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Species in the genus Paenibacillus from special habitats have attracted great attention
due to their plant growth-promoting traits. A novel plant growth-promoting rhizobacteria
(PGPR) species in the genus Paenibacillus was isolated from spruce forest at the height
of 3,150 m in the Qilian Mountains, Gansu province, China. The phylogenetic analysis
based on 16S rRNA, rpoB, and nifH gene sequences demonstrated that strain LC-T2T

was affiliated in the genus Paenibacillus and exhibited the highest sequence similarity
with Paenibacillus donghaensis KCTC 13049T (97.4%). Average nucleotide identity
(ANIb and ANIm) and digital DNA–DNA hybridization (dDDH) between strain LC-T2T

and P. donghaensis KCTC 13049T were 72.6, 83.3, and 21.2%, respectively, indicating
their genetic differences at the species level. These differences were further verified
by polar lipids profiles, major fatty acid contents, and several distinct physiological
characteristics. Meanwhile, the draft genome analysis provided insight into the genetic
features to support its plant-associated lifestyle and habitat adaptation. Subsequently,
the effects of volatile organic compound (VOC) emitted from strain LC-T2T on the growth
of Arabidopsis were evaluated. Application of strain LC-T2T significantly improved root
surface area, root projection area, and root fork numbers by 158.3, 158.3, and 241.2%,
respectively, compared to control. Also, the effects of LC-T2T on the growth of white
clover (Trifolium repens L.) were further assessed by pot experiment. Application of
LC-T2T also significantly improved the growth of white clover with root fresh weight
increased over three-folds compared to control. Furthermore, the viable bacterial genera
of rhizosphere soil were detected in each treatment. The number of genera from LC-
T2T -inoculated rhizosphere soil was 1.7-fold higher than that of control, and some
isolates were similar to strain LC-T2T , indicating that LC-T2T inoculation was effective
in the rhizosphere soil of white clover. Overall, strain LC-T2T should be attributed to a
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novel PGPR species within the genus Paenibacillus based on phylogenetic relatedness,
genotypic features, and phenotypic and inoculation experiment, for which the name
Paenibacillus monticola sp. nov. is proposed.

Keywords: Paenibacillus, PGPR, novel species, qilian mountains, spruce

INTRODUCTION

Plant growth-promoting rhizobacteria (PGPR) enhance growth
and health of host plants through various mechanisms, including
phosphate solubilization, nitrogen fixation, siderophore
production, synthesis of phytohormone, and emission of volatile
organic compounds (VOCs) (Ryu et al., 2003; Fürnkranz et al.,
2012; Grady et al., 2016; He et al., 2021). Many PGPRs also
prevent rhizosphere colonization of pathogenic or parasitic
organisms by secreting antagonistic compounds and inducing
plant defenses and/or competition for nutrients (Backer et al.,
2018; Woo and Pepe, 2018; Naamala and Smith, 2021). These
valuable characteristics can help to reduce the dependence of
agricultural production on chemical fertilizers and insecticides,
maximize the ecological benefits, and accelerate the emergence
of their applications in biotechnological processes (Backer
et al., 2018; Woo and Pepe, 2018; Rani et al., 2021). Globally,
species of the genus Paenibacillus rank the top among PGPRs
in agriculture and horticulture (Kiran et al., 2017; Daud et al.,
2019; Liu et al., 2021). Many studies showed that some species
in the genus Paenibacillus can promote the growth of host
plants (Fürnkranz et al., 2012; Ker et al., 2012; Grady et al.,
2016; Kumari and Thakur, 2018; Liu et al., 2021). In addition,
inoculation of plants with Paenibacillus sp. strains also produce
novel bioactive metabolites for biological control and industrial
applications (Daud et al., 2019). Khan et al. (2007) and Aw
et al. (2016) highlighted that Paenibacillus species effectively
improved the growth of tomato (Lycopersicon esculentum) and
had antibacterial activity against a wide spectrum of pathogens.
Therefore, species of the genus Paenibacillus has enormous
potential as PGPR. However, only a few species of Paenibacillus
have been explored in detail concerning their effects on the
growth of forage crops.

White clover (Trifolium repens L.) is a considerable legume
forage crop with strong adaptability, wide distribution, and
easy cultivation (Ballhorn and Elias, 2014). It is suitable for
silaging, haying, and grazing for livestock due to its high
quality (Acharya et al., 2011). Meanwhile, white clover can also
maintain soil fertility by providing nitrogen from its symbiotic
interactions with rhizobia (Shamseldin et al., 2021). Additionally,
it has well-developed and numerous stolons and/or shoots that
are beneficial for water and soil conservation (Ballhorn and
Elias, 2014; Zhang et al., 2020). A previous study showed that
inoculation with Bacillus amyloliquefaciens GB03 significantly
increased plant growth and biomass of white clover under both
non-saline and saline conditions (Han et al., 2014). However, the
effects of PGPR strains of Paenibacillus on the growth of white
clover are unknown.

The Qilian Mountains are hydrologically and ecologically
vital unit, as it functions as the water source for the irrigation

agriculture in the Hexi Corridor and also maintains the ecological
viability in the northern Alxa Highland (Zhao et al., 2009). The
Qilian Mountains cover a large area with a complex topography,
changeable climate types, and large numbers of plant species with
obvious differences in spatial distribution (Liu et al., 2004; Zhao
et al., 2009). The altitude ranges from 1,173 to 5,546 m (Wu
and Jiang, 1998; Liu et al., 2004). Spruce is the dominant tree
species and generally distributed at 2,400–3,400 m (Zhao et al.,
2009). The Qilian Mountains are one of the most challenging
habitats and abundant ecosystems and have been attracting
tremendous attention in the fields of agriculture, ecology, and
biotechnology. Recently, extensive research focused on soil
nutrient characteristics, community structure, and microbial
diversity in the Qilian Mountains (Zhao et al., 2015; Zhu et al.,
2017; Jian et al., 2020; Lan et al., 2020). The bacterial genus
Paenibacillus was detected in the microbiomes of different moss
species in the Qilian Mountains with plant-promoting traits (Lan
et al., 2020), indicating that strains of the genus Paenibacillus with
plant growth-promoting traits existed in the Qilian Mountains.

