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Abstract: The goal of metabolomics is to measure as many metabolites as possible in order to capture
biomarkers that may indicate disease mechanisms. Variable selection in chemometric methods can be
divided into the following two groups: (1) sparse methods that find the minimal set of variables to
discriminate between groups and (2) methods that find all variables important for discrimination.
Such important variables can be summarized into metabolic pathways using pathway analysis tools
like Mummichog. As a test case, we studied the metabolic effects of treatment with nicotinamide
riboside, a form of vitamin B3, in a cohort of patients with ataxia–telangiectasia. Vitamin B3 is an
important co-factor for many enzymatic reactions in the human body. Thus, the variable selection
method was expected to find vitamin B3 metabolites and also other secondary metabolic changes
during treatment. However, sparse methods did not select any vitamin B3 metabolites despite
the fact that these metabolites showed a large difference when comparing intensity before and
during treatment. Univariate analysis or significance multivariate correlation (sMC) in combination
with pathway analysis using Mummichog were able to select vitamin B3 metabolites. Moreover,
sMC analysis found additional metabolites. Therefore, in our comparative study, sMC displayed the
best performance for selection of relevant variables.

Keywords: univariate/multivariate statistics; chemometrics; untargeted metabolomics;
variable selection; ataxia–telangiectasia; vitamin B3/nicotinamide riboside treatment

1. Introduction

Metabolites are small molecules that are the substrates, intermediates, or end products of
metabolism. Alterations in metabolite concentration may be related to a disease or may be caused by
xenobiotics [1]. Untargeted metabolomics aims to measure as many metabolites as possible and is
often used as a hypothesis-generating or an exploratory tool. One popular analytical technique for
untargeted metabolomics is LC/MS, which can generate thousands of features. However, the majority
of these features remains unidentified, i.e., their masses do not match any known metabolite present
in metabolite databases [2]. Additionally, alterations of a single enzyme may lead to a cascade of
secondary metabolic effects, which are measured in untargeted metabolomics but their impact on
disease presentation and development is unclear [3].
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One goal of untargeted metabolomics is finding metabolite biomarkers predictive of incidence
or outcome of disease [4]. Popular chemometric methods for finding biomarkers include univariate
analysis such as t-tests and also multivariate analysis such as principal component analysis (PCA),
partial least squares (PLS), and orthogonal projections to latent structures discriminant analysis
(OPLS-DA) [5]. After calculating these multivariate methods, variables may be selected using variable
influence on projection (VIP) [6], selectivity ratio (SR) [7], or significance multivariate correlation
(sMC) [8]. These methods render many variables of importance. Additionally, sparse methods
exist that select variables when creating the model such as lasso [9], sparse PLS (sPLS) [10] and
CARS-PLS [11]. These methods find the minimal set of variables needed for an optimal prediction
of group membership. All of these methods restrict the number of metabolites included in the
differentiating biomarker, where sparse methods have an inherent restriction for a minimal set of
contributing metabolites. This complies with Occam’s razor that dictates that models should be
simplified as much as necessary. However, this does introduce an apparent contradiction, in which
the chemical analysis of metabolomics aims for full metabolite coverage and the data analysis aims
for optimal simplification. Within metabolic pathways, considerable correlations may exist between
different metabolites, imposed by the number of chemical reactions they are involved in. These three
aspects together create a discrepancy in which the data analysis may ignore specific metabolites that are
being measured in the chemical analysis, because their levels are so highly correlated with the levels of
other metabolites, and that are then included in the model. Ignoring such redundant information will
not hamper the predictive power of the models, but will seriously limit the mechanistic information
that can be obtained from the valuable metabolomics data.

After finding a discriminative set of variables, the associated features must be annotated to actual
metabolites to put the results in biological context regarding the disease studied. Mummichog [12]
is an algorithm that annotates features to metabolic pathways based on their m/z ratio and retention
time. If a metabolic pathway contains a high number of significant features, this pathway is most
likely affected. Mummichog thus requires to find as many true significant features as possible. Sparse
discrimination methods are less suited for Mummichog, because these sparse methods select few
features and ignore redundant or correlated features and thus will probably only select a single feature
from a pathway to discriminate between groups. Univariate analysis was used before by the authors
of Mummichog and, although useful, univariate analysis does not consider the covariance structure
present in pathways. Potential metabolites may be missed that do not have a significant difference by
themselves, but may in combination with other metabolites (e.g., metabolites in the same pathway) be
different between groups. The variable selection method sMC is able to find correlating variables with
the response while ignoring the effect of irrelevant correlating structures, a known problem of VIP [8].
For this reason, we hypothesized that the combination of Mummichog with sMC would enhance the
possibility of discovering altered metabolic pathways.

