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Abstract

Background: Reduced chemosensitivity of solid cancer cells represents a pivotal obstacle in clinical oncology. Hence, the
molecular characterization of pathways regulating chemosensitivity is a central prerequisite to improve cancer therapy. The
hypoxia-inducible factor HIF-1a has been linked to chemosensitivity while the underlying molecular mechanisms remain
largely elusive. Therefore, we comprehensively analysed HIF-1a’s role in determining chemosensitivity focussing on
responsible molecular pathways.

Methodology and Principal Findings: RNA interference was applied to inactivate HIF-1a or p53 in the human gastric cancer
cell lines AGS and MKN28. The chemotherapeutic agents 5-fluorouracil and cisplatin were used and chemosensitivity was
assessed by cell proliferation assays as well as determination of cell cycle distribution and apoptosis. Expression of p53 and
p53 target proteins was analyzed by western blot. NF-kB activity was characterized by means of electrophoretic mobility
shift assay. Inactivation of HIF-1a in gastric cancer cells resulted in robust elevation of chemosensitivity. Accordingly, HIF-1a-
competent cells displayed a significant reduction of chemotherapy-induced senescence and apoptosis. Remarkably, this
phenotype was completely absent in p53 mutant cells while inactivation of p53 per se did not affect chemosensitivity. HIF-
1a markedly suppressed chemotherapy-induced activation of p53 and p21 as well as the retinoblastoma protein, eventually
resulting in cell cycle arrest. Reduced formation of reactive oxygen species in HIF-1a-competent cells was identified as the
molecular mechanism of HIF-1a-mediated inhibition of p53. Furthermore, loss of HIF-1a abrogated, in a p53-dependent
manner, chemotherapy-induced DNA-binding of NF-kB and expression of anti-apoptotic NF-kB target genes. Accordingly,
reconstitution of the NF-kB subunit p65 reversed the increased chemosensitivity of HIF-1a-deficient cells.

Conclusion and Significance: In summary, we identified HIF-1a as a potent regulator of p53 and NF-kB activity under
conditions of genotoxic stress. We conclude that p53 mutations in human tumors hold the potential to confound the
efficacy of HIF-1-inhibitors in cancer therapy.
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Introduction

Intrinsic and acquired drug resistance are the primary causes for

limited efficacy of chemotherapy in the majority of gastrointestinal

malignancies, including gastric cancer [1,2]. Drug resistance

represents a complex and multifactorial phenomenon related to

tumor microenvironment, e.g. hypoxia, acidosis and inflammation

as well as the neoplastic cell itself [3]. Cellular resistance may be

inherent to the specific genetic background of the tumor cell or

result from mutations and epigenetic alterations after antiprolif-

erative therapy [4,5].

The transcription factor hypoxia-inducible factor 1 (HIF-1)

constitutes a pivotal regulator of cellular adaptation to hypoxia

and has been implicated in drug resistance [6–8]. The HIF-1

protein is a heterodimer composed of a constitutively expressed b-

subunit (ARNT (aryl hydrocarbon receptor nuclear translocator))

and a hypoxia-inducible a-subunit [9]. Under normoxic condi-

tions, HIF-1a activity can be induced by various growth factors,

cytokines, activated oncogenes or loss-of-function mutated tumor

suppressor genes [10]. HIF-1a is centrally involved in multiple

aspects of tumorigenesis including tumor cell proliferation,

angiogenesis, metastasis, as well as the response to chemo- and

radiotherapy [11]. HIF-1a is overexpressed in a vast number of

solid tumors, and tumoral HIF-1a expression is often associated

with poor prognosis [12–15]. Furthermore, inhibition of HIF-1a
by means of RNA interference or pharmacological compounds has

proven antitumoral efficacy in various murine cancer models [16].