The genus Paenibacillus was classified by Ash et al. (1991,
1993) by distinguishing members of the “16S rRNA group 3”
bacilli from other lineages in the genus Bacillus. Subsequently,
taxonomic characteristics of the genus Paenibacillus were further
revised by Shida et al. (1997) and Padda et al. (2017). Until
now, 337 species have been identified in the genus Paenibacillus,
and the type species of this genus is Paenibacillus polymyxa.1

The DNA G + C content of species in Paenibacillus ranges
from 39 to 54 mol% (Kiran et al., 2017). Anteiso-C15:0 is the
predominant cellular fatty acid, and menaquinone-7 (MK-7) is
the major respiratory quinone (Ashraf et al., 2017; Padda et al.,
2017). Several species of the genus were also found to produce
chitinases (Fu et al., 2014; Loni et al., 2014). Members of the genus
have been isolated from various habitats, including desert (Lim
et al., 2006a,b), agricultural soil (Kim et al., 2015), rhizosphere
(Son et al., 2014), honeybee larvae (Genersch et al., 2006), human
feces (Clermont et al., 2015), milk (Scheldeman et al., 2004), fresh
water (Baik et al., 2001; Bae et al., 2010), warm springs (Chou
et al., 2007), and eutrophic lake and glacier (Montes et al., 2004;
Kishore et al., 2010), etc.

Thus, this study was aimed to explore PGPR resources
of the genus Paenibacillus from spruce forests in Qilian
Mountains. A bacterium strain, designated as LC-T2T , was
isolated from high-altitude spruce forests in the Qilian
Mountains. The taxonomic status of strain LC-T2T was
evaluated based on phenotypic, phylogenetic, genotypic,
and chemotaxonomic data. Furthermore, the plant growth-
promotion effects of strain LC-T2T was assessed in Arabidopsis
and white clover (T. repens L.). Our work indicated that novel

1http://www.bacterio.net/paenibacillus.html
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species in Paenibacillus isolated from spruce forests in Qilian
Mountains have potential application values in cultivation
of legume crops.

MATERIALS AND METHODS

Sample Collection and Microorganisms
Isolation
Soil samples were collected from forests of the Qilian Mountains,
Gansu province, China (38◦25′32′′N, 99◦55′40′′E, 3,150 m).
Spruce was the dominant tree species at the altitude of 3,150 m in
the Qilian Mountains. The soil sample was serially diluted with
sterile 0.9% NaCl (w/v) solution, and dilutions were spread on
tryptone soya agar (TSA). All plates were incubated aerobically
at 25◦C for 7 days. Morphologically different single colonies
were randomly picked and further purified. Finally, the purified
isolates were preserved as a glycerol suspension (20%, v/v)
at−80◦C.

Phylogenetic Analysis
The genomic DNA of the isolate was extracted by Bacterial
Genomic DNA Extraction kit (TianGen Biotech Co., Ltd., Beijing,
China) according to manufacturer’s instructions. The 16S rRNA
gene was amplified by PCR using a pair of universal primers,
27F and 1492R, as previous described (Li et al., 2020). The
RNA polymerase β-subunit (rpoB) gene, an iconic housekeeping
gene of the genus Paenibacillus, was amplified with primers rpoB
1698F (5′-AACATCGGTTTGATCAAC-3′) and rpoB 2041R (5′-
CGTTGCATGTTGGTACCCAT-3′) (Yang Y.J. et al., 2018). The
nitrogenase reductase (nif H) gene was amplified using the
primers POLF (5′-TGCGAYCCSARRGCBGGYATCGG-3′) and
POLR (5′-ATSGCCATCATYTCRCCGGA-3′) (Menéndez et al.,
2017). The PCR product was purified by PCR purification
kit (Sangon Biotech Co., Ltd., Shanghai, China) according
to the manufacturer’s instructions. Cloning of the 16S rRNA
gene was executed using a pMD 19-T Vector Cloning kit
(Takara Bio., Inc., Otsu, Japan). Sequencing was performed by
the Sanger method (Beijing AUGCT DNA-SYN Biotechnology
Co., Ltd, Beijing, China). Then, the almost-complete 16S
rRNA, rpoB, and nifH gene sequences were compiled with the
program DNAMAN (version 8.0; Lynnon Biosoft, San Ramon,
CA, United States) (Saitou and Nei, 1987). The EzTaxon-e
server2 (Yoon et al., 2017) was used to calculate the levels of
sequence similarity between strain LC-T2T and related type
strains available in GenBank3 (Sayers et al., 2020). The phylogeny
of 16S rRNA, rpoB, and nifH sequences was reconstructed by
the neighbor-joining (NJ) (Saitou and Nei, 1987), maximum-
likelihood (ML) (Felsenstein, 1981), and maximum-parsimony
(MP) methods (Fitch, 1971) with MEGA 7.0 program (Kumar
et al., 2016). Evolutionary distances were calculated using the
Kimura’s two-parameter model, and bootstrap analysis was used
to evaluate the tree topology by performing 1,000 replications
(Felsenstein, 1985).

2http://www.ezbiocloud.net/apps
3www.ncbi.nlm.nih.gov/genbank/

Draft Genome Sequencing, Assembly,
and Annotation
The draft genome shotgun project was sequenced using paired-
end sequencing technology with the Illumina NovoSeq-PE150
platform (Novogene Biotech Co., Ltd., Tianjin, China). High-
quality genomic DNA was carried out using Bacterial Genomic
DNA Extraction kit (TianGen Biotech Co., Ltd., Beijing, China)
according to standard protocol. The sequencing generated 1-
Gb clean data. A de novo assembly of the reads was carried
out using SOAPdenovo (version 2.04). The completeness of
microbial genomes was assessed using the bioinformatics tool
CheckM (Parks et al., 2015). The complete 16S rRNA gene
sequence of strain LC-T2T was annotated via the RNAmmer
1.2 server (Lagesen et al., 2007) from the genome. The draft
genome was annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (Tatusova et al., 2016; Haft et al.,
2018). The predicted coding sequences (CDSs) and functional
annotation were generated from the National Center for
Biotechnology Information (NCBI) non-redundant database,
Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster
of Orthologous Groups of proteins (COG), and Gene Ontology
(GO) databases. DNA G + C content was calculated from
the draft genome sequence. BLAST algorithm (ANIb) and
the MUMmer ultra-rapid aligning tool (ANIm) were used to
calculate average nucleotide identity (ANI) by the JSpecies
software tool available at the webpage.4 The digital DNA–
DNA hybridization (dDDH) between strain LC-T2T and related
reference strains was calculated by Genome-to-Genome Distance
Calculator 2.1 (GGDC).5

Morphological, Physiological, and
Biochemical Taxonomic Analysis
The morphological, physiological, and biochemical
characterizations such as growth in different bacteriological
media, temperature, pH and NaCl concentrations, the Gram
reaction, motility, oxidase, catalase, hydrolysis of Tween 80,
DNA, casein, starch, and cellulase were carried out according
to Li et al. (2020). Biochemical features were performed using
the API 20NE, API ZYM, and API 50CH systems (bioMérieux).
GENIII MicroPlates (Biolog) were used to check the utilization
of 71 carbon sources as described by the manufacturer’s
instructions. Paenibacillus donghaensis KCTC 13049T , a Xylan-
degrading bacterial strain isolated from east sea sediment, and
Paenibacillus odorifer JCM 21743T , a nitrogen-fixing strain
isolated from wheat roots, were used as reference strains for
comparative taxonomic characteristics (Berge et al., 2002;
Choi et al., 2008). The two reference strains were obtained
from the Korean Collection for Type Cultures (KCTC) and
the Japan Collection of Microorganisms (JCM), respectively.
Cells of strain LC-T2T and the reference strains cultured on
Reasoner’s 2A (R2A) agar at 28◦C were used for biochemical
feature tests. For measurement of nitrogenase activity, strain
LC-T2T and reference strains were grown on nitrogen-free

4http://www.imedea.uib.es/jspecies
5http://ggdc.dsmz.de/distcalc2.php
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medium (Zhuang et al., 2017). After 48 h at 28◦C, strains were
incubated in culture bottles with 10% (v/v) acetylene in air for
2 h and then analyzed for ethylene production by 450-GC gas
chromatography (Berge et al., 2002).

