$0.15 \times 0.12 \times 0.06 \text{ mm}$

3249 measured reflections 2255 independent reflections 1891 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.018$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Ethyl 4-methyl 5-ethyl-3-methyl-1Hpyrrole-2,4-dicarboxylate

Gui-Fen Lu,* Min Zhu, Wei-Hua Zhu and Zhong-Ping Ou

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: luguifen8012@yahoo.com.cn

Received 6 January 2012; accepted 14 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.067; wR factor = 0.220; data-to-parameter ratio = 14.2.

The title pyrrole derivative compound, C₁₂H₁₇NO₄, was synthesized from methyl 3-oxopentanoate by a Knorr-type reaction and contains a pyrrole ring to which two diagonal alkoxycarbonyl groups and two diagonal alkyl substituents are attached. The methylcarbonyl and ethylcarbonyl substituents are approximately co-planar with the pyrrole ring, making dihedral angles of 5.64 (2) and 3.44 $(1)^{\circ}$, respectively. In the crystal, adjacent molecules are assembled by pairs of N- $H \cdots O$ hydrogen bonds into dimers in a head-to-head mode.

Related literature

For applications of polysubstituted pyrroles, see: Brockmann & Tour, (1995); Guilard et al. (2001); Trofimov et al. (2004). For related structures, see: Lu et al. (2011); Takaya et al. (2001). For complexes of pyrrole derivatives, see: Fan et al. (2008); Ou et al. (2009); Paixão et al. (2003); Yamamoto et al. (1986).

Experimental

Crystal data

C12H17NO4 $M_r = 239.27$ Triclinic, $P\overline{1}$ a = 7.2827 (10) Å b = 8.8573 (12) Å c = 11.1806 (16) Å

$\alpha = 77.948 \ (2)^{\circ}$
$\beta = 73.135 \ (2)^{\circ}$
$\gamma = 69.970 \ (2)^{\circ}$
$V = 643.62 (15) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

μ	=	0.09	mm^{-}
T	_	293	K

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
T = 0.986 $T = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ H atoms treated by a mixture of $wR(F^2) = 0.220$ independent and constrained S = 1.11refinement $\Delta \rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^{-3}$ 2255 reflections $\Delta \rho_{\rm min} = -0.36~{\rm e}~{\rm \AA}^{-3}$ 159 parameters 1 restraint

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.84 (1)	2.07 (1)	2.883 (3)	165 (2)

Symmetry code: (i) -x, -v + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The project was supported by the Natural Science Foundation of China (No. 21001054) and the Jiangsu Higher Education Institutions (No. 10KJB150003). The Foundation of UJS (Nos. 09JDG055 and 1143002064) is also gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2149).

References

- Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437-4447. Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Fan, H., Peng, J. N., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264-
- 287. Guilard, R., Gross, C. P., Bolze, F., Jerome, F., Ou, Z. P., Shao, J. G., Fischer, J.,
- Weiss, R. & Kadish, K. M. (2001). Inorg. Chem. 40, 4845-4855.
- Lu, G.-F., Lin, W.-S., Zhu, W.-H. & Ou, Z.-P. (2011). Acta Cryst. E67, o2097. Ou, Z. P., Zhu, W. H., Zhou, F., Zhao, X. F. & Ji, X. L. (2009). Fine Chem. 26, 609-612.
- Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2003). Acta Cryst. E59, 094-096.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takaya, H., Kojima, S. & Murahashi, S. I. (2001). Org. Lett. 3, 421-424.
- Trofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. (2004). Chem. Rev. 104, 2481-2506.
- Yamamoto, N., Machida, K., Taga, T. & Ogoshi, H. (1986). Acta Cryst. C42, 1573-1576.

supplementary materials

Acta Cryst. (2012). E68, o483 [doi:10.1107/S1600536812001729]

2-Ethyl 4-methyl 5-ethyl-3-methyl-1H-pyrrole-2,4-dicarboxylate

G.-F. Lu, M. Zhu, W.-H. Zhu and Z.-P. Ou

Comment

Polysubstituted pyrroles have been paid much attention because of their wide application in the preparation of porphyrins (Trofimov *et al.*, 2004), corroles (Guilard *et al.*, 2001) and as monomers for polymer chemistry (Brockmann & Tour, 1995; Paixão *et al.*, 2003). In view of the importance of the 2-(alkoxycarbonyl)pyrrole derivatives (Fan *et al.*, 2008; Lu *et al.*, 2011; Takaya *et al.*, 2001), the title compound was synthesized and characterized by X-ray diffraction.

