
Ecology and Evolution. 2022;12:e9361.	 		 	 | 1 of 12
https://doi.org/10.1002/ece3.9361

www.ecolevol.org

Received:	22	September	2021  | Revised:	15	May	2022  | Accepted:	18	May	2022
DOI: 10.1002/ece3.9361  

R E S E A R C H  A R T I C L E

Climate and forest loss interactively restructure trait 
composition across a human- modified landscape

Meghna Krishnadas

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2022	The	Author.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

CSIR-		Centre	for	Cellular	and	Molecular	
Biology,	Hyderabad,	Telangana,	India

Correspondence
Meghna	Krishnadas,	CSIR-		Centre	for	
Cellular	and	Molecular	Biology,	Uppal	
Road,	Habsiguda,	Hyderabad,	Telangana	
500007	India.
Email:	meghna@csirccmb.org

Abstract
Traits	determine	species	response	to	climate	conditions	and	the	match	between	phe-
notypes	and	climate	mediates	spatial	variation	 in	species	composition.	These	trait–	
climate	 linkages	 can	 be	 disrupted	 in	 human-	modified	 landscapes.	Human	 land	 use	
creates	forest	fragments	where	dispersal	 limitation	or	edge	effects	exclude	species	
that	may	otherwise	suit	a	given	macroclimate.	Furthermore,	stressful	macroclimate	
can	limit	viable	trait	combinations	such	that	only	a	subset	of	values	of	any	given	trait	
occurs	with	respect	to	another	trait,	 resulting	 in	stronger	trait	covariance.	Because	
forest	loss	can	compound	climatic	stress,	trait	covariance	from	benign	to	harsher	cli-
mates	 is	 expected	 to	be	 stronger	 in	 fragments	 compared	 to	 contiguous	 forests.	 In	
a	wet	tropical	 forest	 landscape	 in	the	Western	Ghats	Biodiversity	Hotspot	of	pen-
insular	 India,	 I	compared	fragments	with	adjacent	contiguous	forests	for	signatures	
of	 trait-	mediated	 assembly	 of	 tree	 communities.	 Using	 four	 key	 plant	 traits—	seed	
size,	specific	 leaf	area	 (SLA),	wood	density,	and	maximum	height—	I	evaluated	trait–	
abundance	associations	and	trait	covariance	across	climate,	soil,	and	elevation	gradi-
ents.	In	the	contiguous	forest,	smaller-	seeded,	shorter,	thinner-	leaved	species	became	
more	abundant	 from	 low	to	high	elevations.	 In	 fragments,	 species	with	higher	SLA	
were	more	abundant	at	sites	with	more	seasonal	climates	and	lower	precipitation,	and	
larger	seeded	species	were	less	abundant	at	warmer	sites.	However,	traits	only	weakly	
predicted	abundances	in	both	habitats.	Moreover,	only	contiguous	forests	exhibited	
significant	compositional	change	via	traits,	driven	by	trait	syndromes	varying	along	a	
composite	gradient	defined	by	elevation,	water	deficit,	and	soil	C:N	ratio.	Site-	level	
trait	covariance	revealed	that	warmer,	wetter	conditions	in	fragments	favored	taller	
species	for	given	seed	size,	as	compared	to	similar	conditions	in	contiguous	forests.	
Overall,	trait	syndromes	and	trait	covariance,	rather	than	single	traits,	determined	the	
phenotypes	best	suited	to	macroclimate	conditions	and	should	inform	management	
or	restoration	goals	in	fragments.
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1  |  INTRODUC TION

Functional	 traits	 influence	community	assembly	by	mediating	spe-
cies'	performance	in	different	climate	conditions	(Adler	et	al.,	2013; 
Paine	et	al.,	2011;	Poorter	et	al.,	2008;	Sonnier	et	al.,	2010).	Trait–	
climate	 linkages	 influence	 species	 distributions,	 changes	 in	 spe-
cies	 composition,	 and	 the	 response	 of	 ecological	 communities	
to	 anthropogenic	 change	 (Bernard-	Verdier	 et	 al.,	 2012;	 Cornwell	
&	 Ackerly,	 2009;	 Harrison	 &	 LaForgia,	 2019;	 Méndez-	Toribio	
et	 al.,	 2020;	 Poorter	 et	 al.,	 2019;	 Venail	 et	 al.,	 2015).	 In	 human-	
modified	 forest	 landscapes,	 remnant	 habitats	 exist	 as	 fragments	
embedded	within	a	matrix	of	other	 land	uses	 (Barlow	et	al.,	2007; 
Melo	et	al.,	2013).	Forest	 fragments	experience	edge	effects,	e.g.,	
increased	 light,	 ambient	 temperature,	 and	 lower	 soil	 moisture,	
that	make	 the	microclimate	warmer	 and	drier	 than	 interior	 condi-
tions	of	contiguous	forest	(De	Frenne	et	al.,	2019,	2015; Zellweger 
et	al.,	2020).	Loss	of	forest	cover	can	also	enhance	climatic	stress	in	
a	landscape	(Arroyo-	Rodríguez	et	al.,	2017;	Laurance,	2004).	These	
changes	to	the	macro-		and	microclimate	can	shift	the	role	of	traits	
in	 mediating	 community	 assembly	 in	 contiguous	 forests	 vs.	 frag-
ments	across	a	landscape	(Fernandes	Neto	et	al.,	2019;	Krishnadas,	
Beckman,	et	al.,	2018;	Lebrija-	Trejos	et	al.,	2010;	Poorter	et	al.,	2019; 
Zirbel	&	Brudvig,	2020).

The	 role	 of	macroclimate	 in	 shaping	 communities	within	 frag-
ments	 compared	 to	 contiguous	 forests	 should	 be	 reflected	 in	 the	
link	 between	 traits	 and	 species	 abundances	 (trait–	abundance	 as-
sociations)	across	climate	gradients	 in	each	habitat.	For	trees,	four	
traits	explain	substantial	variation	in	plant	performance	(Wieczynski	
et	 al.,	 2019),	 which	 can	 govern	 their	 response	 to	 macroclimate	
stress.	Seed	size	reflects	the	tolerance–	fecundity	trade-	off	(Muller-	
Landau,	2010)	with	 larger	seeded	species	doing	better	 in	stressful	
conditions,	e.g.,	shade	or	drought	(Baraloto	&	Forget,	2007;	Bruun	
&	ten	Brink,	2008;	Westoby	et	al.,	2002).	Wood	density	and	specific	
leaf	 area	 (SLA)	mediate	 differences	 in	 species	 distributions	 across	
gradients	of	rainfall	and	seasonality	(Krishnadas	et	al.,	2021;	Moles	
et	 al.,	2014).	Maximum	height	 can	 influence	 species'	 performance	
in	 response	 to	 light	and	water	availability—	competition	 for	 light	 in	
shaded	conditions	favors	taller	species,	whereas	shorter	species	are	
less	vulnerable	to	hydraulic	failure	in	dry	conditions	(Méndez-	Toribio	
et	al.,	2017;	Rüger	et	al.,	2012;	Tyree,	2003).