For chemotaxonomic analysis, cells of strain LC-T2T and
reference strains were routinely cultivated on R2A agar at
28◦C and harvested at the mid-exponential growth phase.
The fatty acid profiles were analyzed and identified by
using the Microbial Identification System (Sherlock version
6.1; midi database, TSBA6) after saponification, methylation,
and extraction, according to standard procedures (Sasser,
1990). The polar lipids were extracted and separated by a
chloroform/methanol system and one- and two-dimensional
thin-layer chromatography (TLC) as described previously
(Minnikin et al., 1984; Kates, 1986). Total lipids were detected
using molybdatophosphoric acid, aminolipids were detected
using ninhydrin reagent, phospholipids were detected using
molybdenum blue reagent, and glycolipids were detected using
naphthol/sulfuric acid reagent (Minnikin et al., 1984; Kates,
1986). Respiratory quinones were extracted and purified from
lyophilized cells, then analyzed by high performance liquid
chromatography (HPLC) according to Collins’ method (Collins,
1985).

Evaluation of Plant Growth-Promoting
Abilities
Plate and pot experiments were used to evaluate plant growth-
promoting capabilities of strain LC-T2T . Double-sterile distilled
water (DDW) served as control. Escherichia coli strain DH5α

and commercial B. amyloliquefaciens strain GB03 served as
positive control. Arabidopsis seeds were surface sterilized with
70% ethanol for 3 min, washed with DDW several times, followed
by 1% sodium hypochlorite for 10 min, finally thoroughly
washed with DDW for 8–10 times, and then planted on one
side of specialized plastic Petri dishes (100 × 15 mm) that
contained a center partition; both sides contain half-strength
Murashige and Skoog (MS) solid medium with 0.8% (w/v) agar
and 1.0% (w/v) sucrose. Seeds were vernalized for 2 days at
4◦C in the absence of light. Bacterial suspensions were prepared
according to previously described methods (He et al., 2018).
Cells were harvested from R2A plates, put into DDW to yield
1.0 × 109 colony forming units (CFU) ml−1 as determined by
optical density, and serially diluted with plate counts. Then,
10 µl of bacterial suspension was spotted at one side of the
Petri dish and 2-day-old Arabidopsis seedlings were planted on
the other side of the Petri dish. Seedlings were grown under
growth chamber (Panasonic, Japan) with a 16/8-h light/dark cycle
under 200 µmol m−2 s−1 total light intensity, a temperature of
22± 2◦C, and a relative humidity of 50–55%. The root system was
scanned by an EPSON scanner, and morphological parameters
were analyzed using the root analysis system WinRHIZO (v5.0,
Regent Instruments, Quebec, QC, Canada) after 14 days. In
pot experiments, white clover (T. repens L.) seeds (presented
by Wanhai Zhou at Gansu Agricultural University, China) were
surface sterilized for 1 min in 70% ethanol followed by 10 min
in 2% sodium hypochlorite; then, seeds were rinsed with sterile

water for 10 times and germinated in filter paper for 3 days.
The seedlings with uniform growth were transferred to a plastic
pot (diameter 9 cm, depth 10 cm) containing autoclave-sterilized
commercial vermiculite–soil mixture and watered with modified
half-strength Hoagland’s solution three times per week. White
clover seedlings were inoculated with 2 ml of prepared bacterial
suspension culture as bacterial treatments or the same volume
of DDW as control. Thirty-day-old plants were harvested for
plant growth and physiological index measurements. When
sampling, the rhizosphere soil samples were collected from
the surface of root, and the culturable bacteria in rhizosphere
were isolated again by multiple-dilution method to verify the
effective inoculation.

Data Analysis
Results of the growth and physiological parameters were showed
as means with standard errors (n = 6). Statistical analysis
was assessed by one-way analysis of variance (ANOVA) using
SPSS statistical software (Ver. 19.0, SPSS Inc., Chicago, IL,
United States). Duncan’s multiple range test was executed to
detect a difference between means at a significance level of
P < 0.05.

RESULTS

Phylogenetic Analysis
The complete 16S rRNA gene sequence (1,546 bp) was obtained
from draft genome (GenBank accession number: OK058271).
Comparative analysis built on 16S rRNA gene sequence revealed
that strain LC-T2T was phylogenetically affiliated to the genus
Paenibacillus in the family Paenibacillaceae. On the basis of
phylogenetic analysis, the highest level of similarity was found
between strain LC-T2T and P. donghaensis KCTC 13049T

(97.4%), followed by P. odorifer JCM 21743T (96.8%) and other
recognized members of the genus Paenibacillus (<96.7%). In
the neighbor-joining phylogenetic tree, strain LC-T2T fell within
the cluster comprising the Paenibacillus species and formed
a distinct genetic lineage with P. donghaensis KCTC 13049T

(Supplementary Figure 1) and likewise in the tree based on the
ML and MP methods (data not shown). The rpoB gene fragment
of strain LC-T2T (GenBank accession number: OK094314)
shared 87.2% sequence identity with P. donghaensis KCTC
13049T and less than 84.8% identity with other members of the
genus Paenibacillus (Figure 1). These data further confirmed
that target lineage was belonging to the genus Paenibacillus
and closely clustered with P. donghaensis KCTC 13049T . The
comparison of the nifH gene sequence of strain LC-T2T

(GenBank accession number: OK094315) with those of the type
strains also showed that P. donghaensis KCTC 13049T was
the most closely related living species, with a similarity value
of 81.4%, followed by P. odorifer JCM 21743T (80.1%). The
remaining available nifH sequences of the type species of the
genus Paenibacillus showed less than 80% similarity to strain
LC-T2T . The phylogenetic analysis of nifH indicated that strain
LC-T2T clustered with P. donghaensis KCTC 13049T and was
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Paenibacillus borealis KK19T (AY493866)

Paenibacillus graminis RSA19 T (AY493861)
Paenibacillus silagei DSM 101953 T (LC155956)

Paenibacillus odorifer TOD45T (AY493862)
Paenibacillus donghaensis JH8T (CP021780)

