
neuropathological analysis.

CONCLUSION

The topic of this review is the possible role of the brainstem
in autism. We have summarized literature on the functions
affected in ASD and the brain structures and circuits that
mediate those functions. Many of these circuits have brainstem
components, and we suggest candidate brainstem nuclei and
tracts that may be functionally altered in ASD. However,
because of the heterogeneity of possible causes and symptoms
of ASD, proving the involvement of these structures may be
a very difficult task. It may be that the concept of an autism
“spectrum” is useful clinically but misleading in trying to
understand the biological basis of ASD. The ASD “spectrum”
may not in fact reflect a continuum but instead consist of many
separate and independent biological disorders with overlapping
manifestations at the behavioral level but diverse neuroanatomic
and genetic underpinnings. Progress in genetic analysis is likely
to clarify the biological understanding of ASD.
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