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Abstract

Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually 

cirrhosis. Many microRNAs (miRs) are known to play a role in fibrosis progression; however, the 

role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to 

elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. 

Wild-type (WT) and miR21−/− mice underwent sham or bile duct ligation (BDL) for 1 wk, before 

evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic 

response, and Smad-7 expression. In vitro, immortalized murine biliary cell lines (IMCL) and 

human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before 

analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were 

increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of 

BDL-induced biliary proliferation and intrahepatic biliary mass. Also, loss of miR-21 decreased 

BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers TGF-β1 

and α-SMA. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased 

proliferation and expression of fibrotic markers and enhanced apoptosis when compared to control 
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treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be 

driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury miR-21 is 

increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of 

miR-21 may be a therapeutic option for patients with cholestasis.

INTRODUCTION

Cholangiocytes are the target of cholangiopathies, such as primary biliary cirrhosis (PBC) 

and primary sclerosing cholangitis (PSC), which are associated with dysregulation of 

cholangiocyte proliferation/loss 1, 2. Cholestasis occurs by the obstruction of intra- or 

extrahepatic bile ducts 3, and is characterized by bile ductular reaction and extensive 

fibrosis 3, 4. The bile duct ligation (BDL) and multidrug resistance gene-2 knockout 

(Mdr2−/−) mouse models mimic some features of PSC including biliary damage and liver 

fibrosis 5, 6. Normally, cholangiocytes are mitotically quiescent but following damage (such 

as cholestasis) they begin to proliferate to repair the biliary tree to compensate for damage 

and loss of functionality 7–11. Alongside this enhanced proliferative capacity, liver 

fibrogenesis occurs by the excessive accumulation of extracellular matrix proteins secreted 

by various cell types including activated hepatic stellate cells (HSCs) 12–14. HSCs can be 

activated through a number of different factors secreted from cholangiocytes, including 

transforming growth factor (TGF)-β1 15, 16. Following TGF-β1 receptor activation, 

phosphorylation of the secondary messengers small mothers against decapentaplegic 2 and 3 

(Smad-2/3) occurs which allows translocation to the nucleus where Smad-2/3 binds to the 

transcription factor Smad-4 and allows for increased cellular proliferation and fibrotic 

response. The effects of Smad-2/3 can be inhibited by the inhibitory Smad-7.

MicroRNAs (miRs) are conserved, small (20–25 nucleotide) non-coding RNAs that regulate 

RNA silencing and post-translational regulation of gene expression 17–19. Following 

cholestatic injury there is a wide range of miRNAs that are downregulated; however, only a 

few miRNAs like miR-199, miR-200, and miR-34 are upregulated 20–22. miR-21 is an 

ubiquitously expressed miRNA that is upregulated in many different cancer types 23, 24. A 

previous study found that miR-21 increases fibrogenesis during an experimental model of 

non-alcoholic steatohepatitis via inhibition of Smad-7 25.

Previously, we have shown that miR-21 is upregulated in a model of alcoholic liver injury 

and decreases HSC apoptosis 26. However, this study did not delve into the role of miR-21 

on cholangiocytes during injury or HSC-promoted fibrosis. The role of miR-21 during 

cholestatic injury is largely unknown; therefore, we aimed to uncover the role of miR-21 

during cholestatic injury.

MATERIALS AND METHODS

Materials

All reagents were obtained from Sigma-Aldrich, Co (St. Louis, MO) unless otherwise 

indicated. Cell culture reagents and media were obtained from Invitrogen Corporation 

(Carlsbad, CA). Antibodies for immunohistochemistry and immunofluorescence were 
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obtained from Abcam (Cambridge, MA) unless indicated otherwise. Total RNA was isolated 

from total liver tissues, purified cholangiocytes, and selected cell lines using the TRI 

Reagent from Sigma Life Science and reverse transcribed with the Reaction Ready First 

Strand cDNA synthesis kit (SABiosciences, Frederick, MD) as described 27. Total RNA was 

extracted from HSCs (isolated by Laser Capture Microdissection, LMD) using the 

Arcturus® PicroPure® RNA Isolation Kit (Applied Biosystems; Waltham, MA) according to 

the manufacturers protocol. The selected primers were purchased from Qiagen (Valencia, 

CA). The following primers were used: miR-21, mouse-MS00011487; RNU6-6P, mouse-

MS00033740; Bax, mouse-PPM02917E-200; cleaved Caspase-3, mouse-PPM02922F-200; 

α-smooth muscle actin (α-SMA), mouse-PPM04483A-200; proliferating cell nuclear 

antigen (PCNA), mouse-PPM03456F-200; transforming growth factor-β1 (TGF-β1), mouse-

PPM02991B-200; matrix metallopeptidase-9 (MMP-9), mouse-PPM03661C-200; small 

mothers against decapentaplegic 7 (Smad-7), mouse-PPM03073F-200; and glyceraldehyde 

3-phosphate dehydrogenase (GAPDH), mouse-PPM02946E-200.