In	 tropical	 forests,	 understory	 light	 availability	 decreases	
in	 wetter	 macroclimates	 resulting	 in	 larger	 seeds	 being	 more	
successful	 at	 seedling	 establishment	 and	 survival	 (Bruun	 &	 ten	
Brink,	2008).	Deeper	shade	can	limit	photosynthesis	in	the	forest	
understory	 (Muscarella	 et	 al.,	2016;	 Poorter	 et	 al.,	2019)	 to	 ad-
vantage	species	with	denser	wood	or	lower	SLA	whose	conserva-
tive	resource-	use	strategies	allow	them	to	withstand	light-	limited	

conditions	in	wetter	sites	(Poorter	et	al.,	2008;	Wright	et	al.,	2010).	
Within	fragments,	however,	greater	light	availability	could	tilt	the	
competitive	advantage	toward	species	with	smaller	seeds,	lighter	
wood,	and	higher	SLA	even	in	wet	sites	 (Krishnadas	et	al.,	2020; 
Osuri	 &	 Sankaran,	 2016a).	 Alternatively,	 resource	 conservative	
strategies	of	 species	with	denser	wood	and	 lower	SLA	may	help	
cope	with	increasing	water	deficit	(Muscarella	et	al.,	2016;	O'Brien	
et	al.,	2017;	Sterck	et	al.,	2006).	This	correlation	between	water	
deficit	and	lower	SLA	or	higher	wood	density	may	be	stronger	in	
fragments	where	water	deficit	can	intensify	compared	to	contig-
uous	forests.

In	 addition,	 climate	 can	vary	 considerably	over	 relatively	 small	
geographic	 distances	 across	 elevation	 gradients.	 Associated	
changes	in	tree	community	composition	(Krishnadas	&	Osuri,	2020)	
can	occur	via	trait-	mediated	responses	(Butterfield	&	Suding,	2013; 
Chalmandrier	 et	 al.,	 2015;	 Swenson	 et	 al.,	 2011).	 Compositional	
variation	across	the	elevation	gradient	can	be	homogenized	by	for-
est	 loss	 and	 land-	use	 change	 (Frishkoff	 et	 al.,	2019;	 Krishnadas	&	
Osuri,	2020;	Yano	et	al.,	2021).	Forest	loss	can	make	the	landscape	
warmer	and	drier	(Laurance,	2004)	and	fragments	can	be	less	buff-
ered	 from	 macroclimate	 stress	 than	 contiguous	 forests	 (Arroyo-	
Rodríguez	 et	 al.,	 2017;	 Frey	 et	 al.,	 2016).	 If	 microclimates	 within	
fragments	modulate	 or	 override	 the	 effects	 of	macroclimatic	 gra-
dients	(Arroyo-	Rodríguez	et	al.,	2017;	Davis	et	al.,	2019;	De	Frenne	
et	al.,	2019),	it	will	obscure	trait–	abundance	associations	seen	across	
macroclimate	gradients	in	contiguous	forests.

Response	 to	 macroclimate	 gradients	 can	 occur	 via	 the	 coor-
dinated	 selection	 of	 multiple	 traits,	 rather	 than	 individual	 traits	
(Dwyer	 &	 Laughlin,	 2017;	 Laughlin	 &	Messier,	 2015).	 Specifically,	
climatic	conditions	can	impose	trade-	offs	that	constrain	trait	com-
binations,	quantified	as	trait	covariance	within	communities	(Dwyer	
&	 Laughlin,	 2017).	 Stronger	 site-	level	 trait	 covariance	 suggests	
that	 climate	 stress	 curtails	 viable	 trait	 combinations	 in	 locally	 co-	
occurring	 species,	 resulting	 in	 fewer	viable	phenotypes	 than	what	
is	 possible	 in	 less	 stressful	 conditions	 (Dwyer	 &	 Laughlin,	 2017; 
Umaña	&	Swenson,	2018).	Moreover,	positive	covariance	(e.g.,	large	
seeded	and	dense	wooded,	or	large	seeded	and	tall)	suggests	coordi-
nated	selection	for	extreme	trait	values	(Shen	et	al.,	2019;	Umaña	&	
Swenson,	2018).	Negative	covariance	may	imply	selection	pressure	
by	multiple	factors	on	traits	for	a	given	climate.	As	an	example,	drier	
macroclimates	 favor	 thicker	 leaves	 and	 higher	 light	 availability	 at	
these	sites	may	concomitantly	increase	the	recruitment	of	smaller-	
seeded	species	(Muscarella	et	al.,	2016;	Tyree,	2003).

Since	 forest	 cover	 tends	 to	 buffer	 the	 impact	 of	 unsuitable	
macroclimate	 (De	 Frenne	 et	 al.,	 2019),	 trees	 in	 fragments	 may	
experience	 greater	 stress	 than	 contiguous	 forests	 in	 harsher	 cli-
mates	 (Arroyo-	Rodríguez	 et	 al.,	 2017;	 Didham	 &	 Lawton,	 1999; 
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Krishnadas,	Bagchi,	et	al.,	2018).	As	a	result,	constraints	on	viable	
trait	 combinations	 across	 a	macroclimate	 gradient	 can	 be	 tighter	
in	fragments	compared	to	contiguous	forests,	especially	as	macro-
climate	 stress	 increases.	Alternatively,	macroclimate	 influence	on	
trait	 covariance	could	weaken	 in	 fragments	 if	 similar	phenotypes	
prevail	everywhere	across	the	climate	gradient.	For	instance,	het-
erogeneous	light	levels	in	fragments	may	promote	the	recruitment	
of	smaller-	seeded	species,	allowing	a	wider	range	of	viable	combi-
nations	of	seed	size	with	SLA	or	wood	density	regardless	of	mac-
roclimate.	 In	 contiguous	 forests	 by	 comparison,	 increasing	 shade	
in	wetter	sites	could	restrict	 trait	combinations	to	shade-	tolerant	
phenotypes	 characterized	 by	 combinations	 of	 large	 seeds	 and	
denser	wood	or	thicker	leaves.