In this paper, we compared the performance of multiple variable selection methods in combination
with Mummichog for the identification of vitamin B3 metabolites in a cohort of patients with
ataxia–telangiectasia (A–T) orally supplemented with vitamin B3 in the form of nicotinamide riboside
(for the rationale and study protocol, see: www.clinicaltrials.gov, identifier: NCT03962114). Vitamin
B3 is an important co-factor for many cellular processes, including fatty acid metabolism and energy
metabolism [13]. Therefore, supplementing vitamin B3 is expected to alter the concentration of many
metabolites alongside increasing the levels of vitamin B3 metabolites. The goal of this untargeted
metabolomics study was to see whether the vitamin B3 pathway-related metabolites were indeed
increased and which other metabolites and/or pathways were influenced upon treatment. This study
is thus an excellent showcase for the discrepancy between data analysis (optimal simplification) and
untargeted metabolomics (full metabolite coverage).

www.clinicaltrials.gov
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2. Results

The results are subdivided into four sections. Section 2.1. shows that during the treatment the
vitamin B3 metabolites were indeed increased with a high fold change, a low p-value, and a high sMC
F-value. Section 2.2. indicates that all methods could easily discriminate between samples taken before
and during treatment. Section 2.3. shows that Mummichog could indeed find the vitamin B3 pathway
and additional pathways. Finally, Section 2.4. describes correlation analysis that found relationships
between metabolites that were missed by pathway analysis. Metabolites assigned by Mummichog
are the best possible guesses based on their m/z values, and their name was only given in the main
text when confirmed by measurement of a model compound in the Ultra-High Performance Liquid
Chromatography-Quadrupole Time-Of-Flight Mass Spectrometry (UHPLC-QTOF-MS) setup [14].
The only exception isN1-methyl-4-pyridone-5-carboxamide and N1-methyl-2-pyridone-5-carboxamide.

2.1. Vitamin B3 Pathway-Related Metabolic Features

Nicotinic acid (1) degrades via nicotinamide (2) into N1-methyl-4-pyridone-5-carboxamide (3) or
N1-methyl-2-pyridone-5-carboxamide (4), see Table 1. Mummichog assigned two features at a weight
tolerance of 1 ppm to nicotinic acid or picolinic acid as isobaric metabolites. Nicotinic acid and picolinic
acid were both detected according to the Human Metabolome Database (HMDB) [15]. Three metabolic
features were assigned to nicotinamide (2) at a weight tolerance of 1 ppm. Metabolites 3 and 4 are
isomers, and the five features at 1 ppm were assigned to both metabolites. At a weight tolerance of
5 ppm, two more metabolic features were assigned to 1, five more to 2, and 23 metabolic features were
assigned to metabolites 3 and 4. Most of these features had different retention times than the features
found at 1 ppm except for the M+K[1+] adduct at a retention time of 2.86 minutes and M+CH3COO[−]
adduct at 2.97 minutes for metabolite 3 or 4. Mummichog probably assigns many false positives at
5 ppm and misses some (false negatives) at 1 ppm. Most features and metabolites in Table 1 had
a significantly higher intensity after treatment. Although no definitive level 1 identification [16] of
these four metabolites could be given, it is highly likely that they indeed represent vitamin B3-related
metabolites, increased upon treatment with nicotinamide riboside, also because the p-value is low and
the sMC F-value is extremely high. A high sMC F-value means the feature explained much variance of
the response to treatment compared to other structures in the data.

Table 1. Assigned metabolites of vitamin B3 metabolism: the degradation of
nicotinic acid (1) into nicotinamide (2) and into N1-methyl-4-pyridone-5-carboxamide (3) or
N1-methyl-2-pyridone-5-carboxamide (4) at a weight tolerance of 1 ppm using Mummichog.