Paenibacillus monticola LC-T2T (OK094314)

Paenibacillus amylolyticus DSM 11730T (AY728292)
Paenibacillus brasilensis PB172T (AY493868)

Paenibacillus polymyxa DSM36T (AY493864)

Paenibacillus jamilae DSM 13815T (AY728281)
Paenibacillus glucanolyticus NRRL B-14679T (AY728284)
Paenibacillus lactis MB1871T (AY728282)

Paenibacillus lautus NRRL-NRS-666T (KP203846)
Paenibacillus glucanolyticus DSM 5162 T (KP203847)
Paenibacillus campinasensis KCTC 0364BP (AY728283)

Paenibacillus antarcticus LMG 22078T (AB468057)

Paenibacillus sanguinis 2301083 T (AY728287)
Paenibacillus favisporus GMP01T (AY728288)

Paenibacillus dendritiformis TypeC (AY728286)
Paenibacillus thiaminolyticus DSM 7262T (AY728285)

Paenibacillus wooponensis WPCB018 T (HQ596203)
Paenibacillus massiliensis 2301065T (AY728294)

Paenibacillus daejeonensis KCTC 3745T (AY728293)
Paenibacillus susongensis M327 T (KJ934388)

Paenibacillus ehimensis KCTC 3748T (AY728278)
Paenibacillus validus Q1T (AY728279)

Paenibacillus macquariensis subsp. defensor M4-1T (AB468054)
Bacillus subtilis subsp. subtilis NBRC 13719T (AB326092)
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99

99

99
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FIGURE 1 | Maximum Likelihood phylogenetic trees based on partial rpoB gene sequences showing the relationships between strain LC-T2T and closely related
species. Bacillus subtilis subsp. subtilis NBRC 13719T was used as the outgroups. Numbers at branching points are bootstrap values > 50%. Bar, 0.1 substitutions
per nucleotide position. Filled circles indicate that the corresponding nodes were also formed in neighbor-joining and maximum-parsimony trees. rpoB gene
sequences of Paenibacillus donghaensis JH8T was obtained from the genome sequence of strain P. donghaensis JH8T .

phylogenetically divergent from the cluster of any recognized
species of the genus Paenibacillus (Supplementary Figure 2).

Genome Characteristics of Paenibacillus
monticona sp. nov. LC-T2T

Draft genome sequencing of strain LC-T2T (accession number:
WJXB00000000) yielded a length of 7,082,651 bp with 35 contigs
(total number > 500 bp) and N50 value of 657,675 after
assembly. All contigs were larger than 536 bp, and the largest
was 1,092,698 bp. The sequencing coverage was about ×200.
A total of 6,236 genes were predicted, out of which 5,978 were
protein-coding genes, 112 genes for RNA, and 146 pseudo genes
(Supplementary Table 1). The DNA G+ C content of strain LC-
T2T was 46.0 mol%, which fell within the range given for species
of the genus Paenibacillus (Yang D. et al., 2018). The pairwise
ANIb, ANIm, and dDDH values between the genome of LC-T2T

and four genomes of related species were 72.6–77.2, 83.3–84.3,
and 20.4–23.0%, respectively. These values were obviously lower

than the critical value of genomic species identification. The
detailed results are displayed in Table 1.

Insights From the Genome Sequence
Strain LC-T2T was isolated from high-altitude spruce forests
in the Qilian Mountains. As shown in Table 2, the genome
of strain LC-T2T contained a large number of genes that
were related to plant growth and habitat adaptation, such as

TABLE 1 | Average nucleotide identity (ANIb and ANIm) and DNA–DNA
hybridization (DDH) values (%) of strain LC-T2T with phylogenetically related
species of the genus Paenibacillus.

Species name ANIb ANIm DDH

Paenibacillus donghaensis KCTC 13049T 72.6 83.3 21.2

Paenibacillus odorifer JCM 21743T 77.2 84.3 23.0

Paenibacillus wynnii DSM 18334T 75.1 83.7 20.4

Paenibacillus borealis DSM 13188T 74.3 83.7 21.0
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TABLE 2 | Putative gene identified in LC-T2T genome related to plant associated
lifestyle and habitat adaptation.

Categories Gene annotation Gene numbers

Plant growth
promotion

Phosphate solubilization

Pyruvate kinase (pyk) 2

Phosphoenolpyruvate carboxylase
(ppc)

1

Acetate kinase (ackA) 1

Citrate kinase (citA/citZ) 2

Shikimate kinase (aroK) 1

L-lactate dehydrogenase (ldh) 1

Alkaline phosphatase (phoP/phoR) 6

Nicotinamide adenine dinucleotide
(NADH) pyrophosphatase (nudC)

1

Auxin biosynthesis

Tryptophan synthase α chain (trpA) 1

Tryptophan synthase β chain (trpB) 1

Indole-3-glycerol phosphate synthase
(trpC)

1

Tryptophan–tRNA ligase (trpS) 1

Nitrogen fixation

Nitrogenase iron protein (nifH) 1

Others related to plant promotion

Arginine decarboxylase (speA) 1

Acetolactate synthase small/large
subunit (ilvH/ilvB)

2

Habitat
adaptation

Plant rhizosphere environments

Flagellar motility (motA/motB/swrC) 3

Chemotaxis
(cheA/cheY /cheR/cheB/cheW)

12

Oxidative stress alleviation

Superoxide dismutase [Mn] (sodA) 1

Superoxide dismutase [Fe] (sodF ) 1

Catalase (katA) 1

Cold and heat shock protein

Cold shock protein (cspA) 2

Heat shock protein (Hsp20) 1

Transcriptional regulator of stress and
heat shock response (ctsR)

1

10 genes coding for phosphate solubilization (pyk, ppc, ackA,
citA, citZ, aroK, ldh, phoP, phoR, and nudC), four for auxin
biosynthesis (trpA, trpB, trpC, and trpS), one for nitrogen fixation
(nifH), and three for other processes of growth promotion
(speA, ilvH, and ilvB), suggesting that strain LC-T2T had the
ability to promote plant growth. The genome of strain LC-T2T

contained several genes associated with secretion systems, biofilm
formation, or motility. For instance, three genes responsible
for flagellar motility (motA, motB, and swrC) and five genes
responsible for chemotaxis (cheA, cheY, cheR, cheB, and cheW)
indicated that strain LC-T2T could get attracted to or move
toward nutrients and interact with plants. Additionally, extreme
conditions, such as low temperature, hypoxia, alpine, strong
ultraviolet, erosive forces, and thaw–freezing cycles, prevailed

in the Qilian Mountains at high altitudes and shaped abundant
extreme microorganisms. The genome of strain LC-T2T is well
equipped with several genes that could alleviate the reactive
oxygen species. Some genes responsible for superoxide dismutase
[Mn] (sodA), superoxide dismutase [Fe] (sodF), and catalase
(katA), demonstrated that strain LC-T2T could cope with
rhizosphere oxidative environments. Notably, several genes of
strain LC-T2T genome responded to extreme temperature at the
height of 3,150 m in the Qilian Mountains. Genes coding for cold
shock (cspA) and heat shock (Hsp20) showed that strain LC-T2T

was able to adapt the temperature variation. In accordance with
the data presented above, the draft genome analysis provided
insights into the genetic features to support its plant-associated
lifestyle and habitat adaptation.