Here,	 I	 assessed	 how	 the	 macroclimate	 shapes	 the	 assembly	
of	 tree	communities	 in	 fragments	vs.	 contiguous	 forests.	Across	a	
human-	modified,	wet	tropical	landscape	in	peninsular	India,	I	quan-
tified	trait-	mediated	distributions	of	tree	species	and	constraints	on	
trait	combinations	across	macroclimate	gradients.	Specifically,	I	ex-
amined	whether:

1.	 Fragmented	 and	 contiguous	 forests	 differ	 in	 trait-	mediated	
species	 distributions	 across	 macroclimate	 gradients.

2.	 Across	 climate	 gradients,	 compositional	 variation	of	 contiguous	
forests	and	fragments	is	shaped	by	individual	traits	or	multi-	trait	
phenotypes.

3.	 Increasing	 macroclimate	 stress	 constraints	 trait	 combinations	
more	strongly	in	fragments	compared	to	contiguous	forests.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The	 study	was	 conducted	 in	 the	Western	Ghats	 biodiversity	 hot-
spot	of	 southern	 India.	The	 landscape	 (12.17°N,	75.80°E),	 located	
in	Kodagu	district	of	Karnataka	state,	 is	classified	as	mid-	elevation	
evergreen	 forests	 (Pascal,	 1986).	 Elevations	 ranged	 between	 673	
and	1037 m	ASL	in	contiguous	forests	and	830–	1030 m	ASL	in	frag-
ments.	Mean	 annual	 precipitation	 ranged	 from	 2400	 to	 3800 mm	
across	sites.	The	dry	season	varies	from	6	to	8	months	when	mov-
ing	from	west	to	east.	The	region	has	well-	drained	clayey	and	loamy	
type	 soils,	with	 soil	 types	 remaining	broadly	 similar	 across	 the	 re-
gion	 (Anonymous,	 1998).	 The	 sampled	 areas	were	 fragmented	 ca.	
100 years	 ago	 with	 the	 expansion	 of	 coffee	 plantations,	 paddy	
fields,	and	human	settlements.	For	the	last	40 years,	both	contigu-
ous	 and	 fragmented	 forests	 were	 legally	 protected	 against	 land-	
use	 change,	 timber	 extraction,	 and	 hunting.	 Local	 communities	
also	protect	the	fragments	as	sacred	groves	(Bhagwat	et	al.,	2005).	
However,	 the	 expansion	 of	 plantations	 occurred	 as	 recently	 as	
2000 AD,	 driven	 by	 land	 encroachment	 in	 response	 to	 global	 de-
mand	for	coffee	(Ambinakudige	&	Choi,	2009).	While	many	smaller	
fragments	have	disappeared	and	forest	edges	have	degraded	(Osuri	
et	al.,	2014),	undisturbed	areas	were	selected	 for	 the	study	based	

on	 local	 consultation	and	 field	 surveys	of	disturbance	signs.	Refer	
to	Krishnadas	and	Osuri	(2020)	for	a	map	of	the	study	area	and	plot	
locations.

2.2  |  Data collection

2.2.1  |  Vegetation	sampling

Data	on	 tree	communities	were	obtained	 from	an	online	 reposi-
tory	(Osuri	&	Sankaran,	2016b).	The	dataset	comprised	50	square	
plots	of	30 × 30 m,	with	31	plots	at	eight	locations	within	contigu-
ous	forests	and	19	plots	in	eight	forest	fragments.	All	plots	were	
censused	during	Jan–	Dec	2011.	Sampled	fragments	ranged	from	
5	to	10	ha	in	size,	chosen	to	avoid	ongoing	or	recent	disturbance	
or	 human	use.	Vegetation	 plots	were	 placed	 at	 least	 50	m	 from	
fragment	edges	and	50	m	apart	from	each	other.	The	contiguous	
forest	 plots	 were	 located	 within	 a	 complex	 of	 structurally	 con-
nected	nature	 reserves	adjacent	 to	 the	 fragments.	Shade	coffee	
plantations	 dominated	 the	 land	 use	 in	 the	 human-	modified	ma-
trix.	 For	 more	 details	 on	 the	 plot	 locations	 and	 placement,	 see	
Osuri	 and	 Sankaran	 (2016b).	 Species	were	 identified	 using	 field	
keys,	regional	floras	(Pascal	&	Ramesh,	1997),	and	with	input	from	
experienced	botanists.	About	3%	of	individuals	were	excluded	as	
they	had	no	 leaves	or	 the	canopy	was	obscured	by	climbers	and	
remained	unidentified.

2.2.2  |  Traits

I	used	the	four	functional	traits—	seed	size,	wood	density,	specific	leaf	
area	(SLA),	and	maximum	height.	Trait	data	were	available	from	the	
Supporting	 Information	 included	with	Osuri	and	Sankaran	 (2016b)	
and	had	been	collected	between	November	2011	and	January	2013	
following	standard	protocols	(Pérez-	Harguindeguy	et	al.,	2013)	from	
trees	within	or	adjacent	to	the	vegetation	plots.	The	data	collection	
methods	have	been	detailed	in	Osuri	and	Sankaran	(2016b).	Here,	I	
briefly	repeat	the	main.

For	SLA,	five	mature,	healthy,	sun-	exposed	canopy	leaves	were	
collected	per	tree	at	the	end	of	the	wet	season	(October–	December)	
for	358	trees	comprising	79	species.	Leaf	areas	were	estimated	using	
the	black	spot	leaf	area	calculator	(Varma	&	Osuri,	2013),	after	which	
leaves	were	oven-	dried	at	60°C	for	72 h	to	obtain	dry	weights.	Wood	
density	was	 estimated	 by	 dividing	 dry	weight	 by	 fresh	 volume	 of	
trunk	wood	cores	collected	with	an	 increment	borer	for	352	trees	
representing	74	species.	Thirty-	six	species	for	which	adequate	pri-
mary	data	could	not	be	collected,	wood	density	was	collated	from	
secondary	sources	(Chave	et	al.,	2009).	Seed	size	was	quantified	as	
the	 length	of	 the	primary	 seed	axis	 for	34	 species	 (1879	 seeds	 in	
total).	 Additionally,	 seed	 size	 data	 were	 obtained	 from	 two	 other	
mid-	elevation	evergreen	forests	in	the	Western	Ghats	(D.	Mudappa,	
unpublished	data).	For	species	without	primary	measurements,	seed	
lengths	were	collated	from	published	secondary	sources.	Maximum	
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heights	of	 species	were	obtained	 in	 the	 field	 and	 from	 secondary	
sources.	 For	 details	 of	 secondary	 sources,	 please	 see	 Osuri	 and	
Sankaran	(2016a).