A contribution of HIF-1a to chemoresistance of neoplastic cells

has been observed in a wide spectrum of solid tumors, including

gastric cancer [6–8,17–20]. However, the underlying molecular
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Figure 1. HIF-1a mediates resistance towards the chemotherapeutic agent 5-FU in AGS cells. (A) Proliferation of AGS KD and SCR cells
24 h after treatment with increasing concentrations of 5-FU under normoxic conditions. Cell numbers are shown as percent of untreated cells
(*, P,0.05; **, P,0.01). (B) AGS wild-type cells were transfected with HIF-1a expression vector (pcDNA HIF-1a) or empty vector (pcDNA 3.1) and
treated with 5-FU 24 h post transfection. Cell numbers were determined 24 h after treatment with 5-FU, and are shown as percent of untreated
control cells (**, P,0.01). (C) AGS wild-type cells were co-transfected with either pcDNA HIF-1a or pcDNA 3.1 plus HRE-Luciferase reporter (pHRE-Luc)
and Renilla reporter (phRL-null) as internal control. Cells were harvested 48 h post transfection. HRE luciferase activity, normalised for Renilla luciferase
activity, was expressed relative to that of control transfected cells (***, P,0.001).
doi:10.1371/journal.pone.0012038.g001
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Figure 2. HIF-1a mediates resistance towards 5-FU by blocking p53-dependent G1 arrest and apoptosis. (A) AGS KD and SCR cells were
treated for 24 h with 10 mg/ml 5-FU, and cell cycle distribution was determined by FACS analysis (**, P,0.01). (B) Chemotherapy-induced senescence
was quantified in AGS KD and SCR cells 4 days after treatment with 5-FU by measurement of SA-b-Gal activity (**, P,0.01). (C) AGS KD and SCR cells
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mechanisms as well as the role of HIF-1a for drug resistance under

normoxic conditions remain largely elusive [8,18,21]. Here, we

identify suppression of p53 and promotion of nuclear factor kB

(NF-kB) activity as central mechanisms for HIF-1a‘s sensitivity-

determining role against 5-fluorouracil (5-FU) and cisplatin in

human gastric cancer cells.

Results

HIF-1a determines sensitivity of gastric cancer cells
towards the chemotherapeutic agents 5-FU and cisplatin

Functional inactivation of HIF-1a was achieved by lentiviral

transduction of AGS and MKN28 cells with small interfering

RNA (siRNA) specifically targeting HIF-1a. This experimental

approach yielded a highly efficient knockdown demonstrated by a

near complete failure of transduced cells to induce HIF-1a protein

in response to hypoxia as published previously [22]. To evaluate

the importance of HIF-1a for the sensitivity of human gastric

cancer cells towards established chemotherapeutic agents, we

compared the effects of 5-FU and cisplatin in HIF-1a-competent

(scrambled, ‘‘SCR’’) and HIF-1a-deficient (knockdown, ‘‘KD’’)

AGS cells. Functional inactivation of HIF-1a shifted the dose

dependency of growth inhibition towards lower drug concentra-

tions (Figure 1A and Figure S1), suggesting that HIF-1a is capable

to reduce chemotherapy susceptibility of gastric cancer cells under

normoxic conditions. In line with previous reports [6–8,17,18],

exposure to hypoxia increased resistance to 5-FU in AGS cells,

however inactivation of HIF-1a resulted in robust elevation of

chemosensitivity under hypoxic conditions (Figure S2). In a

complementary approach, we studied the consequences of

overexpressing HIF-1a (pcDNA HIF-1a) for the chemosensitivity

of AGS cells. AGS cells overexpressing HIF-1a were considerably

more resistant to treatment with 5-FU (Figure 1B). Stable HIF-1a
expression was confirmed by HRE (hypoxia responsive element)

luciferase reporter assay (Figure 1C). These results strongly suggest

that HIF-1a limits the cytotoxic action of 5-FU and cisplatin in

human gastric cancer cells and that inactivation of HIF-1a may

have beneficial effects on chemosensitivity.

HIF-1a limits chemotherapy-induced cell cycle arrest and
apoptosis via suppression of p53

We started a characterization of the observed growth inhibition

by analyzing cell cycle distribution patterns after chemotherapy.

G1-synchronized, serum-starved AGS cells were released from

G0/G1 phase by addition of serum and cell cycle profiles were

determined following the addition of 5-FU. Released cultures of

untreated AGS readily progressed through G1 into S and G2/M

phases [22], whereas 5-FU-treated cells remained in G1 phase (not

shown). Interestingly, the 5-FU-dependent retention of cells in G1

phase was greatly augmented in AGS KD compared to AGS SCR

cells, consistent with G1 cell cycle arrest (Figure 2A). Irreversible

cell cycle arrest has emerged as an important mode of action of

antiproliferative agents and is characterized by cellular features of

senescence [7,23]. Accordingly, the fraction of senescent cells was

determined. Indeed, treatment with 5-FU led to a robust induction

of senescence in AGS cells. This response was significantly

enhanced in cells with concurrent loss of HIF-1a (Figure 2B).

Furthermore, induction of apoptosis was suggested by an increased

pre G1 fraction in DNA histograms of 5-FU-treated AGS KD cells

(not shown). Therefore, a quantitative analysis of the apoptotic cell

fraction was obtained based on the detection of cleaved caspase-3

(Figure 2C). Consistent with the data on cell cycle distribution, the

5-FU-induced apoptotic fraction was significantly increased in

HIF-1a-deficient AGS KD cells as compared to HIF-1a-

competent cells.