Phenotypic and Biochemical
Characteristics
The cell of strain LC-T2T was aerobic, Gram-negative
(Supplementary Figure 3A), rod-shaped (4.2–4.5× 0.6–0.7 µm)
(Supplementary Figure 3B), and motile via peritrichous flagella
(Supplementary Figure 3C). Colonies of strain LC-T2T on
R2A agar were white, round, and smooth with approximately
0.5–1.5 mm in diameter after culture at 28◦C for 3 days. It
was able to grow aerobically at 4–32◦C (optimum at 25–28◦C),
at pH 6.0–11.5 (optimum at 8.0–8.5), and with 0–1.5% (w/v)
NaCl (optimum at 0%). Strain LC-T2T and the reference
strains were positive for catalase and reduction of nitrate
to nitrite, but they were negative for oxidase and hydrolysis
of DNA, Tween 80, and cellulose. The detailed differential
physiological and biochemical characteristics of strain LC-T2T

and its closest type strains of the genus Paenibacillus are given
in Table 3 and Figure 2. Strain LC-T2T was distinguished from
the reference strains in API 20NE test strips: assimilation of
glucose, mannitol, and N-Acetyl-glucosamine. Strain LC-T2T

also differed from the closely related species in API ZYM
test strips: cystine arylamidase, α-chymotrypsin, and acid
phosphatase. Meanwhile, strain LC-T2T also distinguished from
the reference-type species in API 50CH test strips: D-ribose and
methyl-α-D-glucopyranoside, N-acetyl-glucosamine, and inulin
test. In the aspect of nitrogenase activity, the amount of strain
LC-T2T and reference strains, P. donghaensis KCTC 13049T and
P. odorifer JCM 21743T , that could reduce acetylene to ethylene
were 19.7, 15.5, and 25.4 (nmol C2H4) (mg protein)−1 h−1,
respectively (Table 3).

The predominant cellular fatty acids (>10.0% of total fatty
acids) of strain LC-T2T was identified as anteiso-C15:0 (56.5%)
and C16:0 (12.3%) (Figure 2). The fatty acid profile of strain
LC-T2T was similar to the reference strains, and all three species
also contained anteiso-C15:0 (40.3–56.5%) and C16:0 (12.3–
22.5%) as their major fatty acid. Moreover, the proportion of
anteiso-C15:0 of strain LC-T2T was 2.4- and 1.2-fold higher than
that of P. donghaensis KCTC 13049T and P. odorifer JCM 21743T ,
respectively, whereas the content of C16:0 of strain LC-T2T was
nearly two-fold lower than that of the reference strains (Figure 2).
The polar lipid pattern of strain LC-T2T was dominated by the
presence of large amounts of diphosphatidylglycerol (DPG)
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TABLE 3 | Characteristics that differentiate the novel species LC-T2T from
phylogenetically related species of the genus Paenibacillus.

Characteristic 1 2 3

Habitat Soil Sediment Rhizosphere

Temperature range (optimum) (◦C) 4–32 (25–28) 4–30 (20–25)* 5–35 (30)#

pH range (optimum) 6–11.5 (8.0–8.5) 6–10 (ND)* 5.0–10.0 (ND)$

NaCl range (optimum) 0–1.5 (0%) 0–3.0 (ND)* 0–3.0 (ND)$

Assimilation of 20NE

Glucose − w +

Mannitol + − −

N-Acetyl-glucosamine – – +

Enzyme activity (API ZYM)

Cystine arylamidase − w −

α-chymotrypsin − − w

Acid phosphatase w - w

Acid production from API 50CH

D-ribose − + +

Methyl-α-D-glucopyranoside + − +

D-mannose + w w

N-acetyl-glucosamine + − +

Inulin − − +

Mannitol + + −

D-melezitose w w −

D-turanose + + −

Nitrogenase activity [(nmol C2H4)
(mg protein) −1 h−1]

19.7 ± 1.6ab 15.5 ± 2.4b 25.4 ± 1.7a

DNA G + C content (mol%) 46.0 53.1* 44.0#

Strains: 1, LC-T2T ; 2, Paenibacillus donghaensis KCTC 13049T ; 3, Paenibacillus
odorifer JCM 21743T . Data for those strains are from this study, except
as labelled. All strains were positive for motility, reduction of nitrate to
nitrite, catalase, alkaline phosphatase, esterase (C4), esterase lipase (C8),
leucine arylamidase, valine arylamidase, naphthol-AS-BI-phosphohydrolase,
α-galactosidase, β-galactosidase, α-glucosidase, and β-glucosidase activities.
Hydrolysis of aesculin, assimilation of: maltose. All strains were negative for lipase
(C14), trypsin, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase, and
α-fucosidase activities and oxidase, hydrolysis of: DNA, Tween 80, and cellulose,
assimilation of: mannose, arabinose, gluconate, citrate, adipic acid, capric
acid, and phenylacetic acid. +, positive; −, negative; w, weakly positive; ND,
no data available.
∗Data from Choi et al. (2008) and Jung et al. (2017).
#Data from Berge et al. (2002).
$Data from Liu et al. (2018).

and phosphatidylethanolamine (PE) and small amounts
of phosphatidylglycerol (PG) and several unidentified
ingredients as follows: three unidentified phospholipids (PL1–
3), two unidentified aminophospholipids (APL1–2), and one
unidentified glycolipid (GL1) (Supplementary Figure 4). MK-7
was detected as the only respiratory quinone in strain LC-T2T .

Growth Promotion of Arabidopsis
thaliana Exposed to Strain LC-T2T

The apparent growth differences of Arabidopsis were observed
between LC-T2T exposure and the other three treatments after
2 weeks of plant growth (Figure 3A). The significant differences
were mainly observed on plant roots. Specifically, the total
root length was significantly greater for LC-T2T-exposed roots
(P < 0.05) by 61.0, 50.4, and 36.7% compared to control, DH5α,

and GB03 exposure, respectively (Figure 3B). The highest root
surface area and root projection area were also observed from
exposure to LC-T2T VOCs. The root surface area was increased
(P < 0.05) by 61.3, 53.1, and 28.8% (Figure 3C), and the root
projection area was enhanced (P < 0.05) by 61.3, 53.1, and 28.7%
(Figure 3D) compared to control, DH5α, and GB03 exposure,
respectively. The root fork numbers was increased over 1.9-
fold (P < 0.05) with LC-T2T VOCs compared to control and
DH5α exposure, respectively. However, the root fork numbers of
LC-T2T were little lower than GB03 exposure (Figure 3E).