2.2.3  |  Climate	data

Climatological	water	deficit	 (Chave	et	al.,	2014),	henceforth	CWD,	
was	 used	 to	 quantify	 site-	level	 variation	 in	 seasonal	 water	 stress	
(Condit	et	al.,	2013;	Vicente-	Serrano	et	al.,	2013).	CWD,	measured	
in	mm/year,	 is	always	a	negative	number	 since	 it	 is	 the	difference	
between	 rainfall	 and	 evapotranspiration	 during	 dry	 months	 only,	
and	more	negative	values	 indicate	greater	water	deficit	 in	 the	dry	
season,	 i.e.,	 an	 index	 of	 seasonality.	CWD	data	were	 downloaded	
from	 the	 source	 cited	 in	Chave	 et	 al.	 (2014; http://chave.ups-	tlse.
fr/pantr	opical_allom	etry.htm#CWD).	 Site-	level	 climate	 aridity	 was	
characterized	by	annual	evapotranspiration	data,	available	at	a	spa-
tial	resolution	of	1	km2,	and	can	be	downloaded	from	the	CGIAR-	CSI	
GeoPortal	 (https://cgiar	csi.commu	nity).	 Gradients	 in	 precipitation	
and	temperature	were	characterized	with	data	from	WorldClim,	col-
lated	per	1	km2	(Hijmans	et	al.,	2005).	I	used	mean	annual	precipita-
tion,	mean	precipitation	of	the	driest	quarter,	mean	precipitation	of	
the	warmest	quarter,	mean	annual	temperature,	mean	temperature	
of	 the	 warmest	 quarter,	 and	 the	 mean	 temperature	 of	 the	 driest	
quarter.

2.3  |  Statistical analysis

All	 analyses	 were	 conducted	 in	 program	 R	 version	 3.6.3	 (R	
Development	Core	Team,	2019)	using	relevant	packages	as	detailed	
below	in	the	different	sections.

2.3.1  |  Trait–	climate	interactions

Interactions	of	traits	with	different	climate	variables	explaining	spe-
cies	abundances	in	contiguous	forests	and	fragments	were	assessed	
using	generalized	 linear	mixed-	effects	models	 (Brown	et	al.,	2014; 
Jamil	 et	 al.,	2013),	 implemented	 using	 package	 glmmTMB	 (Brooks	
et	al.,	2017).	As	detailed	in	Jamil	et	al.	(2013),	the	response	variable	
was	the	abundance	of	each	species	per	site,	 including	zeros,	mod-
eled	using	a	negative	binomial	error	structure.	Site-	to-	site	variation	
in	 abundance	 was	modeled	 in	 relation	 to	 an	 interaction	 between	
traits	and	macroclimate	variables,	separately	for	fragments	and	con-
tiguous	forests.	Plots	(nested	within	sites)	and	species	were	included	
as	random	intercepts.	A	zero-	inflation	component	was	 included	to	
account	for	 the	fact	 that	most	species	were	absent	 in	many	plots.	
Zero	 inflation	was	modeled	 for	 the	 intercept	 and	 as	 a	 function	of	
the	trait	in	each	model.	Zero-	inflated	models	consistently	performed	
better	than	models	without	zero	inflation	(based	on	AIC).

I	used	principal	components	analysis	to	decompose	CWD,	arid-
ity,	and	the	temperature	and	precipitation	variables	from	WorldClim	

into	three	composite	axes	that	together	explained	~95%	of	the	vari-
ation	in	climate	across	the	entire	landscape	(Figure	S1).	Climate	axis	
1	explained	63.2%	variation	and	primarily	captured	the	precipitation	
gradient,	with	positive	values	corresponding	with	greater	precipita-
tion.	Climate	axis	2	captured	21.1%	of	macroclimate	variation	and	
represented	a	temperature	gradient;	more	positive	values	indicated	
warmer	sites.	Climate	axis	3	captured	the	seasonality	gradient	rep-
resented	by	CWD	(11.3%	variation),	with	positive	values	of	the	axis	
corresponding	 with	 lower	 seasonality.	 Because	 climate	 variables	
were	correlated	in	both	contiguous	forests	(Figure	S2)	and	fragments	
(Figure	S3),	 I	 used	 the	 variance	 inflation	 factor	 to	 check	multicol-
linearity	among	variables	in	all	models	(Fox	&	Weisberg,	2019),	using	
the	criteria	of	removing	variables	with	VIF > 4.	Separate	models	were	
run	per	 trait.	 In	 all	models,	Climate	 axis	 1	 (precipitation	 gradient),	
Climate	 axis	 2	 (temperature	 gradient),	 Climate	 axis	 3	 (seasonality	
gradient),	 and	 soil	 C:N	 ratio	 were	 the	 final	 climate	 predictors	 re-
tained.	Elevation	was	correlated	with	the	precipitation	gradient	and	
temperature	gradient,	and	was	previously	found	to	be	a	key	predic-
tor	of	compositional	change	in	this	 landscape	(Krishnadas	&	Osuri,	
2020).	So,	I	also	tested	models	with	elevation	as	the	sole	predictor	
of	changes	in	trait–	abundance	associations.

2.3.2  |  RLQ	and	fourth-	corner	analyses

The	second	question	was	to	assess	trait-	mediated	changes	 in	spe-
cies	 composition	 across	 climate	 gradients.	 This	 may	 occur	 via	 (a)	
individual	 traits	changing	along	 individual	climate	gradients,	 (b)	 in-
dividual	 traits	changing	along	a	combination	of	climate	conditions,	
or	 (c)	 trait	 combinations	 (functional	 syndromes)	 responding	 to	 a	
combination	 of	 climate	 conditions.	 These	 possibilities	were	 evalu-
ated	using	the	RLQ	and	fourth-	corner	methods.	RLQ	identifies	the	
links	between	climate	gradients	and	trait	syndromes	as	reflected	by	
species	 abundances,	 and	 fourth-	corner	 analysis	 performs	 formal	
statistical	tests	of	hypotheses	regarding	trait–	climate	linkages	(Dray	
et	al.,	2014;	Peres-	Neto	et	al.,	2017).	For	this	procedure,	R	is	the	ma-
trix	of	climate	variables	by	sample	sites,	Q	has	Species × Trait	data,	
and	L	 is	a	Site × Species	matrix	of	abundances	or	occurrences.	The	
RLQ	outputs	decompose	correlations	 in	the	data	along	orthogonal	
axes	for	a	global	measure	of	trait–	climate	linkages	(Dray	et	al.,	2014).	
The	analysis	 tests	 for	 two	relationships	using	randomization	tests.	
First,	 the	 environment	 influences	 the	 distribution	 of	 species	 and	
next,	traits	influence	the	composition	of	species	assemblages	found	
in	samples	with	given	environmental	conditions.	Trait–	environment	
associations	can	be	considered	valid	only	if	both	models	are	signifi-
cant.	Finally,	the	fourth-	corner	analysis	evaluates	multiple	bivariate	
correlations	between	traits	and	climate	variables,	using	permutation	
tests	on	the	RLQ	outputs	to	assess	the	relationship	between	(a)	in-
dividual	 functional	 traits	and	single	or	combined	climate	gradients	
(RLQ	climate	 scores),	 and	 (b)	 climate	variables	 and	 functional	 syn-
dromes	(RLQ	traits	scores;	Dray	et	al.,	2014).