Animal Models

All animal procedures were performed according to protocols approved by the Baylor Scott 

& White Healthcare IACUC Committee. MicroRNA21 (miR-21) knockout (miR-21−/−) 

mice and background-matched miR-21+/+ (wild-type, (WT), strain B6; 129) mice were 

purchased from Jackson Laboratory (Sacramento, CA); the breeding colony is established in 

our animal facility. No gross defects or phenotypical changes are noted in the miR-21−/− 

mice 26. Male FVB/NJ WT mice (control for Mdr2−/− mice) were purchased from Jackson 

Laboratory. The breeding colony for Mdr2−/− mice (purchased from Jackson Laboratory), a 

model of PSC 28, is established in our animal facility. Animals were maintained in micro-

isolator cages in a temperature-controlled environment with 12:12-hr light-dark cycles; all 

animals were fed ad libitum a standard chow diet with free access to drinking water. Studies 

were performed in 12 wk-old male miR-21−/− and Mdr2−/− mice (25–30 gm) and the 

corresponding WT mice that were subjected to sham or bile duct ligation (BDL) for 1 

wk 16, 29. Liver tissue samples and blocks (paraffin and frozen), serum, cholangiocytes, and 

cholangiocyte supernatants (after incubation at 37°C for 4 hr) were collected as 

described 2, 29.

Isolated Cholangiocytes and Hepatic Stellate Cells, and Cell Lines

Virtually pure cholangiocytes were obtained by immunoaffinity separation 2, 6 by using a 

monoclonal antibody, rat IgG2a (a gift from Dr. R. Faris, Brown University, Providence, RI), 

against an unidentified antigen expressed by all mouse cholangiocytes. Cholangiocytes were 

isolated from 3 different groups of animals (each group consisted of 4 animals for a total of 

12 mice). For each cholangiocyte preparation, we used 4 mice due to the low yield obtained 

with one single animal. Following cholangiocyte isolation, approximately 10 million 

cholangiocytes were incubated at 37°C with 1 ml of HBS containing CaCl2 for 4 hrs before 

supernatants were collected.

Activated HSCs were isolated from frozen liver tissue samples by laser microdissection 

(LMD) using the Leica LMD7000 (Leica Biosystems; Buffalo Grove, IL) located at the 

Temple Health & Bioscience District (Temple, TX). OCT-frozen liver sections (10 μm) were 
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fixed to glass foiled poly ethylene naphthalate membrane slides and immunofluorescence for 

synaptophysin-9 (SYP-9, a maker of activated HSCs) 30 was performed to visualize 

activated HSCs. Fluorescently labeled, activated HSCs were manually separated from 

unwanted cells using an ultraviolet laser. Microdissected HSCs were then collected into PCR 

tubes and RNA was isolated using the Arcturus® PicroPure® RNA Isolation Kit (Applied 

Biosystems; Waltham, MA) according to the manufacturers protocol.

The in vitro experiments were performed in our immortalized murine biliary line (IMCL) 31 

as well as our human hepatic stellate cell line (hHSC) that were purchased from ScienCell 

Research Laboratories (Carlsbad, CA). IMCL and hHSC were maintained at standard 

conditions. IMCL and hHSC were treated with either 75 nM of mirVana™ miR-21 inhibitor 

or negative control (Thermo Fisher Scientific, Austin, TX) for 48 hr according to the 

manufacturers protocol before cell pellets were collected. The miR-21 inhibitor contains a 

sequence that is 100% complementary to the sequence of active miR-21; therefore, binding 

between the inhibitor and miR-21 should be highly specific. As well, we have previously 

shown that use of this inhibitor in vitro is able to increase hepatocyte and HSC expression of 

DR5 and Fas ligand, known targets of miR-21, by approximately two fold 26. Unfortunately, 

since the inhibitor only binds to activated forms of miR-21 we are unable to accurately 

detect miR-21 expression levels since you may still get signals from the gene encoding 

miR-21, pri-miR-21, and pre-miR-21. For this reason, we based the specificity of our 

inhibitor on the expression of Bcl-2, a downstream target, in IMCL and hHSC (see 

Supplementary Figure 1).