As shown in Fig. 1, the compound has a five-membered pyrrole ring as skeleton and four substituents. The methoxycarbonyl and ethoxycarbonyl groups are located on two diagonal carbon atoms of the pyrrole skeleton, which is also true for the methyl and ethyl substituents, forming an asymmetrical molecule. Adjacent molecules are assembled in a head to head mode by hydrogen bonding between the donor atom N₁ and acceptor atom O₁ (symmetry code: -*x*, 1 - *y*, -*z*) (Table 1, Fig. 2). The bond distances are in the normal range of the similar species reported by Yamamoto *et al.* (1986).

Experimental

The title compound was synthesized from ethyl acetoacetate and methyl 3-oxopentanoate through oximination, Claisen condensation and reductive condensation according to the method reported by Ou *et al.* (2009). Single crystals suitable for X-ray measurements were grown from ethanol by slowly evaporation at room temperature.

Refinement

All the non-hydrogen atoms were refined anisotropically by full-matrix least-squares calculations on F^2 . All H atoms (except H1a) were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for methylene atoms and C—H = 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for methyl atoms. The H1a atom has located in a difference map and refined with $U_{iso} = 1.5U_{eq}$ (N). The command '*DFIX*' has been used to restrain the distance of H1a—N1 = 0.83 Å.

Figures

Fig. 1. Molecular structure with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Dimer formation in the crystal packing.

2-Ethyl 4-methyl 5-ethyl-3-methyl-1H-pyrrole-2,4-dicarboxylate

2	
C ₁₂ H ₁₇ NO ₄	Z = 2
$M_r = 239.27$	F(000) = 256
Triclinic, P1	$D_{\rm x} = 1.235 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.2827 (10) Å	Cell parameters from 1663 reflections
b = 8.8573 (12) Å	$\theta = 2.4 - 26.8^{\circ}$
c = 11.1806 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 77.948 \ (2)^{\circ}$	T = 293 K
$\beta = 73.135 \ (2)^{\circ}$	Sheet, colorless
$\gamma = 69.970 \ (2)^{\circ}$	$0.15\times0.12\times0.06~mm$
$V = 643.62 (15) \text{ Å}^3$	

Data collection

Crystal data

Bruker APEXII CCD area-detector diffractometer	2255 independent reflections
Radiation source: fine-focus sealed tube	1891 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.018$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -8 \rightarrow 6$
$T_{\min} = 0.986, T_{\max} = 0.995$	$k = -10 \rightarrow 9$
3249 measured reflections	$l = -13 \rightarrow 13$

Refinement

Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.067$ H atoms treated by a mixture of independent and constrained refinement	Refinement on F^2	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.067$ H atoms treated by a mixture of independent and constrained refinement	Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
	$R[F^2 > 2\sigma(F^2)] = 0.067$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^{2}) = 0.220 \qquad \qquad w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1366P)^{2} + 0.1514P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$wR(F^2) = 0.220$	$w = 1/[\sigma^2(F_o^2) + (0.1366P)^2 + 0.1514P]$ where $P = (F_o^2 + 2F_c^2)/3$
$S = 1.11 \qquad (\Delta/\sigma)_{\rm max} < 0.001$	<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2255 reflections $\Delta \rho_{\text{max}} = 0.51 \text{ e} \text{ Å}^{-3}$	2255 reflections	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
159 parameters $\Delta \rho_{min} = -0.36 \text{ e} \text{ Å}^{-3}$	159 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