Following	 the	procedure	detailed	by	Dray	et	al.	 (2014),	 I	 first	
analyzed	the	L	table	using	correspondence	analysis	(CA),	followed	

http://chave.ups-tlse.fr/pantropical_allometry.htm#CWD
http://chave.ups-tlse.fr/pantropical_allometry.htm#CWD
https://cgiarcsi.community
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by	standardized	principal	components	analysis	(PCA)	of	the	R	and	
Q	 tables.	 Then,	 I	 evaluated	 the	 proportions	 of	 variation	 in	 the	
climate	 ordination	 and	 the	 trait	 ordination	 from	 the	 RLQ	 axes.	 I	
tested	 the	 global	 significance	 of	 trait–	climate	 relationships	 (RLQ	
axes)	 and	 bivariate	 correlations	 between	 traits	 and	 climate	 vari-
ables	 with	 the	 “randtest.rlq”	 and	 “fourthcorner.rlq”	 functions,	
respectively.	To	control	false-	positive	error	rates	in	multiple	com-
parisons,	I	used	the	Benjamini–	Hochberg	false	discovery	rate	pro-
cedure	(Benjamini	&	Hochberg,	1995)	with	9999	permutations	to	
estimate	p-	values.

I	 ran	separate	RLQ	analyses	 for	 fragments	and	contiguous	for-
ests	to	compare	their	trait–	climate	linkages.	SLA	and	seed	size	were	
log	transformed	and	all	traits	were	scaled	by	their	mean	and	stan-
dard	 deviation	 prior	 to	 analysis.	 All	 calculations	 and	 graphs	 were	
made	using	package	“ade4”	in	R	version	4.0.1	(R	Core	Team,	2017).	
For	this	analysis,	 I	 included	all	climate	variables	together	since	the	
multivariate	analysis	accounted	for	collinearity	among	variables.

2.3.3  |  Trait	covariance

To	assess	how	climate	gradients	influenced	trait	covariance,	for	each	
plot	 I	 calculated	 each	 pairwise	 covariance	 of	 the	 four	 traits	 using	
methods	and	R	 codes	 in	Dwyer	 and	Laughlin	 (2017).	 I	 used	 linear	
models	 to	model	plot-	level	covariance	of	each	 trait	pair	as	a	 func-
tion	 of	 the	 interactions	 of	 forest	 type	 (fragment/contiguous)	with	

macroclimate	conditions	of	a	plot.	Preliminary	analysis	with	mixed-	
effects	 models	 showed	 minimal	 effects	 of	 site-	level	 variance	 on	
model	 coefficients	 and	 variance	 explained,	 and	 higher	 AIC	 than	
linear	 models.	 As	 with	 trait–	abundance	 associations,	 correlated	
predictors	were	removed	using	VIF	to	reduce	collinearity.	Because	
elevation	correlated	strongly	with	multiple	variables,	changes	in	site-	
level	trait	covariance	with	elevation	were	tested	in	separate	models.

3  |  RESULTS

3.1  |  Trait– abundance associations

As	expected,	the	four	traits	differed	 in	their	 interaction	with	mac-
roclimate	variables	to	predict	species	distributions	across	the	land-
scape,	 and	 trait–	climate	 interactions	 differed	 between	 fragments	
and	 contiguous	 forests	 (Figure 1).	 In	 contiguous	 forests,	 lower	
water	 deficit	 (positive	 values	 of	 Climate	 PC	 axis	 3)	 corresponded	
to	 increased	 abundance	 of	 shorter	 statured	 species	 (interaction	
coefficient,	 β =	 −0.34,	 SE =	 0.06,	 p-	value < .01).	 This	 relationship	
remained	 similar	 in	 fragments	 (interaction	 coefficient,	 β =	 −0.36,	
SE =	0.06,		p-	value < .001).	Taller	species	increased	in	abundance	at	
warmer	sites	in	contiguous	forests	(interaction	coefficient,	β =	0.21,	
SE =	 0.05,	 p-	value ≪ 0.001),	 but	 fragments	 had	 no	 interaction	 of	
height	 and	 temperature.	While	 overall	 abundance	 increased	 with	
seed	size	in	contiguous	forests	(β =	1.13,	SE =	0.48,	p-	value	=	.02),	

F I G U R E  1 Coefficient	estimates	
from	trait–	climate	interaction	models.	
Changes	in	species	abundances	across	
macroclimate	gradients	were	modeled	
in	relation	to	four	functional	traits	for	
contiguous	forests	and	fragments.	
Generalized	linear	mixed-	effects	models	
with	negative	binomial	errors	and	a	
zero-	inflation	component	were	used	
to	model	the	relationships.	The	climate	
across	sites	was	characterized	using	
climatic	water	deficit,	soil	C:N	ratio,	and	
two	composite	climate	axes	derived	from	
principal	components	analysis	of	selected	
climate	variables	from	WorldClim	data	
(see	section	2).	Points	depict	coefficient	
estimates	and	error	bars	show	associated	
confidence	intervals.	Solid	lines	and	filled	
circles	indicate	significant	relationships	
where	the	confidence	interval	does	not	
overlap	zero	(vertical	dashed	line).
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this	trend	reversed	as	seasonal	water	deficit	decreased	(interaction	
coefficient,	β =	−0.18,	SE =	0.06,	p-	value	=	.03).	In	fragments,	larger-	
seeded	species	declined	at	warmer	sites	along	the	temperature	gra-
dient	 (interaction	 coefficient,	β =	 −0.56,	SE =	 0.21,	p-	value < .01).	
All	three	climate	gradients	correlated	with	seed	size–	abundance	as-
sociations	 in	 contiguous	 forests.	 Larger-	seeded	 species	 decreased	
at	less	rainy	(β =	0.11,	SE =	0.04,	p-	value < .01),	warmer	(β =	−0.51,	
SE =	 0.22,	 p-	value	 =	 .02),	 and	 less	 seasonal	 sites	 (β =	 −0.29,	
SE =	0.15,	p-	value	=	.05).	Greater	seasonal	water	deficit	in	fragments	
also	increased	abundances	of	high	SLA	species	(β =	0.34,	SE =	0.14,	
p-	value	=	.01).	Wood	density	did	not	interact	with	any	climate	gradi-
ent	to	shape	abundances	in	either	contiguous	forests	or	fragments.

