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Infrared spectroscopy technique for quantification of 
compounds in plant‑based medicine and supplement

Abstract

Quality control of plant‑based medicine and supplements must be carried out to 
ensure uniformity in quality and safety in their use, resulting in the need for effective 
and accurate analytical methods. Infrared spectroscopy is a method of qualitative 
and quantitative analysis that is fast, time‑saving, cost‑effective,  accurate, and 
nondestructive. This method has been applied for quantitative analysis of compounds 
in complex matrices such as plant‑based medicine and supplements supported by 
chemometrics techniques. The success of infrared spectroscopy applications for 
quantitative analysis of phytochemicals and adulterants content in plant‑based medicine 
and supplement can happen by several factors. This article highlights the effect of 
spectral preprocessing and variable selection on quantitative analysis of phytochemical 
and adulterant in plant‑based medicine and supplements using infrared spectroscopy. 
Literature search was conducted with PubMed, Google Scholar, and Science Direct by 
selecting quantitative analysis research on plant‑based medicines and supplements 
that utilize spectral preprocessing techniques and variable selection in processing data 
analysis. The preprocessing spectra and variables selection can affect the accuracy and 
precision of infrared spectroscopy methods. The variable selection can be done using 
the wavenumber point technique, the wavenumber interval, or a combination thereof. 
Variable selection is more commonly used for near‑infrared data than for IR data. The 
optimization of the preprocessing spectra and variables selection technique will be 
useful in increasing the ability of infrared spectroscopy in predicting compound levels.
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INTRODUCTION

The use of plant‑based medicine and supplements 

had been increased in the past few decades. This is 
in line with the evolution of self‑medication so that 
there is a tendency to return to traditional and natural 
products. Consumers choose to use herbal and natural 
products because natural herbs are safe and more likely 
to minimize the side effects of using chemical drugs, 
improve health, and reduce treatment costs.[1] However, 
the use of herbal products is not yet acceptable in some 
countries due to counterfeit products, uneven quality, 
and safety of their use. It may cause negative effects 
to the consumer, product quality assurance can be 
assessed from both qualitative and quantitative aspects. 
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Quantitative assessment of herbal products quality is 
focused on phytochemical components that are naturally 
contained in sample or adulterants that should not be 
contained therein.[2,3]

Various analytical methods can be used to examine 
phytochemical content and adulterants in herbal 
m e d i c i n e s  s u c h  a s  h i g h  p e r f o r m a n c e  l i q u i d 
chromatography  (HPLC), ultra‑high‑HPLC, liquid 
chromatography  (LC)‑mass spectrometry  (MS), 
gas chromatography  (GC)‑MS, nuclear magnetic 
resonance  (NMR), and thin-layer chromatography. 
However, the methods have several disadvantages. 
HPLC method is still costly and unpracticed in sample 
handling, needs long‑time analysis, and has a high 
consumption of solvents. NMR method is insensitive 
and requires a relatively large amount of sample to make 
a measurement.[4] Furthermore, in herbal medicines 
analysis, one of the obstacles is the efficiency of the 
analysis, because the complex components of herbal 
medicines can complicate the process. In addition, the 
analysis process can also damage the material.[5]

Infrared spectroscopy can be examined by qualitative and 
quantitative analysis. This method provides information 
about the compound content in complex samples with 
small levels. The complexity of the information provided 
can be resolved by chemometric techniques. Chemometric 
techniques can assist in extracting information from 
spectra through multivariate analysis. Spectroscopy is 
considered fast, time‑saving, cost‑effective, accurate, and 
nondestructive analytical tool.[6] Infrared spectroscopy 
has been used successfully for quantitative analysis in 
various fields including pharmaceutical, food industry, 
agriculture, and biological evaluation. The success of 
this method is assessed from the value of root mean 
square error of calibration  (RMSEC), root mean square 
error of prediction  (RMSEP), root mean square error 
of cross‑validation  (RMSECV), and determination 
coefficient  (R2).[7] Good linearity and accepted standard 
errors of a model of good linearity and standard errors 
of a prediction model are influenced by several factors. 
The preprocessing spectra and variables selection can 
affect the accuracy and precision of infrared spectroscopy 
methods. We performed the PubMed, Google Scholar, 
and Science Direct databases to find articles providing 
information on the effect of preprocessing spectra 
and variables selection. Some of the research done on 
quantitative analysis using infrared spectroscopy has 
been presented in Table 1. This article will discuss several 
preprocessing techniques and variable selection that 
contribute to improving the quantitative analysis results 
of chemical components (in the form of adulterant) and 
phytochemicals  (second metabolites) in plant‑based 
medicine and supplements to standardize products with 
green analytical chemistry methods.