Chemotherapy-induced senescence and apoptosis both have

been intimately linked to the tumor suppressor p53. Thus, we

hypothesized that p53 might contribute to augmented cytotoxicity

of 5-FU upon loss of HIF-1a. After 5-FU treatment, p53 protein

gradually accumulated in AGS cells, an effect that was strikingly

enhanced in HIF-1a-deficient AGS cells (Figure 2D). This

stabilization of p53 was associated with increased levels of the

cyclin-dependent kinase (CDK) inhibitor p21, a well established

transcriptional target and downstream effector of p53 with

functions in cell cycle arrest, senescence induction and apoptosis

(Figure 2D). Again, HIF-1a-deficient AGS cells showed a

markedly stronger increase in p21 than HIF-1a-proficient AGS

cells. Strong induction of p21 is expected to inhibit the activity of

G1 cyclin/CDK complexes, resulting in hypophosphorylation of

retinoblastoma protein (pRb) and failure to induce S phase cyclins,

e.g. cyclin A. Indeed, both pRb hypophosphorylation and reduced

cyclin A levels were confirmed in 5-FU-treated AGS KD cells

and - to a lesser extent - also in AGS SCR cells (Figure 2D). These

changes corroborate the G1 phase retention observed in DNA

histograms and are consistent with the irreversible G1 arrest

observed in chemotherapy-induced senescence. Thus, the different

biological outcomes of 5-FU treatment in HIF-1a-deficient and –

proficient AGS cells arise from differential regulation of p53 and

its downstream target p21.

Inactivation of p53 blunts the role of HIF-1a for
chemosensitivity

To obtain experimental evidence for the proposed role of p53 in

HIF-1a-mediated regulation of chemosensitivity in AGS cells, we

functionally inactivated p53 by RNA interference using transient

transfection of anti-p53 siRNA (si p53), or a scrambled control

siRNA (si scr). P53 was efficiently knocked down, as indicated by

the failure of the transfected cells to induce the p53 effectors p21

and MDM2 in response to 5-FU treatment (Figure 3A).

Interestingly, AGS KD cells transfected with si p53 were

significantly less susceptible to growth inhibition by 5-FU than

AGS KD cells transfected with control siRNA (Figure 3B). In line

with these findings, G1 cell cycle retention and apoptosis of 5-FU-

treated AGS KD cells were reduced by p53 knockdown in

comparison to cells transfected with control siRNA (Figure 3D and

3E). In sharp contrast, chemosensitivity of HIF-1a-proficient AGS

cells was not influenced by inactivation of p53 (Figure 3C).

HIF-1a fails to affect chemosensitivity in p53 mutant cells
To confirm the HIF-1a-dependent regulation of 5-FU respon-

siveness and to further characterize the contribution of p53, we

examined a second human gastric cancer cell line (MKN28),

which carries a missense mutation in TP53 at codon 251.

Interestingly, deletion of HIF-1a in MKN28 cells failed to

enhance the growth inhibition after exposure to 5-FU

(Figure 4A). Similarly, 5-FU-induced G1 accumulation and

apoptosis of MKN28 cells were not affected by loss of HIF-1a
(Figure 4B and 4C). In line with these findings, the protein levels of

were treated for 48 h with 10 mg/ml 5-FU and apoptosis was quantitated based on detection of active caspase-3 using flow cytometry (**, P,0.01).
(D) Representative immunoblot analysis of p53, p21, CDK2, cyclin A and pRb protein levels in AGS KD and SCR cells treated with 10 mg/ml 5-FU for 6
and 24 h. Actin served as loading control. ppRb, phosphorylated pRb.
doi:10.1371/journal.pone.0012038.g002
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Figure 3. siRNA silencing of p53 reverses the chemosensitization of AGS KD cells. AGS cells were transfected with control siRNA (si scr) or
siRNA against p53 (si p53), and 10 mg/ml 5-FU was added 24 h post transfection. (A) Immunoblot analysis for p53, p21 and MDM2 in whole cell
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p53 and pRb remained unchanged in 5-FU-treated MKN28 cells

throughout the 24 h period, and p21 induction was absent

(Figure 4D). However, when p53 function was restored by

pretreatment with the chemical compound PRIMA-1 [24] HIF-

1a knockdown translated into a significantly enhanced 5-FU

cytotoxicity (Figure S3). Consistent with the established role of p53

in chemotherapy-induced cytotoxic/cytostatic effects, treatment

with PRIMA-1 per se slightly reduced the proliferation of MKN28

cells and significantly enhanced the efficacy of 5-FU in MKN28

cells (Figure S3).