Evaluation of miR-21 Expression

Isolation of miRNAs was performed in total liver and isolated cholangiocytes using the 

Ambion mirVana™ miRNA Isolation Kit from Life Technologies (Thermo Fischer 

Scientific; Waltham, MA). Single stranded cDNA was synthesized from 1 μg of RNA from 

the aforementioned samples using the TaqMan microRNA reverse transcription kit (Applied 

Biosystems; Waltham, MA) and was amplified by quantitative PCR (qPCR) using sequence 

specific primers from the TaqMan microRNA Assays on an Applied Biosystems Viia7 Real-

Time PCR System (Thermo Fisher Scientific; Waltham, MA) according to the manufacturers 

protocol. The threshold cycle (CT) is defined as the fractional cycle number at which the 

fluorescence passes the fixed threshold.

Control and late stage PSC patient samples (n=1 each) were obtained from Dr. Invernizzi 

under a protocol approved by the ethics committee by the Humanitas Research Hospital 

(Rozzano, Italy); the protocol was reviewed by the Veterans’ Administration IRB and R&D 

committee. The protocol was approved by the Texas A&M HSC Institutional Review Board. 

Total RNA was extracted from formalin-fixed, paraffin-embedded sections from samples 

obtained from 1 control and 1 PSC patients using the RNeasy FFPE kit (Qiagen; Valencia, 

CA). From these samples, miR-21 expression was evaluated as described above.
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Assessment of Liver Morphology, Serum Chemistry, Intrahepatic Bile Duct Mass, and 
Biliary Proliferation

Hematoxylin and eosin (H&E) staining was performed in paraffin-embedded liver sections 

(4–5 μm, 10 different fields analyzed from each sample from 3 different animals). H&E 

stained liver sections were evaluated by a board-certified pathologist to determine the degree 

of lobular damage, hepatic necrosis, and portal inflammation.

The serum levels of alanine transaminase (ALT) and alkaline phosphatase (ALP) were 

measured in Sham WT, BDL WT, Sham miR-21−/−, and BDL miR-21−/− mice by a 

Dimension RxL Max Integrated Chemistry system (Dade Behring; Deerfield, IL) by the 

Chemistry Department, Baylor Scott & White Healthcare.

Intrahepatic bile duct mass (IBDM) was evaluated by semi-quantitative 

immunohistochemistry for cytokeratin-19 (CK-19, a cholangiocyte specific marker) 32. 

Biliary proliferation was evaluated in formalin-fixed, paraffin-embedded liver sections (4–5 

μm, 10 different fields analyzed from each sample from 3 different animals) by semi-

quantitative immunohistochemistry for Ki-67 33. We used qPCR to analyze PCNA, Bax, and 

cleaved Caspase-3 gene expression in RNA isolated from total liver, hHSC, and IMCL. 

qPCR was performed using RT2 SYBR Green/ROX quantitative PCR master mix for the 

Applied Biosystems ViiA7 qPCR system (Life Technologies; Carlsbad, CA) according to 

the manufacturer’s protocol. The comparative CT method (ΔΔCT) was used for 

quantification of gene expression.

The proliferative rate of IMCL and hHSC was measured using the CellTiter 96 aqueous 

assay kit (Promega, Madison, WI). Transfected cells (10,000/well) were plated in 96-well 

plates (BD Biosciences) and incubated at 37°C, and cell proliferation was assessed after 48 

hr as described 7.

Determination of Fibrosis, HSC Activation and Smad7 Expression

The fibrotic reaction was evaluated by qPCR for α-SMA, TGF-β1, and Collagen-1a 

expression in total RNA extracted from total liver tissue, LMD-isolated HSCs, and hHSC as 

described above. Collagen deposition was visualized in liver sections using Sirius Red 

staining as described 7. Activation of HSCs was visualized in liver sections by 

immunofluorescent staining for either SYP-9 or α-SMA, which was co-stained with CK-19 

(only expressed by cholangiocytes) to visualize intrahepatic bile ducts. The role of 

cholangiocyte-derived factors on HSC activation was determined by incubating hHSCs in 
vitro with cholangiocyte supernatants from Sham WT, Sham miR-21−/−, BDL WT, or BDL 

miR-21−/− mice for 48 hr. Fibrosis gene expression was determined by qPCR for FN1 and 

Collagen-1a.