1 restraint

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.046 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	Uiso*/Ueq
C10	0.3898 (4)	-0.0962 (3)	-0.1197 (2)	0.0550 (6)
H10A	0.4158	-0.2064	-0.0808	0.082*
H10B	0.5149	-0.0720	-0.1553	0.082*
H10C	0.3217	-0.0814	-0.1849	0.082*
C11	0.2132 (4)	-0.1884 (3)	0.1807 (2)	0.0560 (6)
C12	0.3494 (6)	-0.4707 (4)	0.1703 (3)	0.0963 (11)
H12A	0.4249	-0.5445	0.1089	0.144*
H12B	0.2222	-0.4899	0.2098	0.144*
H12C	0.4232	-0.4871	0.2328	0.144*
O4	0.3164 (3)	-0.3073 (2)	0.10932 (18)	0.0785 (6)
03	0.1512 (4)	-0.2162 (3)	0.29184 (19)	0.0950 (8)
H1A	0.020 (3)	0.3365 (14)	0.079 (2)	0.052 (7)*
C1	0.1913 (3)	0.1820 (3)	-0.04297 (19)	0.0461 (5)
C2	0.2603 (3)	0.0150 (2)	-0.02273 (19)	0.0439 (5)
C3	0.1853 (3)	-0.0280 (3)	0.1078 (2)	0.0470 (6)
C4	0.0707 (3)	0.1150 (3)	0.1615 (2)	0.0491 (6)
C5	0.2114 (4)	0.3014 (3)	-0.1527 (2)	0.0569 (6)
C6	0.3253 (8)	0.3461 (4)	-0.3746 (3)	0.1147 (15)
H6A	0.1902	0.4037	-0.3852	0.138*
H6B	0.3889	0.4250	-0.3721	0.138*
C7	0.4382 (8)	0.2543 (6)	-0.4772 (3)	0.1304 (17)
H7A	0.4460	0.3259	-0.5547	0.196*
H7B	0.3730	0.1779	-0.4801	0.196*
H7C	0.5715	0.1974	-0.4659	0.196*
C8	-0.0423 (4)	0.1442 (3)	0.2940 (2)	0.0621 (7)
H8A	-0.1565	0.2409	0.2921	0.075*
H8B	-0.0940	0.0540	0.3344	0.075*
C9	0.0830 (5)	0.1639 (4)	0.3707 (3)	0.0857 (9)
H9A	0.0028	0.1823	0.4542	0.129*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9B	0.1322	0.2546	0.3324	0.129*
Н9С	0.1946	0.0676	0.3748	0.129*
N1	0.0782 (3)	0.2382 (2)	0.07013 (17)	0.0503 (5)
01	0.1384 (3)	0.4462 (2)	-0.15035 (18)	0.0821 (7)
O2	0.3170 (3)	0.2368 (2)	-0.25857 (16)	0.0748 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C10	0.0654 (14)	0.0407 (12)	0.0528 (13)	-0.0105 (10)	-0.0084 (10)	-0.0104 (10)
C11	0.0628 (13)	0.0460 (13)	0.0535 (13)	-0.0180 (10)	-0.0088 (10)	0.0016 (10)
C12	0.130 (3)	0.0388 (15)	0.097 (2)	-0.0178 (16)	-0.016 (2)	0.0119 (14)
O4	0.1114 (15)	0.0334 (10)	0.0680 (12)	-0.0114 (9)	-0.0062 (11)	0.0025 (8)
O3	0.1393 (19)	0.0586 (12)	0.0578 (12)	-0.0263 (12)	0.0044 (12)	0.0097 (9)
C1	0.0501 (11)	0.0386 (11)	0.0423 (11)	-0.0088 (8)	-0.0071 (8)	-0.0033 (8)
C2	0.0436 (10)	0.0389 (11)	0.0467 (11)	-0.0113 (9)	-0.0087 (8)	-0.0047 (8)
C3	0.0480 (11)	0.0404 (11)	0.0495 (12)	-0.0137 (9)	-0.0083 (9)	-0.0025 (9)
C4	0.0478 (11)	0.0438 (12)	0.0483 (12)	-0.0118 (9)	-0.0047 (9)	-0.0027 (9)
C5	0.0677 (14)	0.0397 (12)	0.0484 (13)	-0.0075 (10)	-0.0055 (10)	-0.0003 (9)
C6	0.183 (4)	0.0601 (18)	0.0511 (17)	-0.014 (2)	0.007 (2)	0.0112 (14)
C7	0.186 (4)	0.123 (3)	0.0515 (19)	-0.033 (3)	-0.008 (2)	0.001 (2)
C8	0.0667 (14)	0.0542 (14)	0.0494 (13)	-0.0144 (11)	0.0032 (11)	-0.0029 (10)
C9	0.104 (2)	0.101 (2)	0.0500 (15)	-0.0386 (19)	-0.0048 (14)	-0.0093 (15)
N1	0.0533 (10)	0.0370 (10)	0.0479 (11)	-0.0050 (8)	-0.0044 (8)	-0.0040 (8)
01	0.1135 (15)	0.0386 (10)	0.0600 (11)	-0.0033 (9)	0.0023 (10)	0.0007 (8)
O2	0.1088 (14)	0.0453 (10)	0.0434 (10)	-0.0087 (9)	0.0013 (9)	-0.0001 (7)