QUANTITATIVE ANALYSIS USING INFRARED 
SPECTROSCOPY

Quantitative analysis with infrared spectroscopy is an 
indirect method because it still requires reference methods 
such as chromatographic  (HPLC, GC and capillary 
electrophoresis), and spectroscopic  (NMR, ultraviolet). To 
support the quantification of compound information in 
the sample, the relationship between Fourier transform 
infrared spectroscopy  (FTIR) spectrum as a predictor 
variable, and the value of measurement level results with the 
reference method (response variable) will be translated by 
chemometrics techniques. In general, content analysis with 
infrared spectroscopy combined with chemometrics is carried 
out through several stages. First, the samples of spectra data 
are scanned using near‑infrared (NIR) and mid‑infrared (MIR) 
spectrometers. The sample is also analyzed by the reference 
method to get the actual value. This reference method is 
chosen based on the ability to quantify components in a 
sample accurately. Furthermore, infrared spectra can be 
treated further with preprocessing and variable selection. 
This aims to reduce the dimensions of the data to simplify 
calibration modeling without losing important information.[8]

Calibration is made by plotting the prediction 
variable (variable of infrared spectra) as x with the actual 
variable  (compound content obtained from the reference 
method) as y. Calibration models for quantitative analysis 
are divided into two categories: linear and nonlinear. 
Generally, linear calibration that can be used is partial 
least square  (PLS), principal component regression, and 
step‑wise multiple linear regression, while nonlinear 
calibration is artificial neural network.[8] After that, the 
calibration model formed is evaluated to testify the ability 
in analyzing the levels of compounds in the sample.

QUANTIFICATION OF PHYTOCHEMICAL 
COMPOUND AND ADULTERANT

An analysis with infrared spectroscopy is ideal if the 
evaluation results show R2 values approaching a value 
of 1, low standard error  (RMSEC, RMSECV, RMSEP, or 
predicted residual error sum square  [PRESS]), and the 
relative percent difference (RPD) values should be at least 
2.4 or greater.[28,29] R2 calibration values describe the linearity 
of the calibration curve formed from infrared spectrum 
data (x value) with the concentration data measured using 
the reference method (y value). R2 values close to 1 indicate 
that the infrared spectrum data are able to explain the 
concentration of compounds as the dependent variable. R2 
validation value illustrates the accuracy of the measured 
concentration value by the infrared method. A validation 
value of R2 close to 1 indicates that the measurement of 
compound concentrations using the FTIR method yields 
a value that is proportional to the measurement results 
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Table 1: Quantitative analysis using infrared spectrometry coupled with chemometrics
Quantitative analysis by infrared 
spectroscopy

Description

Morfin and Thebain in Poppy head (flower or 
fruit of family Papaveraceae) by FTIR[9]

Mean-centred scalling technique as preprocessing spectra followed by PCA as 
variable selection gives a better predictive ability, but the model still needs an 
optimation due to high % RSD for morfin prediction

Quersetin, Quersitrin, Rutin, and total flavonoid in 
genus Fagopyrum by FTIR[10]

Several spectra pretreatments are employed. Wavelet transform gives the 
best result to preprocessed high resolution spectra, while wavelet transform 
together with derivative has good linearity for low resolution spectra. Spectra 
at wavenumber 500-1700 cm−1 and between 2950-3500 cm−1 are chosen to 
build a PLS calibration model

Total flavonoid in 20 leaves extract and 
commercial herbal supplement by FTIR and NIR[11]

PLS regression built by full spectra of NIR with no spectra pretreatment shows 
a better prediction than FTIR spectra

3,4-dihydroxy-phenyl lactic acid (danshensu) in Pill 
containing Salviae miltiorrhizae Radix et Rhizoma 
Notoginseng Radix et Rhizoma and by NIR[12]

Spectral of wavenumber 7994-7258, 6135-5399 cm−1 is chosen to build PLS 
modeling after preprocessing of spectra. The 1st derivative spectra produce the 
best calibration model with a good evaluation result