Since miR-21 has been shown to bind Smad-7 during an experimental model of non-

alcoholic steatohepatitis 25, we measured in total liver and isolated cholangiocytes the 

expression of Smad-7 by qPCR.
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Statistical Analysis

Data are expressed as mean ± SEM. Differences between groups were analyzed by the 

Student unpaired t test when 2 groups were analyzed, and by two-way ANOVA when more 

than 2 groups were analyzed.

RESULTS

miR-21 Expression is Increased During Cholestasis

Following BDL, there was a significant increase in miR-21 expression in total liver and 

isolated cholangiocytes when compared to Sham WT mice (Figure 1A–B). miR-21 

expression was also increased in cholangiocytes from Mdr2−/− mice 34 when compared to 

the corresponding WT mice, as well as in total liver extracted from a late stage PSC patient 

when compared to a normal liver sample. These findings suggest that during cholestatic 

injury, such as BDL or PSC, miR-21 levels are increased and may contribute to the 

progression of biliary injury and hepatic fibrosis.

Loss of miR-21 Ameliorates Liver Damage

Following BDL, there was moderate portal inflammation, ductal proliferation, and 

multifocal areas of necrosis when compared to Sham WT mice; however, the amount of 

damage observed in BDL miR-21−/− mice was greatly decreased when compared to BDL 

WT mice suggesting that miR-21 promotes liver damage during cholestatic injury (Figure 

2A). No significant changes were noted in Sham miR-21−/− mice compared to Sham WT 

(Figure 2A). Similarly, the levels of the liver enzymes alanine aminotransferase (ALT) and 

alkaline phosphatase (ALP) were increased in serum from BDL WT compared to Sham WT 

mice; however, ALT and ALP serum levels were decreased in BDL miR-21−/− mice 

compared to BDL WT mice (Figure 2B). These studies indicate that the loss of miR-21 

during BDL-induced cholestatic injury ameliorates liver damage associated with this injury.

Knockout of miR-21 Decreases BDL-Induced IBDM and Biliary Proliferation

Consistent with previous findings 35, following BDL there was a significant increase in 

IBDM when compared to Sham WT mice, which was reduced in BDL miR-21−/− compared 

to BDL WT mice (Figure 3A). No significant changes in IBDM were noted in Sham 

miR-21−/− mice when compared to Sham WT mice (Figure 3A). As shown by qPCR in total 

liver samples, BDL WT mice have increased PCNA expression when compared to Sham 

WT, however, there was decreased PCNA expression in Sham miR-21−/− and BDL 

miR-21−/− mice when compared to Sham WT and BDL WT, respectively (Figure 3B). 

Furthermore, the biliary expression of Ki-67 was increased in BDL WT mice compared to 

Sham WT, which was significantly decreased in BDL miR-21−/− mice when compared to 

BDL WT mice (Figure 3C). No significant changes were noted in the biliary expression of 

Ki-67 in Sham miR-21−/− mice when compared to Sham WT mice (Figure 3C). These 

findings demonstrate that during cholestasis the loss of miR-21 reduces IBDM and biliary 

proliferation associated with this injury.
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Inhibition of miR-21 Decreases Cholangiocyte Proliferation In Vitro

In vitro, IMCL treated with miR-21 inhibitor had decreased proliferative capacity when 

compared to IMCL treated with control (Figure 4A). Consequently, IMCL that were treated 

with miR-21 inhibitor had increased expression of the apoptotic factors Bax and cleaved 

Caspase-3 (Figure 4B and 4C) when compared to control treated cells. These data indicate 

that inhibition of miR-21 in cholangiocytes leads to decreased proliferation and increased 

apoptosis in vitro.