Geometric parameters (Å, °)

C10—C2	1.500 (3)	C4—C8	1.498 (3)
C10—H10A	0.9600	C5—O1	1.211 (3)
C10—H10B	0.9600	C5—O2	1.331 (3)
C10—H10C	0.9600	C6—C7	1.428 (5)
C11—O3	1.197 (3)	C6—O2	1.447 (3)
C11—O4	1.330 (3)	С6—Н6А	0.9700
C11—C3	1.463 (3)	С6—Н6В	0.9700
C12—O4	1.436 (3)	С7—Н7А	0.9600
C12—H12A	0.9600	С7—Н7В	0.9600
C12—H12B	0.9600	С7—Н7С	0.9600
C12—H12C	0.9600	C8—C9	1.491 (4)
C1—N1	1.380 (3)	C8—H8A	0.9700
C1—C2	1.381 (3)	C8—H8B	0.9700
C1—C5	1.451 (3)	С9—Н9А	0.9600
C2—C3	1.422 (3)	С9—Н9В	0.9600
C3—C4	1.401 (3)	С9—Н9С	0.9600
C4—N1	1.335 (3)	N1—H1A	0.839 (10)
C2C10H10A	109.5	O2—C5—C1	113.5 (2)
C2	109.5	C7—C6—O2	108.8 (3)

H10A—C10—H10B	109.5	С7—С6—Н6А	109.9
C2-C10-H10C	109.5	O2—C6—H6A	109.9
H10A-C10-H10C	109.5	С7—С6—Н6В	109.9
H10B-C10-H10C	109.5	O2—C6—H6B	109.9
O3—C11—O4	121.4 (2)	H6A—C6—H6B	108.3
O3—C11—C3	126.0 (2)	С6—С7—Н7А	109.5
O4—C11—C3	112.6 (2)	С6—С7—Н7В	109.5
O4—C12—H12A	109.5	Н7А—С7—Н7В	109.5
O4—C12—H12B	109.5	С6—С7—Н7С	109.5
H12A—C12—H12B	109.5	Н7А—С7—Н7С	109.5
O4—C12—H12C	109.5	H7B—C7—H7C	109.5
H12A—C12—H12C	109.5	C9—C8—C4	113.3 (2)
H12B—C12—H12C	109.5	С9—С8—Н8А	108.9
C11—O4—C12	117.6 (2)	C4—C8—H8A	108.9
N1—C1—C2	108.30 (19)	С9—С8—Н8В	108.9
N1—C1—C5	117.4 (2)	С4—С8—Н8В	108.9
C2—C1—C5	134.3 (2)	H8A—C8—H8B	107.7
C1—C2—C3	105.90 (18)	С8—С9—Н9А	109.5
C1—C2—C10	126.4 (2)	С8—С9—Н9В	109.5
C3—C2—C10	127.7 (2)	Н9А—С9—Н9В	109.5
C4—C3—C2	107.89 (19)	С8—С9—Н9С	109.5
C4—C3—C11	122.8 (2)	Н9А—С9—Н9С	109.5
C2—C3—C11	129.3 (2)	Н9В—С9—Н9С	109.5
N1—C4—C3	107.36 (19)	C4—N1—C1	110.53 (19)
N1—C4—C8	121.0 (2)	C4—N1—H1A	125.5 (17)
C3—C4—C8	131.6 (2)	C1—N1—H1A	124.0 (17)
O1—C5—O2	122.4 (2)	C5—O2—C6	117.1 (2)
01—C5—C1	124.1 (2)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
N1—H1A····O1 ⁱ	0.84 (1)	2.07 (1)	2.883 (3)	165 (2)
Symmetry codes: (i) $-x$, $-y+1$, $-z$.				

Fig. 2