Puerarin in Puerariae radix by NIR and UV 
spectrofotometry[13]

The best PLS model obtained from NIR-UV fusion data with MSC with the1st 
derivative and smoothing as preprocessing technique

Alkaloids BB, CO, PA, EP and JA in Coptidis 
rhizoma by NIR[14]

The best model for BB, CO and PA model built by ANN, while EP and JA by 
PLS. Different preprocessing spectra fits to different alkaloid

Isoflavon and saponin in Soybeans by NIR[15] The MLR regression model of derivative spectra has a good evaluation value 
for total isoflavones, but the results are not satisfactory for total saponin

Stevioside, rebaudioside, and sum of them in 
Stevia rebaudiana Bertoni by NIR[16]

NIR spectra is preprocessed by smoothing, and then followed by the 1st and 
the 2nd derivative. The PLS regression is built in wavenumber region 4760-5016 
cm−1. The results show that model evaluation values are not satisfactory due 
to low linearity and different value of RMSEC and RMSEP

Five total antraquinone (emodin, chrysophanol, 
rhein, aloeemodin, and physcion) in Rhei radix et 
rhizome by NIR[17]

Different preprocessing is applied to NIR spectra with 16 cm−1 resolution, 
and then the wavenumber regions at 4242-5581 cm−1, 5885-6233 cm−1, and 
6394-7011 cm−1 are chosen to build a multivariate regression, namely SMLR, 
PCR, and PLS. The best model is obtained using PLS with the 1st derivative

Icariin in Epimedium species from Berberidaceae 
family by NIR[18]

NIR spectra with 8 cm−1 resolution is processed by the 1st derivative and 
smoothing, followed by CARS as variable selection technique. After that, the 
variable builds a PLS regression and results in good calibration and validation 
value

CO and SFO as adulterant in Extra virgin olive oil 
by FTIR[19]

The FTIR with resolution at 4 cm−1 spectra is processed by derivative. The best 
SFO model is obtained using PLS with the 1st derivative, while the best CO 
model is obtained using a PLS with no preprocessing. The models have good 
linearity, but significant differences in RMSEC and RMSEP

Millet (Eleusine cora-cana) and Buckwheat 
(Fagopyrum esculentum) as adulterant in 
Blackpepper (Piper nigrum) by NIR[20]

The best model is obtained by PLS regression of NIR with MSC, followed by 
the1st derivative preprocessing spectra. It has good R2 and RPD, but significant 
differences in RMSEC and RMSEP

Sibutramine and phenolptalein as adulterant in 
Weightloss herbal medicine by FTIR[21]

SNV and a Savitzky-Golay 2nd derivative are used as a preprocessing technique. 
The best model is obtained by FTIR. R2>0.93. Sibutamine’s model produces 
0.8% RMSEC and RMSECV, and phenolphthalein 2.2%

Total flavone content in snow lotus (Saussurea 
involucrate) by NIR[22]

SNV is choosing as a preprocessing spectrum. Before constructing the 
calibration model, the spectral split into several intervals by iPLS than the 
variable of the split interval is choosing by GA. Comparing to other variable 
selection, iPLS-GA produces the lowest RMSEC and RMSEP

EGCG in green tea by FT-NIR[23] SNV as preprocessing spectra and siPLS-GA as variable selection give the best 
result of a calibration model with few variables, lowest RMSEC and RMSEP, 
and highest R2

Alpha-mangostin in mangosteen exctract by 
FTIR[24]

Wave number 3825-937 cm−1 was selected using TQ analystTM to build a 
prediction model using PLS. The validation model produces accurate and 
precise results for the determination of alpha-mangostin levels

Rosmarinic acid in rosmarini leaves by ATR-IR and 
NIR[25]

The whole spectrum is using to constructed PLS model pretreated by MSC 
followed with 2nd derivative method give the best evaluation value

BB in rhizoma coptidis by IR and NIR fusion[26] SNV followed by 2nd derivative is the best spectra preprocessing method for 
analysis of BB with fusion strategy

Contd...
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of the reference method. The RPD values were used to 
evaluate the fitting and prediction capacities of the models 
by calculating the standard deviation divided by standard 
error prediction. The RMSEC, RMSECV, RMSEP, or PRESS 
values are used to assess the precision. The analysis process 
using infrared spectroscopy can be seen in Figure 1.