Loss of miR-21 Decreases BDL-Induced HSC Activation and Fibrotic Reaction

Since the activation of HSCs is known to be a key player in the development of fibrosis 36, 

we analyzed HSC activation in vivo by staining for SYP-9 or α-SMA (markers of activated 

HSCs) and CK-19 (to visualize bile ducts) in liver sections by immunofluorescence. The 

expression of SYP-9 and CK-19 seemed unchanged between Sham WT and Sham 

miR-21−/− mice; however, the number of SYP-9 positive cells was increased in BDL WT, 

which was accompanied with increased IBDM. In BDL miR21−/− mice the number of 

SYP-9 positive cells was decreased compared to BDL WT, and this was also accompanied 

by decreased IBDM (Figure 5A). Staining for α-SMA and CK-19 showed the same trend as 

the SYP-9 staining (Figure 5B). Recently, studies have indicated that miR-21 plays a pro-

fibrotic role during models of drug-induced cholestasis, and that inhibition of miR-21 can 

ameliorate this damage 37, 38. In HSCs that were isolated from BDL WT we see increased 

expression of Collagen-1a when compared to Sham WT (Figure 5C). In contrast, in HSCs 

that were isolated from BDL miR-21−/− these parameters are decreased when compared to 

BDL WT (Figure 5C). No significant differences were noted between HSCs isolated from 

Sham WT and Sham miR-21−/−. These data further imply that increased miR-21 levels can 

contribute to increased fibrosis via HSC activation and fibrotic reaction.

Knockout of miR-21 Reduces the Amount of BDL-Associated Fibrosis

Next, we aimed to explore the role of miR-21 during BDL-induced fibrosis 25. In total liver 

samples, we found that the expression of α-SMA and TGF-β1 was significantly increased in 

BDL WT compared to Sham WT mice, but was significantly decreased in the livers of BDL 

miR-21−/− compared to BDL WT mice (Figure 6A and 6B). Furthermore, collagen 

deposition was increased in the livers of BDL WT mice compared to Sham WT mice, but 

was significantly decreased in the livers of BDL miR-21−/− mice when compared to BDL 

WT mice (Figure 6C). There was no significant difference between the expression of α-

SMA and TGF-β1, and collagen deposition in the livers of Sham WT and Sham miR-21−/− 

mice. These findings, along with the above data indicating that miR-21 promotes HSC 

activation, suggest that the loss of miR-21 during cholestatic injury decreases the associated 

fibrotic reaction.

Inhibition of miR-21 Decreases HSC Proliferation and Fibrotic Reaction In Vitro

As demonstrated above, miR-21 seems to have a role in HSC activation and proliferation 

following bile duct ligation in vivo (Figure 5). To further validate these findings, we took 

hHSCs and treated them with either miR-21 inhibitor or control. Following treatment, 

proliferative capacity was decreased in hHSC treated with a miR-21 inhibitor when 
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compared to hHSC treated with control as demonstrated by MTS assay and PCNA 

expression (Figure 7A and 7B). Concomitantly, hHSCs treated with miR-21 inhibitor have 

increased Bax expression when compared to control treated cells (Figure 7C) indicating that 

the loss of miR-21 decreases HSC proliferation. We wanted to look further at the role of 

miR-21 during HSC activation since we previously noted that BDL miR-21−/− mice have 

decreased HSC activation when compared to BDL WT mice (Figure 5). By qPCR, we found 

that hHSCs treated with miR-21 inhibitor had decreased expression of α-SMA and MMP-9 

when compared to control (Figure 7D). These findings suggest that the loss of miR-21 

decreases the degree of HSC proliferation and fibrotic reaction, which could be an important 

target to halt cholestasis-induced hepatic fibrosis progression.

Loss of miR-21 Increases Smad-7 Expression In Vivo

Smad-7 has been reported as a target of miR-21 25, and since Smad signaling is involved in 

the promotion of hepatic fibrosis in both cholangiocytes and HSCs during models of 

cholestasis 16, 36 we evaluated the expression of Smad-7 in our model. In BDL WT mice 

there was decreased expression of Smad-7 in both total liver and isolated cholangiocytes 

when compared to Sham WT (Figure 8A and 8B); however, BDL miR-21−/− mice showed 

increased Smad-7 when compared to BDL WT (Figure 8A and 8B). No significant changes 

in these factors were noted in Sham miR-21−/− when compared to Sham WT. This data 

demonstrates that miR-21 can regulate Smad-7 within cholangiocytes during cholestasis.