Models	 with	 elevation	 as	 the	 sole	 predictor	 explained	 simi-
lar	extents	of	variation	as	models	with	multiple	climate	predictors	
in	 contiguous	 forests,	 but	 not	 fragments	 (Table	S1).	 In	 contiguous	
forests,	 increase	 in	 elevation	 decreased	 abundances	 of	 species	
with	taller	stature	 (β =	−0.003,	SE =	0.0007,	p-	value < .01),	denser	
wood	 (β =	 −0.002,	 SE =	 0.0006,	 p-	value < .01),	 and	 larger	 seeds	
(β =	−0.002,	SE =	0.0006,	p-	value	=	.001).	For	every	100 m	increase	
in	elevation,	there	was	a	decrease	of	.009 m	in	species	height,	0.1	g/
cc	in	wood	density,	and	0.5	cm	in	seed	size	(Figure 2).	Only	seed	size	
showed	a	 significant	 interaction	with	 elevation	 in	 fragments,	with	
larger-	seeded	species	having	higher	abundance	at	higher	elevations	
(Table	S2).

Overall,	 trait	 interactions	 with	 climate/elevation	 at	 most	 ex-
plained	~11%	of	the	variation	in	species	abundances.	The	model	with	
maximum	height	 best	 explained	 the	 change	 in	 species	 abundance	
across	macroclimate	gradients	(Table	S1).	Except	for	the	model	with	
maximum	height,	 random	effects	of	species	explained	more	varia-
tion	 than	 fixed	 effects	 (Table	S1,	 see	 conditional	 vs.	marginal	R2),	
indicating	 that	 unmeasured	 species-	level	 factors	 contributed	 sub-
stantially	 to	changes	 in	species'	abundances.	Site-	level	 random	ef-
fects	explained	minimal	variation.

3.2  |  RLQ and fourth- corner analysis

Only	contiguous	forests	had	significant	trait–	climate	linkages	driving	
compositional	change—	the	first	RLQ	axis	explained	84.6%	and	the	
second	axis	13.5%	of	the	cross-	variance	in	traits	and	macroclimate	
(Figure 3a).	 Correlations	 of	 climate	 with	 composition	 (standard-
ized r =	4.26,	p-	value	=	 .004)	and	traits	with	climate	(standardized	
r =	2.09,	p-	value	=	.04)	remained	statistically	significant	after	rand-
omization	 tests.	 In	 fragments,	88%	of	 the	cross-	variance	between	
traits	and	climate	was	explained	by	the	model	 (Figure 3b),	but	 the	
results	were	not	statistically	significant	after	accounting	for	multiple	
comparisons.

In	contiguous	forests,	trait	axis	R1,	representing	a	syndrome	of	
lower	values	of	wood	density,	SLA,	and	seed	size,	 significantly	 in-
creased	along	climate	axis	Q1	(higher	elevations,	lower	water	defi-
cit),	 and	 higher	 C:N	 ratio	 (standardized	 r =	 0.34,	 p-	value ≪ .001;	
Figure 4a).	 This	 pattern	 was	 mainly	 driven	 by	 changes	 in	 SLA	
(standardized	r =	−2.47,	p-	value	=	 .06)	and	seed	size	 (standardized	

r =	−2.34,	p-	value	=	 .09)	across	axis	Q1	representing	a	gradient	of	
higher	elevation	and	greater	C:N	ratio	(Figure 4b).	The	relationship	
between	 individual	gradients	and	trait	axes	showed	an	 increase	 in	
smaller-	seeded,	lighter-	wooded,	and	thicker-	leaved	species	at	higher	
elevations	 (standardized	 r =	 4.04,	p-	value < .001)	 and	 in	 soils	with	
higher	C:N	 ratio	 (standardized	 r =	 2.73,	p-	value	= .04; Figure 4c).	
Fourth-	corner	analysis	for	fragments	revealed	no	significant	correla-
tions	between	 trait	 axes	and	climate	gradients.	No	 individual	 trait	
showed	a	significant	correlation	with	any	individual	climate	variable	
in	either	fragments	or	contiguous	forests.

3.3  |  Trait covariance

All	 coefficients	 for	 the	models	 of	 trait	 covariance	 are	 provided	 in	
Table	 S3.	 Only	 seed	 size–	maximum	 height	 (SS-	MH)	 covariance	
showed	significant	 relationships	with	climate	variables	 (Figure 5a–	
c).	 Within	 contiguous	 forests,	 SS-	MH	 covariance	 increased	 with	
greater	 C:N	 ratio	 (β =	 0.04,	 SE =	 0.02,	 p-	value	=	 .02)	 and	 lower	
water	deficit	(β =	0.08,	SE =	0.03,	p-	value	=	.02),	and	decreased	at	
warmer	sites	(β =	−0.06,	SE =	0.02,	p-	value	=	.003).	All	relationships	
reversed	in	fragments,	with	larger	effect	sizes.	Seasonal	water	defi-
cit	(β =	−0.14,	SE =	0.06,	p-	value	=	.02)	and	temperature	(β =	0.22,	
SE =	0.08,	p-	value	=	 .01)	had	 larger	 impact	on	covariance	 in	 frag-
ments	than	CN	ratio	(β =	−0.11,	SE =	0.06,	p-	value	=	.04),	with	SM-	
MH	covariance	decreasing	in	wetter,	warmer	sites	(higher	values	of	
precipitation	and	temperature	gradients;	Figure 5a,b;	Table	S3).	As	
with	trait–	abundance	associations,	models	with	elevation	alone	ex-
plained	as	much	variation	in	trait	covariance	as	models	with	multi-
ple	climate	variables	(see	AIC	and	adjusted	R2,	Table	S4),	except	for	
SS-	MH	covariance.	However,	 all	 relationships	with	 elevation	were	
non-	significant.