Spectra preprocessing
Spectra preprocessing in quantitative analysis aims to 
minimize the noise and the physical phenomena so 
that the resulting signal correlates with concentration 
that increases the predictive ability.[30] There are several 
ways of preprocessing the spectra. In this review, 
Savitzy‑Golay‑based derivatization, standard normal 
variate (SNV), multiplicative scatter correction (MSC), and 
scaling techniques are commonly used.[9,21,30]

Most of the analysis with plant materials using infrared 
spectroscopy is done on solid samples, making it susceptible 
to scattering.[30] The scattering causes irrelevant variations 
in the spectra data. If there are no preprocessing spectra, 
a mix of information and noise will occur, and this can 
cause a decrease in the predictive ability of a model. The 
scattering usually results in fewer MIR measurements than 
NIR. It is due to inhomogeneity of particle size in NIR 
measurement.[30] In research conducted by Otsuka, it was 
shown that the particle size was inversely proportional to 
the scattering coefficient.[31]

MSC and SNV are the examples of useful scattering 
correction techniques in reducing physical variability 
due to scattering. MSC and SNV often produce similar 
evaluation values.[13,17,20] MSC works to correct the spectrum 
by estimating the correction coefficient of the raw spectrum 
and calculating it with the average reference spectrum used 
in the calibration model. Since it uses the average spectrum, 
correction errors might occur if there is a dominant 
spectrum used as a reference spectrum.

Therefore, repeated application of MSC generally reduces 
spectrum correction errors. Nevertheless, it does not 
mean that the more MSC processes are corrected for the 
better, the repetition of MSC can reduce the difference 
between the spectra data sets used.[32] In using SNV, spectra 
correction is done by calculating the mean and deviation of 
the sample spectrum. Unlike MSC, spectra preprocessing 

using SNV does not require a reference spectrum to make 
corrections, so the process is simpler.[33] SNV works by 
normalizing the spectrum due to physical differences but 
not chemically.[34] SNV success occurs when the uniform 
scatters between samples in the full spectrum. If this 
condition does not occur, then the spectral correction will 
not be optimal.[35]

Savitzky‑Golay is a derivative technique which has a mode 
for spectral smoothing.[36] The derivatization can provide 
a more detailed picture of the structure in the spectra to 
increase sensitivity. Spectra derivatization that is widely used 
in quantitative analysis of compounds in plants includes 
the 1st derivatives and the 2nd derivatives. The 1st derivative 
will remove baseline variation between the data, and the 2nd 
derivative will improve the resolution of spectra to remove 
any slope effect on the data.[18,21] Although derivatization 
generally provides a detailed description, not all analyzes 
with IR spectroscopy require derivatization for preprocessing 
spectra. Such is the case with research conducted by Kokalj 
Ladan  et al., who conducted the derivatization of spectra 
with different resolutions. From these studies, it is known 
that derivatization is useful for improving prediction models 
in spectra with a resolution of 16 cm‑1 but not at a resolution 
of 4 cm‑1.[10] In this regard, lower resolutions can cause loss 
of useful information for quantitative analysis; therefore, 
derivatization will help in describing the spectra in more 
detail.[37] However, the spectra contain more noise in higher 
resolution so that when derivatization is carried out, it will 
cause too much noise in the data and decrease the signal to 
noise ratio. Thus, the standard error in making the model 
also does not improve or even increase.[10]

Variable selection
The selection of spectra preprocessing techniques is very 
important to determine a successful calibration model 
formation, because it can emerge or eliminate important 
information connected with the content measurement. 
However, the successful of spectra effect preprocessing on 
the calibration model formation can only be known after 
validating the model.[38] It is important to compare several 
spectral preprocessing techniques and their combinations to 
determine a more suitable technique for the analyzed data. 
Preprocessing techniques are appropriate if it decreases 
standard errors by reducing or minimally maintaining the 
complexity of the model.