HSCs Treated with Supernatants from Cholangiocytes Lacking miR-21 Have Decreased 
Fibrotic Reaction In Vitro

We next evaluated the effect of cholangiocyte supernatant from Sham and BDL WT and 

miR-21−/− mice (that do not contain miR-21) on HSC activation. We incubated hHSCs with 

supernatants from cholangiocytes isolated from Sham WT, BDL WT, Sham miR-21−/−, and 

BDL miR-21−/− animals. There was increased FN-1 and Collagen-1a expression in hHSCs 

treated with cholangiocyte supernatants from BDL WT when compared to supernatant from 

Sham WT mice; however, these factors were decreased in hHSCs treated with cholangiocyte 

supernatants from BDL miR-21−/− animals compared to supernatant from BDL WT mice 

(Figure 9A and 9B). These data imply that cholangiocyte signaling strongly impacts HSC 

activation during cholestatic injury, and these pro-fibrotic factors may be regulated by 

miR-21.

DISCUSSION

To summarize these findings, in the BDL and Mdr2−/− cholestatic models miR-21 is 

upregulated in total liver and cholangiocytes. We have also shown that human PSC sample 

has increased miR-21 levels when compared to normal liver. Within cholangiocytes and 

HSCs, miR-21 promotes proliferation and fibrosis, and decreases apoptosis. Once activated, 

HSCs are able to secrete fibrosis-promoting factors that lead to increased hepatic damage. 

We demonstrated that miR-21 regulates HSC activation and Smad signaling, which in turn 

stimulates fibrogenesis. Loss of miR-21 leads to decreased biliary hyperplasia, HSC 

activation, and fibrosis that are associated with BDL.
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Studies have shown that the expression of miR-21 (that is ubiquitously expressed throughout 

the body) 38, 39 is increased in cholangiocarcinoma (CCA) tissue when compared to normal 

biliary epithelium 40, 41. We found that hepatic miR-21 levels are significantly increased in 

PSC when compared to control samples. Since chronic cholestasis can be a risk factor for 

developing CCA it is important to understand the role of miR-21 during liver injury.

Previous studies have shown that miR-21 is upregulated during models of chronic liver 

injury, inhibits apoptosis, and regulates cell survival 25, 26. Increased miR-21 levels are 

commonly noted during cell proliferation and stress 42; however, it remains controversial as 

to which liver cell type is targeted by miR-21 43, 44. Here we show that miR-21 expression is 

upregulated in cholangiocytes following BDL and in the Mdr2−/− model of PSC. 

Furthermore, the loss of miR-21 reduced the BDL-induced cholangiocyte proliferation 

compared to BDL WT mice. This is further highlighted where we show that treatment of 

IMCL with a miR-21 inhibitor leads to decreased proliferative activity, with a concomitant 

increase in apoptosis.

With regard to the possible target cells of the miR-21 inhibitor in our in vivo models, we 

propose that cholangiocytes and HSCs are two important target cells of the miR-21 inhibitor. 

In support of this, in the in vitro studies we determined that cholangiocytes and HSCs 

contain miR-21, and treatment with the miR-21 inhibitor impacted growth and activation in 

these cell types. However, in vivo we utilized a miR-21−/− mouse model, resulting in 

complete loss of miR-21 in all cells. Further in vivo studies are needed to pinpoint the target 

cells of the miR-21 inhibitor in normal and cholestatic models.

Currently, there is limited data regarding the role of miR-21 in HSCs during hepatic fibrosis, 

and no current literature exists regarding its role in cholangiocytes during cholestasis. One 

study found that HSCs containing miR-21 promote their own activation during injury 37, 38; 

however, existing publications do not consistently report on miR-21 levels in activated 

HSCs 44, 45. Our findings indicate that mice lacking miR-21 have decreased HSC activation 

when compared to BDL WT mice. On the basis of our findings, we propose that HSC 

activation is regulated by miR-21 during cholestatic injury, and activation can be further 

maintained by protecting the activated HSCs from apoptosis.

Previous work has shown that Smad signaling can influence HSC activation and 

cholangiocyte proliferation during models of cholestatic injury 16, 36. Here we show that loss 

of miR-21 increases Smad-7 expression in both total liver and isolated cholangiocytes. 

These findings provide evidence that miR-21 increases fibrogenesis during hepatic injury by 

inhibiting the inhibitory Smad-7.