4  |  DISCUSSION

In	 a	 human-	modified	 forest	 landscape,	 trait-	based	 assembly	 of	
tree	communities	across	similar	climate	gradients	differed	in	frag-
ments	 compared	 to	 contiguous	 forests.	 However,	 trait–	climate	
interactions	 alone	 (without	 random	effects	of	 species)	 explained	
negligible	 variation	 in	 species	 abundances	 across	 the	 landscape,	
suggesting	other	unmeasured	factors	about	species	that	contrib-
uted	 to	 their	 distribution	 patterns.	 Net	 compositional	 change	 in	
contiguous	forests	occurred	via	multiple	climate	factors	acting	si-
multaneously	to	select	combinations	of	traits,	with	elevation	being	
a	prominent	gradient	of	assembly.	Traits	did	not	explain	composi-
tional	 change	across	 fragments.	Climate	 influenced	 site-	level	 co-
variance	of	seed	size–	maximum	height,	which	showed	that	similar	
climatic	 conditions	 in	 fragments	 and	 contiguous	 forests	 favored	
different	phenotypes.

The	weak	influence	of	any	single	trait	on	species'	abundances	in-
dicated	that	assembly	occurred	along	multiple	climate	axes	selecting	
for	multi-	trait	phenotypes	rather	than	any	single	trait,	sometimes	in	
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F I G U R E  2 Trait–	abundance	association	
with	elevation.	Changes	in	species	
abundances	across	elevational	gradients	
in	contiguous	forests	and	fragments	were	
modeled	in	relation	to	four	functional	
traits.	Generalized	linear	mixed-	effects	
models	with	negative	binomial	errors	
and	a	zero-	inflation	component	were	
used	to	model	the	relationships.	Points	
indicate	observed	values	and	lines	
show	predictions	at	the	10th	(low),	50th	
(medium),	and	90th	(high)	percentiles	of	
trait	values.	Note	the	log	scale	for	the	Y 
axis	and	differing	ranges	for	contiguous	
forests	and	fragments.	Solid	and	dashed	
lines,	respectively,	indicate	significant	
and	non-	significant	trait–	elevation	
interactions.

F I G U R E  3 RLQ	analysis	of	trait–	climate	linkages.	For	(a)	contiguous	forests	and	(b)	forest	fragments,	correspondence	analysis	was	used	to	
assess	links	among	species'	traits,	species	composition,	and	gradients	in	macroclimate	conditions.	Climate	was	characterized	using	elevation,	
climatic	water	deficit	(CWD),	precipitation	gradient	(Clim.1,	precipitation	gradient),	temperature	gradient	(Clim.2,	temperature	gradient),	soil	
C:N	ratio,	and	atmospheric	aridity.	Only	contiguous	forests	showed	significant	relationships	after	correcting	for	multiple	comparisons	(see	
Figure 4).
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opposing	directions	(Díaz	et	al.,	2015;	Shen	et	al.,	2019).	As	a	result,	
no	 combination	 of	 a	 single	 trait	with	 a	 single	macroclimate	 gradi-
ent	explained	the	net	compositional	change	in	either	fragments	or	
contiguous	 forests.	 In	contiguous	 forests,	 a	 composite	gradient	of	
higher	 elevation,	 greater	 soil	 C:N,	 and	 lower	 temperatures	 had	 a	
higher	abundance	of	species	with	lower	SLA	and	smaller	seeds.	This	
compositional	pattern	matched	with	 trait–	abundance	associations,	
wherein	 abundances	of	 larger-	seeded	 species	decreased	at	 higher	
elevations.

In	 addition,	 species	 abundances	 across	 the	 elevation	 gradient	
varied	with	maximum	height	and	wood	density.	Given	that	only	seed	

size	played	a	role	in	mediating	net	compositional	change,	the	abun-
dance	patterns	for	maximum	height	 likely	followed	from	its	strong	
positive	 correlation	with	 seed	 size.	Wood	 density,	 however,	 com-
prised	 an	 independent	 trait	 axis	 (see	 traits	 PCA).	 The	 decrease	 in	
the	abundance	of	denser-	wooded	species	at	higher	elevations	may	
be	 due	 to	 unmeasured	 factors	 such	 as	 higher	 solar	 radiation	 that	
favor	 faster-	growing,	 low-	wood-	density	 species.	 Overall,	 patterns	
here	 suggest	 that	 trait-	mediated	performance	partly	underlies	 the	
marked	variation	 in	species	composition	seen	across	 the	elevation	
gradient	in	contiguous	forests	(Krishnadas	&	Osuri,	2020),	although	
the	mechanisms	remain	unclear.

F I G U R E  4 Fourth-	corner	analysis	of	RLQ	outputs.	The	trait-	mediated	compositional	change	was	assessed	with	respect	to	macroclimate	
gradients	in	fragments	vs.	contiguous	forests,	yielding	relationships	between	(a)	composite	trait	axes	and	composite	macroclimate	gradients,	
(b)	individual	traits	and	composite	macroclimate	gradients,	and	(c)	individual	traits	and	individual	macroclimate	variables.	Cell	color	tending	
toward	darker	gray	indicates	more	negative	correlations	and	darker	yellows	indicate	an	increasingly	positive	correlation,	with	white	
indicating	no	correlation	(see	the	scale	in	the	figure).	Asterisk	indicates	a	statistically	significant	correlation	(p-	value < .05).	Climate	was	
characterized	using	elevation,	precipitation	gradient	(Clim.1),	temperature	gradient	(Clim.2),	seasonality	gradient	(Clim.3),	and	soil	C:N	ratio	
(C:N).	p-	Values	for	the	significance	of	relationships	were	assessed	using	Benjamini–	Hochberg	correction	for	false-	positive	results	through	
9999	random	permutations	of	matrices.

F I G U R E  5 Trait	covariance	along	climate	gradients.	Site-	level	covariance	of	each	pair	of	traits	was	modeled	in	relation	to	macroclimate	
gradients	across	contiguous	forests	and	fragments	using	multiple	linear	regression.	The	climate	across	sites	was	characterized	using	soil	C:N	
ratio	and	three	composite	climate	axes	derived	from	principal	components	analysis	of	selected	climate	variables	from	WorldClim	data	(see	
section	2).	Only	relationships	with	significant	trends	are	shown	here.	See	Table	S3	for	all	coefficient	estimates.