Table 1: Contd...
Quantitative analysis by infrared 
spectroscopy

Description

Total flavonoid content in Ginkgo biloba leaf by 
NIR[27]

SNV is the superior pretreatment spectra technique among several other 
techniques applied in this research with the lowest RMSECV value

PCA: Principal component analysis, RSD: Relative standard deviation, PLS: Partial least square, NIR: Near-infrared, UV: Ultraviolet, MSC: Multiplicative scatter correction, 
BB: Berberine, CO: Coptisine, PA: Palmatine, EP: Epiberberine, JA: Jatrorrhizine, ANN: Artificial neural network, MLR: Multiple linear regression, SMLR: Stepwise MLR, 
RMSEC: Root mean square error of calibration, RMSEP: Root mean square error of prediction, RMSECV: Root mean square error of cross validation, CARS: Competitive 
adaptive reweighted sampling, CO: Corn oil, SFO: Sunflower oil, SNV: Standard normal variate, iPLS: Interval PLS, GA: Genetic algorithm, EGCG: Epigallocatechin-3-
gallate, siPLS: Synergy PLS, FTIR: Fourier Transform Infrared, RPD: Relative percent difference, IR: Infrared
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Besides using spectral preprocessing, reducing the 
complexity of the model can also be done by selecting 
variables. From the summary of the research, it can 
be seen that the selection of variables using principal 
component analysis  (PCA),[9] interval PLS  (iPLS),[13] 
Competitive adaptive reweighted sampling (CARS),[18] or 
genetic algorithm (GA)[39] reduce the number of variables 
by eliminating irrelevant variables. PCA will change the 
original variables correlated into new variables that contain 
a combination of the original variables. This combination 
can reduce the number of variables, but still can explain 
most of the original variable information.[40,41]

CARS variable selection has three stages. The first step 
is a random sampling of data sets, and then a number of 
these variables will be reduced again using the exponential 
decrease function technique where the number of variables 
rapidly decreased. The remaining variables that produce 
low RMSECV will be selected as informative variables 
included in the calibration model.[42] This method can 
make the calibration model simpler and effective.[43] While 
GA is done by randomly selecting a subset of variables 
and then calibrating the PLS model to select the variable 
with the greatest influence. Furthermore, crossover and 
mutations are carried out to form new variables, and 
re‑calibration is carried out to decide which variable is 
the most suitable.[44,45]

In addition to the selection based on wave number points, 
variable selection can also be done by separating the wave 
numbers at certain intervals. In this article, iPLS and synergy 
interval (siPLS) have been used. iPLS works by dividing the 

spectrum into several parts with the same interval. For each 
subinterval, submodels will be made and the standard error 
will be calculated. The submodel with the lowest standard 
error contains important information correlated with the 
objectives of the analysis. At this point, it will be chosen as a 
subinterval of wavenumbers, which will be used to form the 
calibration model.[46] While siPLS is a modification of iPLS 
to optimize variable selection with interval combinations 
containing informative variables.[47] siPLS can contain more 
informative variables because it does not only select one 
spectrum region but combines several.[48]

Variable selection can also be done by combining the 
selection of wave number points and wave number intervals 
such as siPLS‑GA. Variable selection using combination 
techniques can produce a simpler model with fewer 
variables than without a combination. However, the smaller 
number of variables cannot be ascertained to have the 
best predictive ability, because of the loss of informative 
data.[49,50] Variable selection is useful for reducing noise and 
interfering variables in data so as to make prediction model 
formation more efficient with fewer variables but reliable 
prediction ability.[51]

A successful method in completing multivariate analysis is 
assessed by calibration and validation parameters. R2 values 
that are close to 1 indicate that the predictive variables 
used in making the model correlate linearly with the levels 
of compounds. In addition, a calibration model is good if 
there is no large difference between the RMSEC and root 
mean square error P values.[17] If this happens, it will be 
overfitting or underfitting. Overfitting is a situation where 

Figure 1: Quantitative analysis process using infrared spectroscopy
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the calibration model produces a low standard error but 
unable to predict new samples and vice versa.

CONCLUSION

Infrared spectroscopy is useful in the quantification of 
phytochemical components and adulterants in plant‑based 
medicines and supplements. This analysis can help 
further study to determine the quality of nutritious plants 
to ensure the safety and effectiveness of plant‑based 
products. It is found that chemometrics can overcome the 
complexity of the chemical content in herbs. Optimization 
of preprocessing techniques and selection of variables and 
a combination of both are generally useful in improving 
predictive ability of models. This is indicated by an increase 
in linearity value  (in calibration and validation) and a 
decrease in the standard error in the model by the spectrum 
that is experiencing preprocessing, variable selection, and a 
combination of both compared to raw spectra. The high R2 
validation value (close to 1) indicates that the measurement 
of compound concentrations using the FTIR method yields 
a proportional accuracy to the measurement results of the 
reference method.
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