The Effect of Strain LC-T2T on the
Growth of White Clover
The influence of strain LC-T2T on the growth of white clover was
further assessed. Shoot height was increased by 31.5 (P < 0.05),
42.7 (P < 0.05), and 7.3% compared to control, DH5α, and
GB03 treatments, respectively (Figure 4C), and root length was
increased by 24.4 (P < 0.05) and 10.9% compared to control and
DH5α treatments, respectively (Figure 4D).

Plants inoculated with LC-T2T had a higher biomass than
that of control, DH5α, and GB03. Shoot fresh weight was raised
with the LC-T2T group by 147.5 (P < 0.05), 117.6 (P < 0.05),
and 2.0% (Figure 4E) and shoot dry weight was increased with
the LC-T2T group by 128.6 (P < 0.05), 127.1 (P < 0.05),
and 10.8% compared to control, DH5α, and GB03 treatments,
respectively (Figure 4F). Likewise, the root fresh weight of LC-
T2T-inoculated plants was about 216.2 and 89.8% (Figure 4G)
and the root dry weight of LC-T2T-inoculated plants was about
104.7 and 86.5% (Figure 4H) higher than those of the control
and DH5α treatments, respectively (P < 0.05). However, the root
fresh weight and root dry weight of LC-T2T were a little lower
compared to GB03 exposure (Figures 4G,H).

Strain LC-T2T can also enhance the accumulation of
plant biomass by root activity and chlorophyll content. Root
activity was improved with the LC-T2T group by 57.7 and
60.2% compared to control and DH5α treatments, respectively
(P < 0.05; Supplementary Figure 5A). The content of
chlorophyll a of LC-T2T-inoculated plants was increased by 25.9
(P < 0.05), 27.1 (P < 0.05), and 1.8% compared to control,
DH5α, and GB03 treatments, respectively (Supplementary
Figure 5B), and the content of chlorophyll b was improved
by 2.1- (P < 0.05), 1.2- (P < 0.05), and 1.0-fold with LC-T2T

treatment compared to control, DH5α, and GB03 treatments,
respectively (Supplementary Figure 5B).

In addition, the photosynthetic rate was enhanced with the
LC-T2T group by 13.7 and 26.5% compared to control and
DH5α treatments, respectively (Supplementary Figure 5C). The
transpiration rate was raised by 1.2- and 1.5-fold (P < 0.05)
with LC-T2T-inoculated plants (Supplementary Figure 5D), and
the stomatal conductance was increased by 17.4 and 39.1%
(Supplementary Figure 5E) compared to control and DH5α

treatments, respectively. The photosynthetic rate, transpiration
rate, and stomatal conductance of LC-T2T-inoculated plants
were slightly lower than those of GB03 treatment, and
differences were not statistically significant (Supplementary
Figures 5C–E). The water-use efficiency was improved by
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FIGURE 4 | Effects of LC-T2T inoculation on seedling growth of white clover. Escherichia coli (DH5α) and Bacillus amyloliquefaciens (GB03) as positive control. (A,B)
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and bars indicate SDs (n = 6). Columns with different letters indicate significant difference at P < 0.05 (Duncan test).

1.8- (P < 0.05), 1. 2-, and 1.2-fold with LC-T2T treatment
compared to control, DH5α, and GB03 treatments, respectively
(Supplementary Figure 5F).

Effectiveness of LC-T2T Inoculation
Culturable bacterial strains have been isolated from the
rhizosphere after 20 days of inoculation to verify the existence

of inoculated strains. The number of genera from LC-T2T-
inoculated rhizosphere soil was 1.7-fold higher than that of
control and DH5α, respectively. In the diversity and number
of species, LC-T2T-inoculated soil was also superior to control
and DH5α-inoculated soil (Table 4). Some isolates were similar
to strain LC-T2T and GB03, respectively, except for DH5α

treatment (Supplementary Tables 2, 3). The species in the genus
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Bacillus and Pseudomonas were also isolated from all inoculated
soils, whereas a higher abundance of Rhodococcus qingshengii was
found in control and DH5α-inoculated soils.

DISCUSSION

Researchers have always sought to isolate novel species of the
genus Paenibacillus from different habitats. As an important
ecological security barrier in western China, the Qilian
Mountains possess abundant glacier, water, forest, grassland, and
animal resources (Zhao et al., 2009). The rich and diverse natural
eco-environments of the Qilian Mountains harbor unique and
great diversity of microbial resources. In the current work, a
novel Paenibacillus species from spruce forest at a high altitude of
3,150 m in the Qilian Mountains was isolated and characterized.
A phylogenetic analysis of 16S rRNA gene sequence, one of the
most powerful and frequently used methods for identification of
bacteria (Busse et al., 1996), revealed that strain LC-T2T was a
member of the genus Paenibacillus with the highest similarity
to P. donghaensis KCTC 13049T (97.4%). To further define
the phylogenetic affinity of strain LC-T2T , we also analyzed
rpoB gene sequence, which was more discriminative than 16S
rRNA gene sequence in distinguishing members of the genus
Paenibacillus (da Mota et al., 2004). Nitrogen fixation-related
genes are widely used as marker genes to analyze the phylogenetic
relationship of nitrogen-fixing bacteria and archaea (Jacobson
et al., 1989; Choo et al., 2003; Brigle et al., 2011; Gaby and
Buckley, 2014). Most members of the genus Paenibacillus have
been found to possess nitrogenase activity. Therefore, nifH
gene sequence was also used to distinguish members of the
genus Paenibacillus. In all phylogenetic trees (Figure 1 and
Supplementary Figures 1, 2), strain LC-T2T was obviously
different from all known taxa. In brief, the phylogenetic analysis
based on 16S rRNA, rpoB, and nifH gene sequences highlighted
that strain LC-T2T was assigned to a novel species in the genus
Paenibacillus.

At the genomic level, this study provided more robust
evidence to support the taxonomic status of strain LC-T2T .
The dDDH value and ANI value between strain LC-T2T and
its closest phylogenetic relatives were lower than 23.0 and
84.3%, respectively. Studies have shown that the cut-off of 70%
genomic relatedness with dDDH was generally recommended
for species delineation and has been found to correlate to 95–
96% ANI (Richter and Rosselló-Móra, 2009; Meier-Kolthoff et al.,
2013, 2014a,b). In the current work, both dDDH value and
ANI value were significantly below the threshold for species
circumscriptions. These data demonstrated that strain LC-T2T

should be considered as the representative of a novel species
of the genus Paenibacillus. Meanwhile, rpoB gene sequence
similarity can provide efficient supplement to dDDH and
ANI measurements to delineate bacterial species and genera,
especially for Paenibacillus (Adékambi et al., 2008). On the
basis of previous research, 97.7% sequence similarity of rpoB
gene was, as a threshold for species delineation, correlated
with a dDDH value < 70% and an ANI value < 94.3%
(Adékambi et al., 2008). Here, we found that rpoB gene sequence

identity of strain LC-T2T with the other Paenibacillus species
was lower than 87.2%. In summary, the values of ANIb,
ANIm, and dDDH between strain LC-T2T and the typical
strains for the closest Paenibacillus species were obviously lower
than the acceptable threshold for bacterial species definition
(Table 1), indicating that strain LC-T2T represented a novel
Paenibacillus species.