NF-kB is an important mediator of HIF-1a’s role in
chemosensitivity

Activation of NF-kB is associated with protection from

chemotherapy-induced apoptosis and, conversely, inhibition of

NF-kB can enhance the efficacy of anti-neoplastic agents both in

vivo and in vitro [25–27]. Therefore, we determined NF-kB DNA-

binding activity in HIF-1a-deficient and –proficient AGS cells

after treatment with 5-FU by electrophoretic mobility shift assay

(EMSA). Treatment with 5-FU potently activated NF-kB DNA-

binding in AGS SCR cells, with peak levels occurring 6 h after

exposure to 5-FU (Figure 5A). Treatment with TNFa for 4 h

served as positive control for activation of NF-kB. Furthermore, a

supershift was induced by an anti-p65 antibody, confirming that 5-

FU induced NF-kB complexes contained the 65-kDa subunit

(p65). Loss of HIF-1a significantly inhibited activation of NF-kB in

response to 5-FU and TNFa (Figure 5A). Consistent with this

observation, 5-FU treatment also failed to induce the NF-kB target

genes cIAP1 and A20 in AGS KD cells, whereas they were readily

induced in AGS SCR cells (Figure 5B).

To address the functional significance of NF-kB for 5-FU-

induced growth inhibition, we overexpressed p65 (pcDNA p65) in

AGS KD cells. Transfection of pcDNA p65, but not the empty

control vector, resulted in a significant induction of p65 protein

and NF-kB transcriptional activity in AGS KD cells (Figure S4).

Of note, HIF-1a-deficient AGS KD cells overexpressing p65 were

considerable more resistant to 5-FU treatment compared to AGS

KD cells transfected with the control vector (Figure 5C), consistent

with an essential role of NF-kB in mediating chemoresistance

towards 5-FU in gastric cancer cells. Taken together, a concurrent

activation of p53 and inhibition of NF-kB in 5-FU-treated, HIF-

1a-deficient AGS cells was observed. To clarify, whether both

events are interdependent, we studied 5-FU-induced NF-kB

activation in MKN28 cells with mutant p53. Both 5-FU and

TNFa activated NF-kB DNA-binding in a time-dependent

manner, indicating p53-independent mechanisms of NF-kB

activation by 5-FU (Figure 5D). However, different from the

finding in AGS cells, this NF-kB activation in the p53 mutant cell

line was not blunted by HIF-1a inactivation. Thus, HIF-1a may

support chemotherapy-induced NF-kB activation by counteract-

ing p53-dependent inhibitory mechanisms.

Altered ROS formation is responsible for HIF-1a-induced
modification of p53 activity

To clarify the molecular mechanism underlying p53 superin-

duction in 5-FU-treated HIF-1a-deficient cells, we characterized

the role of reactive oxygen species (ROS). ROS constitute a

candidate link as (i) ROS are potent activators of p53 function and

considered key factors in the induction of p53 by various

chemotherapeutic agents [28], and (ii) HIF-1a can suppress

ROS generation by decreasing mitochondrial activity and

biogenesis [22,29,30]. Accordingly, AGS KD cells were pretreated

with the ROS-inhibitors diphenyleneiodonium chloride (DPI) or

apocynin. Both inhibitors conferred significant protection against

5-FU-induced growth inhibition in AGS KD cells (Figure 6A and

6B). Furthermore, DPI and apocynin almost completely prevented

the induction of p53 and its downstream target p21 in 5-FU-

treated cells (Figure 6C and 6D). These results suggest an

intersection of HIF-1a signalling with the p53-mediated response

to 5-FU at the level of ROS production. To establish a causal role

of HIF-1a for the redox potential of AGS cells after 5-FU

treatment, intracellular ROS levels were determined in AGS KD

and SCR cells by flow cytometry. We found that the intracellular

superoxide levels in 5-FU-treated AGS KD cells were 2.5-fold

higher than those in 5-FU-treated AGS SCR cells (Figure S5),

indicating that functional inactivation of HIF-1a in AGS cells

resulted in significant and functional elevation of intracellular

oxidative stress even under chemotherapeutic treatment.

Discussion

The transcription factor HIF-1a has been established

as important mediator of hypoxia-mediated chemoresistance

[6–8,17,18,20]. Here, we identify HIF-1a as a powerful determi-

nant of chemosensitivity in gastric cancer cells under normoxic

conditions. By applying a lentivirus-based siRNA system we show

significantly enhanced 5-FU and cisplatin toxicity in HIF-1a-

deficient gastric cancer cells. Available data on the role of HIF-1a
for the chemosensitivity of cancer cells under normoxic conditions

are conflicting. While HIF-1a-deficient fibrosarcoma cells

(HT1080) displayed significantly enhanced sensitivity towards

etoposide under ambient air, colon cancer (HCT116) and

hepatoma (Hepa-1) cells failed to do so [6]. Unruh et al. reported

enhanced susceptibility of HIF-1a-deficient murine embryonic

fibroblasts to carboplatin or etoposide under normoxic as well as

hypoxic conditions [8]. With respect to gastric cancer, enhanced

efficacy of 5-FU and vincristine was demonstrated under

normoxia in vitro [18]. Well in line with our results, both studies

concluded a pivotal role for HIF-1a in mediating chemoresistance

under normoxic conditions. Interestingly, a recent study from

Japan demonstrated lower efficacy of 5-FU-based chemotherapy

in HIF-1a-expressing human gastric adenocarcinomas, strength-

ening the perception of HIF-1 as a pivotal factor in the

determination of gastric cancer chemoresistance [31].