Assigned Metabolite Adduct m/z Retention
Time

Fold
Change

Wilcoxon
p-Value

sMC
F-Value

M + H[1+] 124.0329 1.20 7.00 1.2 × 10−4 302.90

M + H[1+] 124.0329 1.01 2.02 1.2 × 10−4 118.44

M − H2O + H[1+] 105.0445 3.52 1.06 0.9 0.0149

M + H[1+] 123.0552 1.38 2.76 1.2 × 10−4 193.84

M + H[1+] 123.0553 0.97 1.94 1.2 × 10−4 254.34

M−NH3 + H[1+] 136.0394 2.86 9.50 1.2 × 10−4 361.59

M − H[−] 151.0511 2.97 6.77 1.2 × 10−4 359.63

M + H[1+] 153.0659 2.96 7.75 1.2 × 10−4 377.00

M + Na[1+] 175.0479 2.86 6.98 1.2 × 10−4 539.53

M + Cl[−] 187.0276 2.97 7.20 1.2 × 10−4 187.52
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2.2. Treatment of A–T Patients with Nicotinamide Riboside

Table 2 shows that all tested methods could clearly distinguish the patient samples before and
during treatment with nicotinamide riboside. The univariate Wilcoxon sign test and multivariate
methods OPLS-DA with VIP and Weight Randomization Test for partial least squares (WRT-PLS) with
sMC render hundreds of deviating features, whereas the sparse methods CARS-PLS-DA and sPLS-DA
only result in a handful of altered features. A feature with m/z 87.0089 (C3H4O3 M − H[−]) was
increased more than 47-fold upon treatment. Mummichog assigned this feature to eight metabolites
and, of the total fifteen features that CARS-PLS-DA found, only two others were assigned to known
metabolites. The same features were also found with sPLS-DA, but additionally, eleven more features
could be annotated including the M + Cl[−] of metabolite 3 or 4. All of the 48 selected features had
a high positive (>0.63) or high negative (<-.55) correlation with the features of Table 1. Only eight
features had an sMC F-value higher than 187.52 and only two metabolic features had an sMC F-value
higher than 539.53. Thus, the sparse methods CARS-PLS-DA and sPLS-DA did not only select the
features with the highest discriminatory power, see Figure 1.

Table 2. Overview of results of different methods to distinguish patients with A–T before and during
treatment with nicotinamide riboside.

Method

Wilcoxon Sign
Test with

False Discovery
Rate Correction

OPLS-DA VIP

WRT-PLS
sMC

α = 0.01
F > 7.06

WRT-PLS
sMC

α = 3 × 10−7

F > 32.99

CARS-PLS-DA sPLS-DA

Accuracy N/A 100% 100% 100% 100% 100%

Number
features 612 842 770 214 15 48

Annotated
features 51 41 73 23 3 14

The last row of the table shows the number of metabolites annotated by Mummichog.

Figure 1. Multivariate significance (sMC F-value) against the univariate significance log10(p-value)
of the variables (blue unfilled circles). The vitamin B3 metabolites (red filled circles) were both
multivariately and univariately significantly different between before and during treatment. Despite
selecting many significant variables, the sparse variable selection methods sPLS-DA (yellow crosses
(×)) and CARS-PLS-DA (brown plus signs (+)) did not select the vitamin B3 metabolites.
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2.3. Pathway Analysis with Mummichog Based on Features Selected with Wilcoxon or sMC

The feature table used for analysis contained a total of 22,684 features. Table 3 shows the
number of features assigned to metabolites by Mummichog. Next, Mummichog was used to find
significant enriched pathways based on the Wilcoxon sign test and sMC. Pathways may have too many
false-positive features assigned to them and permutation testing is used to detect those. The p-values
were randomly permutated 100 times, each time the significance level was calculated for the pathway,
and the part of permutations in which the pathway had a lower significance level than the actual
data was calculated. The permutation test results of the vitamin B3 pathway can be seen in Table 3,
which shows that only at a weight tolerance level of 1 ppm the pathway is not a false positive, regardless
of the approach.

Table 3. Mummichog annotation results and vitamin B3 pathway permutation results.

Tolerance Features Metabolites Ratio Wilcoxon
Sign Test

sMC
α = 0.01
F > 7.06

sMC
α = 3 × 10−7

F > 32.99

1 ppm 1033 618 2.41 0 0 0

3 ppm 2465 959 2.68 0.99 1 0.46

5 ppm 3268 1131 2.68 1 1 0.88

The column Features shows the number of features that could be assigned to a metabolite. The column Metabolites
shows the number of unique metabolites detected. The column Ratio shows the average number of metabolites
assigned to the same metabolic feature. The columns Wilcoxon sign test, sMC α = 0.01, and α = 3 × 10−7 show the
permutation value for the vitamin B3 pathway.