A classification of strain LC-T2T at species level was
greatly supported by phenotypic, physiological, and
chemotaxonomic data. As shown in Table 3, Figure 2, and
Supplementary Figures 3, 4, the similarities and differences
of strain LC-T2T and its closest typical strains in the genus
Paenibacillus are presented. Members of Paenibacillus were
known to be Gram-positive, variable, and negative (Aw et al.,
2016). Strain LC-T2T was found Gram-negative during the
whole culture period, which was significantly different from
the two reference strains (Berge et al., 2002; Choi et al., 2008).
The dominant fatty acids, polar lipid profiles, and respiratory
quinone of strain LC-T2T were in accordance with those found
in members of the genus Paenibacillus (Ash et al., 1993; Shida
et al., 1997; Lim et al., 2006a,b; Priest, 2009; Huang et al.,
2016; Ashraf et al., 2017; Yang D. et al., 2018; Yang Y.J. et al.,
2018). However, differences were observed in proportion of
these components, which enabled strain LC-T2T to be clearly
distinguished. Additionally, the nitrogenase activity of strain
LC-T2T was about 27.1% higher than that of P. donghaensis
KCTC 13049T and 22.4% lower than that of P. odorifer JCM
21743T (Table 3). Previous studies suggested that P. donghaensis
KCTC 13049T and P. odorifer JCM 21743T exhibited a weak
nitrogenase activity (Berge et al., 2002; Jin et al., 2011; Xie et al.,
2012; Zhuang et al., 2017). In the current work, nitrogenase
activities of reference strains were in good agreement with
the results of previous studies (Berge et al., 2002; Jin et al.,
2011; Xie et al., 2012; Zhuang et al., 2017). Therefore, strain
LC-T2T could also be classified as bacterial strains with a weak
nitrogenase activity.

Previous models of rhizobacterial-stimulated plant growth
promotion suggested that soil microbes can drive plant growth
promotion via emission of volatile chemicals (Timmusk et al.,
1999; Ryu et al., 2003; Zhang et al., 2007; Luo et al., 2020). In
Arabidopsis, volatile emissions from GB03 can regulate auxin
homeostasis, transport, and cell expansion (Ryu et al., 2003;
Zhang et al., 2007). In this work, strain LC-T2T conferred an
increased total root length, root surface area, root project area,
and root fork numbers in Petri dish-grown Arabidopsis seedlings
via emission of volatile chemicals (Figure 3). Interestingly, the
root length of seedlings inoculated with LC-T2T was longer than
that inoculated with GB03, but the number of root fork was
less than that inoculated with GB03, which might be attributed
to GB03 VOCs that could increase the root auxin content and
auxin accumulation at the lateral root initiation sites (Zhang et al.,
2007; Xie et al., 2009; Zamioudis et al., 2013). Studies showed
that GB03 VOCs specifically regulated plant auxin homeostasis
to accelerate leaf expansion. Conveniently, adventitious roots
seemed to successfully offer such a balance (Zhang et al., 2007).
However, in the present study, LC-T2T VOCs mainly promoted
the plant growth through increasing root length rather than the
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TABLE 4 | The number of genera counted from isolates in the white clover rhizosphere soil.

Treatments Control DH5α GB03 LC-T2

Number of genus 6 6 10 10

Genus Bacillus
Flavobacterium Microbacterium
Paenarthrobacter Rhodococcus

Sphingobacterium

Microbacterium
Paenarthrobacter

Paracoccus
Pseudomonas Rhodococcus

Sphingomonas

Arthrobacter
Bacillus

Curvibacter
Flavobacterium

Leifsonia
Paracoccus

Paenarthrobacter
Pseudomonas

Pseudarthrobacter Rhodococcus

Arthrobacter
Asticcacaulis

Bacillus
Exiguobacterium

Flavobacterium Microbacterium
Paenibacillus

Pseudomonas
Rhodococcus
Sphingopyxis

number of adventitious roots in Arabidopsis. Combined with
the data of LC-T2T genome, genes coding for the production
of auxins were identified (Table 2). Therefore, it was inferred
that a different mechanism existed in the regulation patterns
of hormone-related genes between strain LC-T2T and GB03,
which requires to be further verified. In addition, volatile
metabolites from some species of the genus Paenibacillus could
also activate induced systemic resistance (ISR) against pathogenic
microorganisms (Timmusk et al., 2005; Kiran et al., 2017; Daud
et al., 2019). However, whether the VOCs from strain LC-
T2T could also prevent pathogenic microorganisms remains to
be investigated.

The beneficial effects of PGPR arouse interests and have been
studied in various plants over the past decades worldwide (Zhao
et al., 2016; Brito et al., 2017; Backer et al., 2018; Kumari and
Thakur, 2018). Various studies demonstrated that soil inoculation
with PGPR can promote plant growth, increase crop yields,
enhance plant stress tolerance, and augment reproductive success
(Han et al., 2014; Niu et al., 2016; Ke et al., 2019). The interest
in Paenibacillus has mounted up since many strains have been
found to possess potential agronomic value (e.g., Paenibacillus
ehimensis, Paenibacillus alvei, P. polymyxa, and Paenibacillus
riograndensis) (Antonopoulos et al., 2008; Naing et al., 2014;
Brito et al., 2017). Kumari and Thakur (2018) demonstrated that
treatment with Paenibacillus sp. ISTP10 significantly improved
root fresh weight (131%), shoot fresh weight (105.14%), and
total chlorophyll content (77.85%) of cotton in Cd-contaminated
soil. White clover (T. repens L.), as a kind of high-quality
forage in northwest China, has been gradually recognized of its
advantages (Zhang et al., 2020). Therefore, its yield and quality
have attracted considerable attention. However, available studies
involved in the interaction of white clover with Paenibacillus
sp. were rarely reported. Here, the substantial effects of the
novel species of Paenibacillus LC-T2T on the growth of white
clover were further assessed after it was found to have a positive
response on the roots of A. thaliana. The plant appearance
became larger, and all physiological parameters showed rising
tendency in varying degrees with LC-T2T treatment compared to
the control and DH5α treatments (Figure 4 and Supplementary
Figure 5). Noticeably, shoot weight and root weight of samples
inoculated with LC-T2T were almost twice as higher compared
to control and DH5α treatments (Figures 4E–H). Interestingly,
shoot height and shoot weight of LC-T2T-inoculated plants were

slightly higher than those of GB03-inoculated plants. However,
root length and root weight of LC-T2T were slightly lower than
GB03, which was similar to results from plate experiment. Kim
et al. (2011) found that among the selected 20 representative
PGPR, most of the recognized genera were Paenibacillus, Bacillus,
and Pseudomonas, which could remarkably enhance plant height,
stem diameter, and fresh weight of cucumber. However, there was
no obvious correlation between different isolates on the growth of
cucumber based on PGPR genetic diversity, which suggested that
there were differences in the regulation mechanism of different
strains on cucumber growth. Therefore, it was supposed that
strain LC-T2T and GB03 had different regulation patterns on the
shoot and root of plant growth promotion, which needs to be
further explored.