Control of cancer progression by chemotherapy relies at least in

part on induction of cellular senescence. Recently, loss of HIF-1a
was shown to cause premature senescence of immortalized murine

embryonic fibroblasts under normoxic conditions [32]. Our

current data suggests that HIF-1a similarly guards gastric cancer

cells against chemotherapy-induced senescence under normoxic

conditions. This constitutes the first report of elevated chemo-

therapy-induced senescence via functional inactivation of HIF-1a
in an established human cancer cell line. In HIF-1a-deficient cells,

we also observed improved apoptosis induction in response to 5-

FU. Previous studies reported a reactivation of the proapoptotic

factor Bid [6], or a change in the balance of pro- and antiapoptotic

extracts from AGS KD cells after 5-FU treatment. Actin served as loading control. (B and C) Cell numbers of si scr and si p53 transfected AGS cells was
determined 24 h after treatment with 5-FU. Results are shown as percent of untreated control cells (**, P,0.01). Cells in the G1 phase (D) and the
sub-G1 population (E) were evaluated from DNA histograms of AGS KD cells transfected with si p53 or si scr and treated for 24 h with 5-FU (*, P,0.05;
**, P,0.01).
doi:10.1371/journal.pone.0012038.g003
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Bcl-2 family members to account for increased apoptosis rates

following inactivation of HIF-1a in drug-treated gastric cancer

cells [18].

Our current study identifies a novel mechanism, whereby HIF-

1a counteracts both chemotherapy-induced senescence and

apoptosis: We present conclusive evidence for the capacity of

HIF-1a to suppress the induction of the tumor suppressor p53 in

response to 5-FU under normoxic conditions. P53 is a pivotal cell

fate determinant due to its role in regulating cell-cycle progression

and apoptosis in response to cellular stress and constitutes the most

commonly mutated gene in human cancers [33]. A wide variety of

chemotherapeutic agents were shown to stabilize p53 and,

conversely, loss of p53 constitutes a principle mechanism of

cancer resistance towards chemotherapy [33,34]. The interaction

of p53 and HIF-1a has been the subject of longstanding debates as

both positive and negative reports have been published [35].

However, the entire previously published work focussed on p53-

HIF-1a-interactions under hypoxic (or even anoxic) conditions.

To the best of our knowledge, our experiments for the first time

provide evidence for the suppression of p53 activity by HIF-1a
under normoxic conditions. As consequence of p53 upregulation

in HIF-1a-deficient cells, we observed changes in downstream

effectors that are linked to the irreversible cell cycle arrest

characteristic of senescence, e.g. p21 stabilization and hypopho-

sphorylation of pRb. Different from our observation, recent work

on chemoresistance towards etoposide in HIF-1a-deficient im-

mortalized murine embryonic fibroblasts did not observe an

induction of p21 [36]. Also, HIF-1a stabilized p21 and p27 as well

as led to hypophosphorylation of pRb during hypoxia-induced

growth arrest of immortalized murine embryonic fibroblasts and

primary splenic B-lymphocytes [37]. These contrasting results are

most likely explained by the investigated cell types: While Goda

et al. characterized a physiological response to hypoxia in non-

transformed cell types, we analyzed the response to severe DNA

damage in established cancer cell lines.

While p53 was repeatedly shown to counteract NF-kB

function [38,39], our current data indicate a role for the tumor

suppressor in the regulation of HIF-1a-dependent NF-kB

activation. Apart from p53, NF-kB has emerged as a second,

central determinant of resistance towards chemotherapeutic

agents [40]. Several different studies have established functional

links between NF-kB and HIF-1a, though they variably place

HIF-1a either upstream of NF-kB or vice versa. For instance,

hypoxia-induced stabilization of HIF-1a in smooth muscle cells

is under transcriptional control of NF-kB [41]. Similarly, results

obtained from conditional IKK-b knockout mice confirmed the

pivotal role of NF-kB in controlling basal and hypoxia-induced

expression of HIF-1a in vivo [42]. Conversely, gene expression of

the NF-kB subunit p65 was demonstrated to be controlled by

HIF-1a in the context of hypoxia-suppressed apoptosis of

neutrophils [43]. Our finding of markedly reduced NF-kB

activity in HIF-1a-deficient cells upon treatment with 5-FU

therefore is well in line with this latter report. Interestingly, we

also observed significantly reduced DNA binding of NF-kB

subunits in HIF-1a-deficient cells after stimulation with TNFa,

a well established inducer of NF-kB activity [44]. This raises the

pertinent question under which physiological and pathophysi-

ological conditions HIF-1a is able to regulate NF-kB activation.