The additional pathways identified by Mummichog are listed in Table 4. The analysis based
on the p-values derived from the Wilcoxon sign test only found the vitamin B3 pathway to be
significantly altered, whereas sMC identified additional significant pathways. The metabolic features
associated with metabolites of the arachidonic acid pathway were decreased during nicotinamide
riboside treatment. Another pathway found with sMC at α = 0.01 involved methionine and cysteine
metabolism. Adenosine and another metabolite were significantly increased, one metabolite was
significantly decreased, and five metabolites showed a significant multivariate correlation with response
to the treatment, including cysteine.

Table 4. Pathways found by Mummichog at a weight tolerance of 1 ppm.

Pathway Wilcoxon Sign Test sMC α = 0.01 sMC α = 3 × 10−7

Vitamin B3 5 * 5 * 4 *

Arachidonic acid 3 6 * 3 *

Methionine and cysteine 4 9 * 2

The table lists the number of significant metabolites found within the pathway. The asterisk (*) means that it is
significant according to the more conservative Expression Analysis Systematic Explorer (EASE) test.

2.4. Correlation Analysis with Only the Significant Annotated Metabolites

Finally, pathway analysis does not show any relationship between the vitamin B3 metabolites and
other metabolites. For this reason, the correlation matrix was calculated between all significant features
annotated with primary ions. An absolute correlation of 0.8 was used as cut-off to find structures
in the data. Most features were uncorrelated except for one highly connected network containing
21 features, including the vitamin B3 metabolites. The following assigned metabolites in the network
were significantly increased upon treatment with nicotinamide riboside: nicotinamide, nicotinic
acid, N1-methyl-4-pyridone-5-carboxamide, N1-methyl-2-pyridone-5-carboxamide, hypoxanthine,
guanosine, inosine, adenosine, and two more. Four assigned metabolites were significantly
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decreased. The purine metabolism pathway was not significant in the pathway analysis because many
non-significant features were also assigned to metabolites from this pathway.

3. Discussion

Untargeted metabolomics with LC/MS identifies thousands of features in patient body fluids.
Adequate variable selection is therefore essential to find clinically relevant features. In our study,
a cohort of patients with A–T was sampled before and during treatment with nicotinamide riboside.
The goal of this study was to compare multiple variable selection methods on their ability to find
the nicotinamide riboside-related metabolites and how treatment with vitamin B3, as an important
co-factor in human metabolism, would influence other metabolic pathways. All the compared variable
selection methods could easily distinguish between before and during treatment patient samples,
indicating that the individual variability is much smaller than the difference between before and during
treatment. The sparse methods CARS-PLS-DA and sPLS-DA were used to find the minimal set needed
for optimal discrimination between before and during treatment. Wilcoxon signed test and partial least
squares in combination with VIP and sMC were used to find all discriminatory features. Although
no metabolic feature was assigned to nicotinamide riboside, features were assigned to vitamin B3
metabolites. The reason that we do not observe nicotinamide riboside itself as increased may be found
in matrix-related ion suppression, as we were able to detect the pure compound when dissolved
in water. Another reason could be that nicotinamide riboside itself is metabolized rapidly to the
associated metabolites that we do assign.

The vitamin B3-related features were significantly increased and had a low Wilcoxon signed test
p-value, high fold change, high VIP, and high sMC. However, sparse methods only need a subset of
those features and thus may only find features that correlate to the feature of interest. For example,
CARS-PLS-DA did not find any metabolic feature related to the vitamin B3 pathway and sPLS-DA
only found one metabolic feature. The found features did have a high correlation with the vitamin
B3 metabolic features. Moreover, not all found features had the highest multivariate correlation
significance. These sparse methods probably use some high discriminatory features to discriminate and
some less discriminatory features to stabilize the multivariate space. Variable selection in combination
with random forest or support vector machines was briefly explored (results not shown), but we
did not find any deterministic results and neither did variable selection based on genetic algorithms,
because there are multiple subsets possible of the hundreds of discriminatory features.