It is known that many hepatic cell types can interact and signal to one another via paracrine 

mediators to influence disease progression. Specifically, it has been noted that 

cholangiocytes can signal to HSCs to regulate their activation 46, 47. Our data indicate that 

hHSCs treated with supernatant isolated from cholangiocytes lacking miR-21 have 

decreased fibrotic reaction, further verifying that cholangiocyte-secreted factors can 

influence HSC response during cholestatic injury. Previously, it has been shown that the 

lumen of intrahepatic bile ducts of cystic liver contains exosome-like vesicles, and these 

Kennedy et al. Page 9

Lab Invest. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exosomes are cholangiocyte-derived 48. As well, rats that undergo partial hepatectomy show 

increased serum levels of exosome-like vesicles containing miR-21 when compared to 

normal rats 49. Based on this work, we hypothesize that during cholestatic injury 

cholangiocytes may secrete exosomes containing miR-21 that can increase HSC activation.

Our data shed further light on the impact that miR-21 has on hepatic fibrosis, specifically in 

the realm of cholestatic injury. It has been proposed that miR-21 is strongly upregulated in 

HSCs during thioacetamide- and carbon tetrachloride-induced hepatic fibrosis 38. These 

studies along with our findings promote the idea that miR-21 regulates hepatic fibrosis 

through the modulation of HSC activation and proliferation. Aside from hepatic fibrosis, we 

provide evidence that miR-21 (i) is upregulated in cholangiocytes following injury, (ii) 

enhances cholangiocyte proliferation, and (iii) hinders cholangiocyte apoptotic processes. 

Increased HSC activation and cholangiocyte proliferation may be driven by miR-21 

regulation of Smad-7. In this regard, modulation of miR-21 during fibrosis-related hepatic 

injury may be useful. Further elucidation of the pathways that are modulated by miR-21 

during these processes is essential to uncovering therapeutic targets.
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Abbreviations

ALP alkaline phosphatase

ALT alanine transaminase

α-SMA alpha-smooth muscle actin

BDL bile duct ligation

CK-19 cytokeratin-19

Collagen-1a collagen, type I, alpha 1

FN-1 fibronectin-1

GAPDH glyceraldehyde-3-phosphate dehydrogenase
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hHSC human hepatic stellate cell line

IBDM intrahepatic bile duct mass

IMCL immortalized murine biliary cell line

miR-21 microRNA-21

PCNA proliferating cell nuclear antigen

real-time PCR qPCR

Smad-7 small mothers against decapentaplegic 7

SYP-9 synaptophysin-9

TGF-β1 transforming growth factor-β1

WT wild-type
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Figure 1. 
Evaluation of miR-21 expression following BDL. Following BDL, miR-21 levels are 

increased in total liver and isolated cholangiocytes (A, B). In Mdr2−/− mice cholangiocytes 

have increased miR-21 expression (C). Total liver samples from PSC patients have increased 

miR-21 levels compared to normal patient samples (D). Data are expressed as means ± 

SEM. n = 10 reactions in total RNA collected from total liver and cholangiocytes from 8 

animals per group for qPCR. n = 3 reactions per sample in total RNA collected from total 

liver from 1 human control and 1 human PSC sample. *p<0.05 versus Sham WT, WT, 

Human Control.
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Figure 2. 
Assessment of liver injury. Loss of miR-21 ameliorates BDL-induced necrosis, lobular 

damage, and portal inflammation as indicated by H&E staining (A). Yellow dashed line 

indicates areas of necrosis while the yellow arrows point to bile ducts (A). BDL WT mice 

show increased serum levels of ALT and ALP when compared to BDL WT; however, these 

parameters are decreased in BDL miR-21−/− mice when compared to BDL WT mice (B). 

Data are expressed as means ± SEM. n = 3 reactions in serum collected from 8 animals each 

per animal group for serum chemistry. *p<0.05 versus Sham WT; #p<0.05 versus BDL WT. 

Representative images are shown for H&E. Original magnification, 20X.
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Figure 3. 
Measurement of IBDM and biliary proliferation. Following BDL, there is increased IBDM 

compared to Sham WT (A). The loss of miR-21 reduces the degree BDL-induced IBDM 

compared to BDL WT (A). Following BDL, mice have increased levels of PCNA, which is 

significantly decreased in BDL miR-21−/− mice compared to BDL WT (B). 