    |  9 of 12KRISHNADAS

In	 fragments,	macroclimate	 variables	 played	 a	 larger	 role	 than	
elevation	 in	 explaining	 trait–	abundance	 associations,	 most	 prom-
inently	 for	 seed	 size.	 Increased	abundance	of	 smaller-	seeded	 spe-
cies	at	warmer	sites	may	underlie	their	decrease	at	higher	elevations	
where	the	climate	was	cooler	than	in	lower	elevations.	Nonetheless,	
trait-	mediated	changes	in	abundances	did	not	translate	to	changes	in	
functional	composition	across	fragments.	This	may	reflect	the	com-
bined	influence	of	fragment	locations	and	shifts	in	species	composi-
tion	at	800	m	ASL	in	the	Western	Ghats.	Contiguous	forests	started	
at	630	m	ASL,	whereas	fragments	occurred	only	above	850	m	ASL.	
Being	 restricted	 to	higher	elevations,	 fragments	would	experience	
less	 site-	to-	site	 variation	 in	 composition	 than	 contiguous	 forests.	
Thus,	the	loss	of	low-	elevation	forests—	typical	of	land-	use	change—	
may	have	homogenized	 the	 tree	 community	 that	 remained	 across	
the	 landscape	 (Krishnadas	 &	 Osuri,	 2020).	 This	 homogenization	
may	continue	if	fragments	favor	the	recruitment	of	some	functional	
types	 regardless	 of	 elevation	 and	 climate	 (Frishkoff	 et	 al.,	 2019; 
Yano	et	al.,	2021).	Fragments	may	also	experience	more	stochastic	
assembly	or	changes	to	local	biotic	interactions	(Krishnadas,	Bagchi,	
et	al.,	2018;	Krishnadas	&	Osuri,	2020;	Laurance,	2002),	which	may	
further	override	trait–	climate	linkages.

Selection	 for	 multi-	trait	 phenotypes	 across	 composite	 climate	
gradients	may	explain	the	relationships	with	individual	climate	vari-
ables	that	were	contrary	to	expectation.	For	instance,	dry	conditions	
were	 expected	 to	 favor	 shorter-	statured	 species	 (Méndez-	Toribio	
et	al.,	2020),	but	taller	species	became	more	abundant	as	seasonal	
water	deficit	increased	in	contiguous	forests.	This	may	follow	from	
seasonal	water	deficit	decreasing	at	higher	elevations	where	there	
was	 strong	 selection	 for	 species	with	 shorter	 stature	 and	 smaller	
seeds.	Another	possibility	 is	that	even	the	greatest	seasonal	water	
deficit	 in	 this	 wet	 landscape	 did	 not	 impose	 significant	 drought	
stress	or	limit	water	transport,	thus	imposing	minimal	costs	on	taller	
species.	Instead,	fuller	canopies	in	less	seasonal	sites	may	increase	
the	abundances	of	shade-	tolerant	understory	species	with	shorter	
stature	 because	 light	 limitation	 poses	 the	 key	 stress	 to	 constrain	
trait	combinations.	This	possibility	was	supported	by	the	finding	that	
water-	stressed	sites	had	more	flexible	combinations	of	seed	size	and	
maximum	height.	 An	 accurate	 understanding	 of	 the	 role	 of	water	
deficit	 in	 community	 assembly	would	 require	measuring	 hydraulic	
traits	that	directly	represent	plant–	water	relations.

The	 weak	 role	 of	 individual	 traits	 in	 explaining	 compositional	
change	also	 stemmed	 from	 the	 selection	of	 trait	 combinations	 for	
seed	size	and	maximum	height	(plot-	level	SS-	MH	covariance)	across	
climate	and	elevation	gradients.	On	average,	fragments	had	stronger	
positive	SS-	MH	covariance	than	continuous	forests,	even	as	larger-	
seeded	 species	 declined	 in	 fragments	 (Osuri	 &	 Sankaran,	 2016a),	
which	may	be	accounted	for	by	two	possibilities.	The	first	possibility	
is	the	loss	of	mid-	canopy	shade-	tolerant	species	with	large	seeds	but	
shorter	stature	(Rüger	et	al.,	2018),	perhaps	driven	by	water	deficit.	
Shade-	tolerant,	mid-	canopy	species	can	be	drought	sensitive	(Kupers	
et	al.,	2019;	Sterck	et	al.,	2011),	and	their	loss	may	explain	why	sites	
with	greater	water	stress	had	stronger	positive	SM-	MH	covariance	
in	fragments,	even	though	we	expect	water-	stressed	conditions	to	

favor	shorter	species.	Secondly,	smaller-	seeded	species	were	more	
abundant	 in	warmer	 fragments,	 but	 species	 had	 taller	 stature	 for	
given	seed	size.	The	small	seeds,	tall	stature	phenotype	is	consistent	
with	long-	lived	pioneers	(Rüger	et	al.,	2018)	and	maybe	a	response	
to	increased	light	availability	in	fragments.

5  |  CONCLUSION

Forest	 loss	 altered	 the	 effects	 of	macroclimate	on	 community	 as-
sembly	 of	 trees	 and	 assembly	 in	 fragments	 occurred	 primarily	 via	
constraints	on	trait	combinations.	That	seed	size	played	a	prominent	
role	in	assembly	across	climate	gradients	suggests	that	the	dynamics	
of	younger	 life	stages	(Krishnadas	et	al.,	2020;	Krishnadas,	Bagchi,	
et	al.,	2018;	Krishnadas	&	Comita,	2018;	Larson	et	al.,	2016),	where	
seed	size	has	a	clear	mechanistic	influence	on	performance,	may	be	
crucial	 to	 future	 community	 structure	 in	 fragments	 (Bruun	 &	 ten	
Brink,	 2008;	 Lebrija-	Trejos	 et	 al.,	2016;	Moles	 et	 al.,	2014;	Moles	
&	Westoby,	2004;	Visser	et	al.,	2016).	Overall,	covariance	patterns	
suggest	 that	 similar	 climate	 conditions	 select	 for	 different	 pheno-
types	 in	 fragments	 and	 contiguous	 forests.	 Shifts	 in	 the	 success	
of	 phenotypes	with	 forest	 loss	 could	 be	 due	 to	 edge	 effects	 that	
alter	 forest	 microclimates	 (Arroyo-	Rodríguez	 et	 al.,	 2017;	 Davis	
et	al.,	2019).	Warmer	and	drier	microclimates	in	fragments	may	am-
plify	water	stress	during	 the	dry	season	or	exacerbate	 the	effects	
of	drier	years	in	a	changing	climate	via	abiotic	stress	or	by	altering	
biotic	 interactions.	Disentangling	these	processes	requires	mecha-
nistic	 approaches	 targeted	 at	 traits	 involved	 in	 specific	 functions,	
e.g.,	water	use	or	temperature	tolerance.	Uncovering	the	mechanis-
tic	basis	of	compositional	change	 in	 fragments	would	 improve	our	
ability	to	manage	and	restore	human-	modified	landscapes.
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