The success of colonization in the rhizosphere was one
of the prerequisites for microbial inoculants to exhibit their
plant growth-promotion characteristics (Mosimann et al., 2017;
Mawarda et al., 2020). In this work, numerous bacterial
strains were found from the rhizosphere soil after 20-day
inoculation, and the number of genera of the isolates from
LC-T2T-inoculated soil was almost twice that of control and
DH5α-inoculated soil (Table 4). Some isolates were found to
be similar to strain LC-T2T (Supplementary Table 2). These
results suggested that rhizosphere inoculation with LC-T2T was
effective. Strain LC-T2T had the capability of rapidly adapting to
the environment, recruiting more rhizobacteria, and inhibiting
pathogenic bacteria, which were vital for host plant growth
promotion (Schreiter et al., 2014; Ke et al., 2019). In addition,
species belonging to the genus Bacillus and Pseudomonas were
also found in all inoculated rhizosphere soils, indicating that
the genus Bacillus and Pseudomonas were the dominant genera
in the soil (Zaidi et al., 2009). Also, a kind of carbendazim-
degrading bacterium species, R. qingshengii, were obtained from
DH5α-inoculated rhizosphere soil that probably inhibited or
inactivated other microorganisms while degrading carbendazim
(Xu et al., 2007). These results demonstrated that strain DH5α

had poor survival and colonization ability in the rhizosphere
and was at a competitive disadvantage (Majidzadeh and Fatahi-
Bafghi, 2018; Chen et al., 2019). In light of the above research
results, we supposed that both LC-T2T VOCs and soil inoculation
of LC-T2T could improve plant growth, and LC-T2T could
be qualified as a kind of PGPR candidate for agricultural
crop production.
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CONCLUSION

Sequence analysis of housekeeping genes (16S rRNA and
rpoB) and nif H gene demonstrated that strain LC-T2T

could be representative of a new species within the genus
Paenibacillus. The dDDH, ANIb, and ANIm analyses confirmed
this presumption with their values less than 23.0, 77.2, and 84.3%,
respectively. The distinctness and potential beneficial functions of
strain LC-T2T at the species level was also supported by genomic
data. The taxonomic status of strain LC-T2T was further clarified
according to the content of anteiso-C15:0 and C16:0 and the
profiles of DPG, PE, and PG. The above results clearly located
that strain LC-T2T is a novel species within Paenibacillus. This
work also established that rhizosphere inoculation with strain
LC-T2T could significantly increase plant growth of legume crops
like white clover, which made strain LC-T2T a potential excellent
PGPR strain for practical application in legume crops.

Description of Paenibacillus monticola
sp. nov.
Paenibacillus monticola (mon.ti’co.la. L. n. mons, -ntis mountain;
L. suff. -cola, inhabitant; N.L. masc. n. monticola, living
in the mountains).

Cells are Gram-stain-negative, rod-shaped (4.2–4.5 × 0.6–
0.7 µm) and motile by means of peritrichous flagella.
Colonies of strain LC-T2T were white, round, and smooth
with approximately 0.5–1.5 mm in diameter after culture
at 28◦C for 3 days on R2A agar. The isolate grew well on
R2A agar, ISP 2 agar, PYG agar, and TY agar and weakly on
NA and TSA, but no growth occurs on MA, LB agar, and
MacConkey agar. Growth of strain LC-T2T occurred at 4–32◦C
(optimum, 25–28◦C), at pH 6.0–11.5 (optimum, 8.0–8.5), and
with 0–1.5% (w/v) NaCl (optimum, 0%). Strain LC-T2T was
positive for catalase, the reduction of nitrate to nitrite, and
the assimilation of mannitol, but it was negative for oxidase
and hydrolysis of cellulose, Tween 80, and DNA. In API
ZYM test strips, strain LC-T2T was as follows: positive for
alkaline phosphatase, acid phosphatase, esterase (C4), esterase
lipase (C8), leucine arylamidase, valine arylamidase, naphthol-
AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase,
α-glucosidase, and β-glucosidase activities and negative for lipase
(C14), trypsin, β-glucuronidase, N-acetyl-β-glucosaminidase,
α-mannosidase, cystine arylamidase, α-chymotrypsin, and
α-fucosidase activities. Acid is produced from methyl-β-D-
xylopyranoside, D-mannose, N-acetyl-glucosamine, mannitol,
D-turanose, L-arabinose, D-cellobiose, D-lactose, D-raffinose,
D-turanose, D-sucrose, arbutin, and esculin. The following
compounds are utilized as sole carbon sources in the GENIII
microplates: Dextrin, D-maltose, D-trehalose, D-cellobiose,
gentiobiose, sucrose, D-turanose, stachyose, D-raffinose, α-D-
lactose, D-melibiose, N-acetyl-D-glucosamine, α-D-glucose,
D-mannose, D-fructose, D-galactose, D-sorbitol, and D-mannitol.
The predominant cellular fatty acids (>10.0% of total fatty acids)
of strain LC-T2T were anteiso-C15:0 and C16:0. The major polar
lipids of strain LC-T2T were established as DPG, PE, PG, and
several unidentified ingredient as follows: three unidentified

phospholipids (PL1–3), two unidentified aminophospholipids
(APL1–2), and one unidentified glycolipid (GL1). Menaquinone-
7 (MK-7) was detected as the only respiratory quinone. The DNA
G+ C content is 46.0 mol%.

The type strain is LC-T2T (=CCTCC AB 2019254T = KCTC
43175T), isolated from spruce forest in the Qilian Mountains,
Gansu province, China (38◦25′32′′N, 99◦55′40′′E).
The GenBank/EMBL/DDBJ accession number for 16S
rRNA, rpoB, and nifH gene sequence and the whole-
genome sequence of strain LC-T2T can be found at:
https://www.ncbi.nlm.nih.gov/genbank/, OK058271, OK094314,
OK094315, and WJXB00000000, respectively.
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