Immunohistochemistry and semi-quantitative analysis are shown for the proliferative marker 

Ki-67 (C). There is increased biliary Ki-67 expression in BDL WT compared to Sham WT, 

but the loss of miR-21 decreases BDL-induced biliary Ki-67 expression (C). Data are 

expressed as means ± SEM. n = 7 reactions in total RNA collected from 8 animals per group 

for qPCR, n = 10 pictures from 6 animals per group for immunohistochemistry. *p<0.05 

versus Sham WT; #p<0.05 versus BDL WT. Representative images are shown for CK-19 

and Ki-67 immunohistochemistry. Original magnification, 20X.
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Figure 4. 
Evaluation of IMCL proliferation and apoptosis. Following treatment with miR-21 inhibitor, 

IMCL have decreased proliferation, as shown by MTS assay, and increased Bax and cleaved 

Caspase-3 gene expression when compared to control treated (A, B, C). Data are expressed 

as mean ± SEM. n = 6 reactions in total RNA from 12 sets of cells for qPCR, n = 10 

experiments per group for MTS assay. *p<0.05 versus IMCL control.
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Figure 5. 
Evaluation of HSC activation and fibrotic reaction. As shown by immunofluorescence co-

stain for SYP-9 (green) and CK-19 (red) there is increased HSC activation and IBDM in 

BDL WT compared to Sham WT, but this is decreased in BDL miR-21−/− mice when 

compared to BDL WT, respectively (A). Immunofluorescent co-stain for α-SMA (green) 

and CK-19 (red) show increased HSC activation and IBDM in BDL WT compared to Sham 

WT, but this is decreased in BDL miR-21−/− when compared to BDL WT (B). In HSCs that 

are isolated from BDL WT there is a significant increase in Collagen-1a expression when 

compared to HSCs isolated from Sham WT; however, Collagen-1a expression is 

significantly decreased in HSCs isolated from BDL miR-21−/− when compared to HSCs 

isolated from BDL WT (C). Data are expressed as means ± SEM. n=6 reactions in total 

RNA from 6 animals per group for qPCR. *p<0.05 vs. Sham WT; #p<0.05 vs. BDL WT. 

Representative images are shown for SYP-9 and CK-19 immunofluorescence. Original 

magnification, 20X.
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Figure 6. 
Determination of fibrotic reaction. In BDL WT there is a significant increase in α-SMA and 

TGF-β1 gene expression compared to Sham WT; however, this is significantly decreased in 

BDL miR-21−/− when compared to BDL WT (A, B). Collagen deposition is significantly 

increased following BDL when compared to Sham WT; however, the loss of miR-21 blunts 

this effect (C). Data are expressed as means ± SEM. n = 6 reactions in total RNA from 8 

animals per group for qPCR, n = 20 pictures from 6 animals used for Sirius Red staining. 

*p<0.05 versus WT; #p<0.05 versus BDL WT. Representative images are shown for Sirius 

Red staining. Original magnification, 20X.
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Figure 7. 
Evaluation of hHSC miR-21 proliferation, apoptosis and fibrotic reaction, in vitro. hHSCs 

treated with miR-21 inhibitor have decreased proliferation, increased Bax, and decreased α-

SMA and MMP-9 gene expression when compared to control treated (B, C, D, E). Data are 

expressed as means ± SEM. n = 6 reactions from 12 sets of cells for qPCR, n = 10 

experiments for MTS assay. *p<0.05 versus hHSC control.
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Figure 8. 
Evaluation of Smad-7 expression. In total liver and isolated cholangiocytes from BDL WT 

mice there is increased decreased Smad-7, as shown by qPCR, when compared to Sham WT 

(A, B). However, total liver and isolated cholangiocytes from BDL miR-21−/− mice show 

increased Smad-7 when compared to BDL WT (A, B). n = 9 reactions from total RNA from 

6 animals for qPCR. *p<0.05 vs. Sham WT; #p<0.05 vs. BDL WT.
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Figure 9. 
Determination of hHSC fibrotic reaction, in vitro. hHSCs treated with supernatants extracted 

from cholangiocytes isolated from BDL WT mice show increased FN-1, and Collagen-1a 

expression when compared to hHSCs treated with supernatants from Sham WT mice (A, B); 

however, these parameters were decreased in hHSCs treated with cholangiocyte supernatants 

from BDL miR-21−/− mice when compared to BDL WT mice (A, B). Data are expressed as 

means ± SEM. n = 6 reactions from 12 sets of cells for qPCR. *p<0.05 versus hHSCs + WT 

cholangiocyte supernatants; #p<0.05 versus hHSCs + BDL WT cholangiocyte supernatants.
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