HIF-1a and NF-kB share crucial importance for various

processes such as inflammation, microbial killing and tumori-

genesis. The exact molecular nature as well as the hierarchy of

their interaction is most likely cell- and context-dependent and

can not be generalized.

In the current study we were able to pinpoint ROS as an

intersection point of HIF-1a with the p53-mediated cellular

stress response to chemotherapy. Intracellular ROS are known

as potent inducers of p53 and participate in the activation of

p53 by chemotherapeutic drugs [45]. Mitochondria represent

the prime source of intracellular ROS [46], and HIF-1a likely

counteracts ROS production at the mitochondrial level via

multiple mechanisms including inhibition of mitochondrial

biogenesis and of pyruvate shuttling into the mitochondria,

reduction of mitochondrial activity due to enhanced utilization

of glycolysis and activation of mitochondrial autophagy

[29,30,47,48]. Previously, we established a functional link

between HIF-1a-controlled reduction of ROS and anchorage

independence of gastric cancer cells [22], implicating HIF-1a in

the pathogenesis of gastric cancer in the absence of hypoxia. We

now find that the capacitiy of HIF-1a to restrict ROS

production of gastric cancer cells also confers resistance to

chemotherapeutic agents that function via activation of p53

(Figure 6E). Interestingly, increasing effects on therapy resis-

tance via modulation of p53 and ROS have also been reported

for HIF-2a [49]. The HIF-a isoforms 1 and 2 show a wide

overlap in putative HIF targets and binding to hypoxic response

elements and definite allocation of hypoxia-induced effects to

either isoform is not always accomplishable [50]. Bertout et al.

demonstrated that inhibiting HIF-2a increases radiation-

induced apoptosis via ROS accumulation and subsequent

augmentation of p53 activity [49]. In addition, Roberts et al.

showed that resistance against chemotherapy is partially

mediated by HIF-2a-mediated suppression of p53 in renal cell

carcinoma cells [51]. Hence, the herewith reported observations

warrant investigations into the potential role of HIF-2a, a task

that is currently under way in our laboratory.

In view of the clinical need to identify response predictors for

available treatment options, our results could potentially direct

treatment decisions: on one hand, knowledge of HIF-1a
overexpression could direct a choice of drugs that largely act in

a p53-independent fashion. On the other hand, a particular

benefit may result from combining HIF-1-inhibitors and DNA

damaging agents (e.g. 5-FU) in cancers with functional p53.

Conversely, a reduced efficacy of HIF-1-inhibitors might be

anticipated for treatment of p53 defective tumors, an aspect that

may constitute a confounding factor in clinical trials of HIF-1a-

inhibiting treatment regimes.

Materials and Methods

Cell culture and chemicals
AGS (CRL-1739, ATCC, Rockville, Maryland, USA) and

MKN28 (JCRB Cell Bank, Tokyo, Japan) cells were grown as

monolayer cultures in standard medium. Generation of AGS and

MKN28 cells stably expressing either siRNA specifically targeting

HIF-1a (knockdown, ‘‘KD’’) or unspecific control siRNA

(scrambled, ‘‘SCR’’) was published previously [22]. 5-fluorouracil

Figure 4. Effects of 5-FU on MKN28 cells with mutant p53. (A) Cell numbers of MKN28 KD and SCR cells 24 h after treatment with 5-FU under
normoxic conditions. Data are shown as percent of untreated cells. Cells in G1 phase (B) and apoptotic cells (C) were quantitated from DNA
histograms of MKN28 KD and SCR cells treated for 48 h with 10 mg/ml 5-FU. (D) Immunoblot analysis of p53, p21 and pRb protein levels in MKN28 KD
and SCR cells treated with 10 mg/ml 5-FU for 6 and 24 h. Actin served as loading control.
doi:10.1371/journal.pone.0012038.g004
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(5-FU), cis-Diammineplatinum(II) dichloride (cisplatin) and the

superoxide anion inhibitors diphenyleneiodonium chloride (DPI)

and apocynin were purchased from Sigma-Aldrich (Germany) and

dissolved in DMSO. PRIMA-1 (for p53-reactivation and induction

of massive apoptosis) was obtained from Tocris Biosciences

(Ellisville, Missouri, USA) and dissolved in sterile water. Vehicle

control of the solvents was included in all experiments.