Another challenge in untargeted metabolomics is the annotation of features to metabolites.
Mummichog can automatically assign features to metabolites that are in known metabolic pathways.
At a molecular weight tolerance of 1 ppm, Mummichog only assigned 4.55% of all features. Using a
higher molecular weight tolerance leads to more assignments, but also increases the rate of false-positive
assignments. Mummichog automatically assigns all features to metabolites based on their m/z value.
Mummichog thus considers the ppm value and the number of adducts that were also assigned to the
same metabolite [12]. For the metabolites specified in this paper, their identity has been confirmed by
measurement of a model compound in the UHPLC-QTOF-MS setup [14]. For all other metabolites,
such as the arachidonic acid pathway metabolites, further confirmation of identity is still needed.
Our approach should therefore be considered as a hypothesis-generating tool, rendering interesting
leads for biochemical follow-up studies.

Pathway analysis of the effects of nicotinamide riboside treatment using sMC as input for
the Mummichog algorithm pointed to vitamin B3, arachidonic acid, and methionine and cysteine
metabolism to be affected. Metabolites of arachidonic acid were decreased and vitamin B3 is known to
inhibit the breakdown of lipids [17]. In another study, methionine and cysteine were found to increase
in Sprague Dawley rats upon vitamin B3 intake during three months [18]. However, methionine was
not found to be significantly different and cysteine was found only multivariately upon treatment
with nicotinamide riboside in patients with A–T. The pathway reference database MetaFishNet is a
compilation of multiple databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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database [19–21]. Most of the significant features were not included in the methionine and cysteine
pathway of the KEGG database. Thus, if just the KEGG database is used for the reference of pathways,
methionine and cysteine metabolism would not be significant. In other words, pathway analysis
does not consider the importance of certain metabolites inside a pathway. The core metabolites are
not necessarily significantly different as seen with the methionine and cysteine pathway. Finally,
changing the significance level of sMC to α = 3 × 10−7 found the same number of metabolites as the
Wilcoxon signed rank test for the arachidonic acid pathway, but because the total number of significant
metabolites was lower, arachidonic acid was a significant pathway when using sMC compared to the
Wilcoxon signed rank test. Thus, finding more important features is of less value if these features are
not biochemically related and sMC may help to find many correlated features.

4. Materials and Methods

4.1. Measurements and Conversion to the Feature Intensity Table

Plasma samples from 14 patients with A–T before treatment and during treatment with vitamin
B3 (nicotinamide riboside) were measured using UHPLC-QTOF-MS in both positive and negative
ionization mode according to a previously described procedure [14]. Considering the processing of
raw QTOF-MS data, the vendor data format (.d) was converted into open format .mzML data using
MSConvert [22]. Data files were preprocessed, which included alignment, peak picking, and grouping
using XCMS [23]. All the data conversion and preprocessing steps were performed as a part of an
in-house developed bioinformatics pipeline. All patient samples were measured in duplicate, and an
internal quality control (QC) sample was also included every 9th or 10th measurement. The use of
patient samples for this study was approved by the Regional Committee on Research involving Human
Subjects Arnhem-Nijmegen (NL68197.091.18). Informed consent was obtained from all patients and/or
their legal caregivers according to the tenets of the Declaration of Helsinki.

4.2. Additional Preprocessing of the Large Feature Intensity Table

The preprocessed output encompasses a large feature intensity table where each feature contains
an m/z value, a retention time, and an intensity (relative abundance) for every measured sample.
Features with more than 20% zeroes (missing values) in the samples or with any zero values in the QC
samples were removed. Features with an m/z value lower than 70 or higher than 700 were removed.
Features with a retention time lower than 0.4 minutes or higher than 16 minutes were removed.
Intra-batch correction was performed using the internal QC samples and support vector regression
(QC-SVR) [24]. Other preprocessing steps included Probabilistic Quotient Normalization (PQN) using
the median of internal QC samples as a reference [25], KNN imputation (k = 10, Euclidian distance) of
the zero values (missing values), glog transformation optimized based on the internal QC samples [26],
and mean centering (no scaling) [27]. The rationale behind PQN is that the majority of (housekeeping)
metabolites do not change. The quotients of most samples were close to 1, meaning that the difference
between samples was very small and minimized during the sample preparation. Pareto scaling was
explored, but standard PLS was unable to distinguish between before and during treatment patient
samples; therefore, no scaling was used. Matlab functions were written and used using Mathworks
Matlab R2020a.