Cell proliferation assay
For determination of cell growth, 36104 cells were seeded in

triplicate into 24-well plates, allowed to attach for 16 h and then

treated as indicated under normoxic or hypoxic conditions. After

treatment, cells were trypsinized, and viable cells were counted

using a hemocytometer.

Determination of cell cycle distribution and apoptosis by
flow cytometry

Cell cycle distribution including the pre-G1 fraction was

determined from DNA histograms as described [52]. Apoptosis

was also quantitated from detection of active, cleaved caspase-3 by

flow cytometry using an Alexa FluorH 488-conjugated antibody

(Cell Signaling Technology, Danvers, Massachusetts, USA).

Quantification of senescence
Senescence-associated b-galactosidase activity was assessed in

cytospin preparations as described [53].

Immunoblot analysis
Whole cell lysates were prepared as previously described [52], then

resolved on a 10% sodium dodecyl sulfate-polyacrylamide gel and

transferred to nitrocellulose (Amersham Biosciences, Freiburg,

Germany). Blots were probed with antibodies against p53 and

CDK2 (Santa Cruz Biotechnology, Santa Cruz, California, USA),

p21 (Oncogene Research Products, Bad Soden, Germany), cyclin A

(Upstate, Temecula, California, USA), pRb (BD Pharmingen,

Heidelberg, Germany), MDM2 (Calbiochem, San Diego, California,

USA), p65 (Cell Signaling Technology) and actin (Sigma-Aldrich).

Secondary antibodies were conjugated to Horseradish Peroxidase

(Dianova, Hamburg, Germany) and peroxidase activity was

visualized using the Western Lightning Chemiluminescence Reagent

Plus (Perkin Elmer Life Sciences, Boston, Massachusetts, USA).

Quantitative real-time PCR analysis
For real-time PCR analysis, total cellular RNA was extracted

with Trizol reagent (Invitrogen, Karlsruhe, Germany). First strand

cDNA was synthesized with an oligo (dT) primer and a

SuperScriptTM First Strand Synthesis System (Invitrogen). Quan-

titative real-time PCR analysis was performed by using TaqMan

PCR Universal Mastermix (for b-actin) or SYBR GREEN PCR

Master Mix (for A20 and cIAP1; Applied Biosystems, Darmstadt,

Germany). Primer sequences are supplied in Table S1. To

normalize the amount of input RNA, PCR reactions were done

with probe and primers for b-actin.

Transient transfection and reporter luciferase assay
Transient transfections of AGS cells were carried out using

Effectene Transfection Reagent (Qiagen, Hilden, Germany)

according to the manufacturer’s protocol. For overexpression

studies, cells were seeded at 36104 cells/24-well and transfected

with 100 ng of pcDNA HIF-1a (kindly provided by Wanja

Bernhardt, Universitätsklinikum Erlangen, Erlangen, Germany) or

pcDNA p65 (kindly provided by Hiroyasu Nakano, Jutendo

University, Tokyo, Japan), respectively. For HRE or NF-kB

luciferase assay, 36104 cells/24-well were co-transfected with

100 ng of pHRE-Luc (a gift from Randall S. Johnson, UCSD, San

Diego, California, USA) or IgkB-Luc (a gift from Florian R.

Greten, Technische Universität München, München, Germany),

and 30 ng of phRL-null (Promega, Mannheim, Germany).

Luciferase activity was measured with the Dual Luciferase

Reporter Assay System (Promega) as described [54]. To achieve

transient p53 suppression, AGS cells were transfected at 30%

confluence with 75 or 150 nmol/L si p53, (Silencer Select siRNA,

Applied Biosystems) and analyzed 48 h after transfection. A non-

specific siRNA (si scr, Eurogentec, Seraing, Belgium) was used as

control.

Electrophoretic mobility shift assay (EMSA)
Nuclear protein extracts were prepared as described [54].

EMSA was performed as previously described [55] using 8 mg

of nuclear protein and 100 fmol/L of the end-radiolabeled

22 bp double stranded NF-kB consensus oligonucelotide

(forward strand: 59-AGT TGA GGG GAC TTT CCC AGG

C-39; E3292, Promega). Samples were resolved by electropho-

resis on a non-denaturating 5% polyacrylamide gel. After

drying of the gel, complex formation was visualized by

autoradiography. For supershift experiments, an anti-p65

antibody was added (Santa Cruz Biotechnology) prior to the

radiolabeled probes.