4.3. Data Analysis, Variable Selection, and Validation

From each duplicate measurement, the mean was calculated prior to univariate analysis with a
Wilcoxon signed rank test. Multiple testing correction was performed using the false discovery rate
(FDR) approach of Benjamini–Hochberg [28]. For multivariate analysis, the duplicate measurements
were used directly, because multivariate methods may distinguish between variance that explains the
response and variance that does not explain the response, e.g., instrumental variability. Multivariate
analysis included the following: OPLSDA [29,30] in combination with VIP [6], weight randomization
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test for partial least squares (WRT-PLS) [31] in combination with sMC [8], CARS-PLS-DA[11] with two
latent variables, and sparse PLS-DA with one latent variable [10]. Double cross-validation was used
to validate the results [32]. Five-fold cross-validation with ten iterations was used for the outer loop
to determine the accuracy. Four-fold cross-validation was used for the inner loop to determine the
number of latent variables in OPLS-DA and the variables in CARS-PLS-DA and sparse PLS-DA. Inner
cross-validation was not required in WRT-PLS. Variables were selected based on the training set by
VIP, sMC, CARS-PLS-DA, and sparse PLS-DA, and then a new PLS-DA model was made using only
those variables and the training set, see Figure 2. Accuracy was calculated based on the prediction of
the test set. Features that were selected during all cross-validation iterations were listed per method.
Matlab functions were written and used using Mathworks Matlab R2020a.

Figure 2. Schematic representation of cross-validation procedure. First, the data were divided into a
training set and a test set. (1) Preprocessing of data using parameters derived from the training set such
as mean and k neighbors. (2) Inner cross-validation based on the training set to select variables and
number of (orthogonal) latent variables using DQ2. (3) PLS-DA model based on the variable selected
training set and used to predict the test set. Based on the predicted test set, an accuracy was calculated.

4.4. Annotation and Pathway Analysis with Mummichog

Mummichog v2.0 was used along with the MS Peaks-to-Pathway module available on
Metaboanalyst v4.0 (https://www.metaboanalyst.ca) [12,33]. The input file requires m/z values, retention
time values, p-values, and information on whether the feature is acquired from negative or positive
ionization mode. The sMC F values were converted to p-values and were used, as well as the p-values
of the univariate test. The molecular weight tolerance was used at 1, 3, and 5 ppm together with the
option to enforce primary ions. Only features with at least one assigned primary ion (M + H[1+],
M + Na[1+], M −H2O + H[1+], M −H[1−], M − 2H[2−], M −H2O −H[1−]) were valid. The p-value
cut-off was set to α = 0.01 or 3 × 10−7 for sMC and to 0.0012 (FDR-corrected α = 0.05) for univariate
testing. The human reference pathways of the MetaFishNet database were used for pathway analysis
in Mummichog [34].

5. Conclusions

Through untargeted metabolomics, hundreds of altered metabolic features were identified in
ataxia–telangiectasia (A–T) patients upon treatment with nicotinamide riboside, which included
vitamin B3-associated metabolites. Chemometric methods can easily distinguish between samples
obtained before and during treatment; however, assigning all the metabolic features to metabolites
and connecting them to disease mechanisms is still a challenging task. Moreover, the definition of a
limited set of key metabolites to monitor therapy response is preferred in light of future application in
clinical diagnostics.

For this reason, sparse methods were tested that focus on finding a minimum set of metabolic
features to discriminate between patient samples before and during treatment. However, these sparse
methods did not find vitamin B3 metabolites but only found features that correlate with the vitamin B3
metabolites. Another approach is to summarize the detected metabolites into their related pathways
using pathway analysis. Mummichog in combination with p-values obtained from univariate testing
only found the vitamin B3 pathway. Using Mummichog with significant multivariate correlation based
on partial least squares discriminant analysis also found the vitamin B3 pathway and additionally

https://www.metaboanalyst.ca
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found the arachidonic acid pathway. The metabolites related to the arachidonic acid pathway still
need further confirmation of their identity, to draw definite conclusions. Additional correlation
analysis of the significant annotated features found that the purine nucleosides, i.e., adenosine, inosine,
and guanosine, correlate to the vitamin B3 metabolites. In conclusion, our data show that treatment
with nicotinamide riboside in patients with A–T leads to an increase of vitamin B3 metabolites in
plasma as expected, and also increases plasma purine nucleosides and may decrease metabolites
in the arachidonic acid pathway. Even though we realize that many metabolic features that may
provide additional relevant information still remain unannotated, we show that significant multivariate
correlation in combination with pathway analysis and correlation analysis is able to render more leads
for putatively affected biochemical processes as compared to sparse methods.
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