Measurement of intracellular superoxide levels
Intracellular superoxide anion levels were estimated using the

fluorescent dye dihydroethidium (DHE), obtained from Sigma-

Aldrich. After 24 h cultivation, cells were trypsinized, harvested

by centrifugation, resuspended in PBS containing 10 mmol/L

DHE for 251 min at 37uC and thereafter washed with ice-cold

PBS. Dye oxidation was determined by flow cytometry with

excitation and emission settings of 488 and 585 nm, respective-

ly. The mean fluorescence intensity of at least 16105 cells was

analyzed and corrected for autofluorescence from unlabeled

cells.

Statistical analysis
Shown are means 6 SEM of at least three independent

experiments. Statistical analysis was performed by two-tailed

Student t test using Prism 4.0 software (GraphPad Software, San

Diego, California, USA). Differences were considered statistically

significant at P,0.05.

Figure 5. HIF-1a-mediated activation of NF-kB limits the toxicity of 5-FU. (A) Nuclear extracts of AGS KD and SCR cells were prepared at the
indicated time points after treatment with 10 mg/ml 5-FU or TNFa as a positive control, and DNA-binding activity for NF-kB was examined by EMSA.
For supershift experiments, nuclear extracts were incubated with an anti-p65 antibody. (B) Expression of NF-kB target genes cIAP1 and A20 mRNA in
total RNA extracts from AGS KD and AGS SCR cells 48 h after treatment with 10 mg/ml 5-FU. Data were expressed relative to mRNA levels in untreated
AGS SCR cells, set at 1.0 (*, P,0.05; **, P,0.01). (C) AGS KD cells were co-transfected with either pcDNA p65 or pcDNA 3.1 and treated with 5-FU 24 h
post transfection. Cell numbers were after another 24 h and are presented as percent of untreated control cells (***, P,0.001). (D) DNA binding
activity for NF-kB was examined by EMSA using nuclear extracts of MKN28 KD and SCR cells treated with 10 mg/ml 5-FU or TNFa for the indicated
times. Antibody inhibition was performed with an anti-p65 antibody.
doi:10.1371/journal.pone.0012038.g005
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Supporting Information

Figure S1 HIF-1a mediates resistance towards the chemother-

apeutic agent cisplatin in AGS cells. Proliferation of AGS KD and

SCR cells 48 h after treatment with increasing concentrations of

cisplatin under normoxic conditions (**, P,0.01). Values

represent the mean 6 SEM of triplicate determinations and cell

numbers are shown as percent of untreated cells.

Found at: doi:10.1371/journal.pone.0012038.s001 (1.81 MB TIF)

Figure S2 HIF-1a mediates resistance towards the chemother-

apeutic agent 5-FU under hypoxic conditions. Proliferation of

AGS KD and SCR cells 24 h after treatment with increasing

concentrations of 5-FU under hypoxic conditions (**, P,0.01;

***, P,0.001). Values represent the mean 6 SEM of triplicate

determinations and cell numbers are shown as percent of

untreated cells.

Found at: doi:10.1371/journal.pone.0012038.s002 (1.81 MB TIF)

Figure S3 Restoration of wild-type p53 by PRIMA-1 in

MKN28 cells with mutant p53. MKN28 KD and SCR cells were

pretreated with 30 mmol/L PRIMA-1 for 6 h and then exposed to

10 mg/ml 5-FU. Cell growth was determined 24 h after treatment

with 5-FU (**, P,0.01). Values represent the mean 6 SEM of

triplicate determinations and cell numbers are shown as percent of

untreated cells.

Found at: doi:10.1371/journal.pone.0012038.s003 (1.81 MB TIF)

Figure S4 Overexpression of NF-kB subunit p65 in AGS KD

cells. AGS KD cells were co-transfected with either pcDNA p65 or

pcDNA 3.1 plus IgkB-Luc and phRL-null as internal control.

Cells were harvested 48 h post transfection and NF-kB luciferase

activity, normalised for Renilla luciferase activity, was expressed

relative to control transfected cells (***, P,0.001). Bottom panel

shows immunoblot analysis of p65 and actin 48 h post

transfection.

Found at: doi:10.1371/journal.pone.0012038.s004 (1.72 MB TIF)

Figure S5 Analysis of superoxide anion levels in AGS cells after

5-FU treatment. AGS KD and SCR cells were treated for 24 h

with 10 mg/ml 5-FU under normoxia, stained with 10 mmol/L

dihydroethidium, and dye oxidation was determined by flow

cytometry. Values represent the mean 6 SEM of three

independent experiments (**, P,0.01).

Found at: doi:10.1371/journal.pone.0012038.s005 (1.77 MB TIF)

Table S1 List of primer and probe sequences.

Found at: doi:10.1371/journal.pone.0012038.s006 (1.77 MB TIF)
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