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Generalized phase mixing: 
Turbulence-like behaviour from 
unidirectionally propagating MHD 
waves
Norbert Magyar, Tom Van Doorsselaere & Marcel Goossens

We present the results of three-dimensional (3D) ideal magnetohydrodynamics (MHD) simulations on 
the dynamics of a perpendicularly inhomogeneous plasma disturbed by propagating Alfvénic waves. 
Simpler versions of this scenario have been extensively studied as the phenomenon of phase mixing. We 
show that, by generalizing the textbook version of phase mixing, interesting phenomena are obtained, 
such as turbulence-like behavior and complex current-sheet structure, a novelty in longitudinally 
homogeneous plasma excited by unidirectionally propagating waves. This study is in the setting of 
a coronal hole. However, it constitutes an important finding for turbulence-related phenomena in 
astrophysics in general, relaxing the conditions that have to be fulfilled in order to generate turbulent 
behavior.

Phase mixing of Alfvén waves, in the context of astrophysics, was originally suggested as a candidate mechanism 
to heat both the open magnetic field corona (e.g. coronal holes) and coronal loops1. Heating is achieved through 
small scale generation: Alfvén waves excited in the lower solar atmosphere propagate outward, and neighbouring 
oscillating field lines get out of phase if a varying Alfvén speed profile is present transverse to the propagation 
direction. Once the resulting scales are small enough, viscous and/or resistive dissipation occurs. Another, 
increasingly popular wave heating (AC) mechanism (it can also be viewed as a DC mechanism in case of 
quasi-static driving2) proposed for heating the solar corona3 is MHD turbulence4–8, which has general applica-
tions in astrophysics9,10, as well as in the physics of fusion and numerous industrial applications11,12. The underly-
ing idea for energy conversion is the same as in phase mixing: small scales are generated by the nonlinear cascade 
of wave energy, until the dissipation range is reached. For turbulence to be sustained in incompressible MHD, 
counterpropagating waves need to be present in the medium13. One often uses the Elsässer variables 
( πρ= ±±z v b 4 , where v  is velocity, b is magnetic field and ρ is plasma density) to better differentiate 
between outward (−) and inward (+) propagating Alfvén waves, for an outwardly directed mean magnetic field 
B0

9,14,15. Then the necessity for counterpropagating wave presence can be easily seen from the Elsässer formula-
tion of the (incompressible) MHD equations:16
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here the essential nonlinearity comes from the advective derivatives, requiring both ±z  to be nonzero, or in other 
words, counterpropagating Alfvén waves. Note that the previously described phenomenology, also known as the 
Alfvén effect, is strictly valid only in the framework of incompressible MHD. In plasma with a finite speed of 
sound, compressible modes, i.e. fast and slow MHD waves are present. However, in a plasma with an inhomoge-
neous background or equilibrium, the MHD waves are linearly coupled, or more descriptively, they have mixed 
properties17,18. This also implies that it is not possible to decompose19 the perturbations into Alfvén, fast, and slow 
waves, as there are no pure MHD wave modes. It was shown recently that the Alfvén effect is no longer a valid 
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phenomenology for isothermal compressible MHD turbulence20, but needs generalization. This implies that the 
generation of turbulence is no longer restricted to counterpropagating Alfvén waves in compressible MHD. In the 
compressible case, by using compressible Elsässer variables (defined as above but with varying density) we can 
still keep the Elsässer formalism, leading to different equations16 than in Eqs. 1:
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where ρ= ∂ ∂c ps
2   is the speed of sound. For the sake of simplicity in this introductory section, the equations 

above were derived using a polytropic equation of state ρ ρ= γp p ( )0 0 , where γ is the polytropic index. Note that 
by letting density variations vanish in Eqs. 2, we readily recover the incompressible case of Eqs. 1. Also note that, 
by considering a weakly compressible case, nonlinearity arises essentially from the same nonlinear advective 
terms as in the incompressible case, involving both ±z . The crucial difference is, however, that generally we can no 
longer interpret the Elsässer variables as representing strictly parallel and anti-parallel propagating Alfvén waves, 
due to contributions from the compressible modes, or traduced in the fully coupled (inhomogeneous) case, due 
to the mixed compressible/Alfvén properties of the waves. In the incompressible case, starting from a spectrum 
of purely outgoing Alfvén waves (e.g. as in a coronal hole), a source of incoming waves is necessary for nonlinear 
interactions to sustain MHD turbulence. This source can be the inhomogeneities, so-called large-scale gradients, 
parallel to the mean magnetic field in the plasma (e.g. gravitational stratification in a coronal hole), causing reflec-
tions of the waves2,21–23. The parametric decay instability, a nonlinear instability of Alfvén waves, is also capable of 
generating backward propagating Alfvén waves, being more effective in the high-amplitude and/or 
high-frequency regime24,25. However, if we consider compressible modes, as stated previously, nonlinear interac-
tions ≠±z( 0) are no longer restricted to counterpropagating Alfvén waves: in an inhomogeneous medium, prop-
agating MHD waves have mixed properties, and appear differently (predominantly Alfvén or fast characteristics) 
in different regions of the plasma, dictated by the local inhomogeneity18,26. This can be viewed, in the Elsässer 
formalism, as a unidirectionally propagating wave presenting both +z  and −z  fields to a varying degree, depending 
on the local inhomogeneity. That is, a wave with mixed properties is necessarily described using both ±z . The +z  
and −z  fields of waves with mixed properties no longer represent Alfvén waves propagating in opposite directions: 
they propagate in the same direction and with the same phase speed: they describe a unidirectionally propagating 
wave. In this sense, nonlinear terms represent self-deformation of waves. In this paper we aim to verify these 
claims and study a perpendicularly inhomogeneous medium perturbed by unidirectionally propagating Alfvénic 
waves, by employing numerical simulations. Here we would like to point out the meaning of ‘Alfvénic’, as formu-
lated by:26,27 it describes waves which have largely Alfvén characteristics, however, due to plasma inhomogeneity 
they are not pure Alfvén waves, as compression is also present. Alfvénic waves are an example of MHD waves with 
mixed properties.

In the following, we describe the numerical setup used in our simulations under the Methods section, fol-
lowed by the Results. The main conclusions are drawn in the Conclusions section.

Methods
We employ 3D ideal MHD numerical simulations to test the previously described scenario of unidirectionally 
propagating Alfvénic waves in a perpendicularly inhomogeneous medium, using MPI-AMRVAC28,29, which 
solves the fully nonlinear, ideal MHD equations in 3D Cartesian geometry:
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 is the total energy density. We set the 

adiabatic index, γ to 5
3
. We supplement the MHD equations with the ideal gas law, ρ=

µ
p T

m
kB

H
, where the average 

mass per particle (in units of hydrogen atom mass mH) is µ = .0 6 for coronal abundances. Here, the magnetic 
field is measured in units for which the magnetic permeability is 1. Note that, unlike in the introductory section, 
a full energy equation is used, and the equations are solved for the usual variables ρ p v B( , , , ), from which the 
Elsässer variables are calculated for analysis. The finite volume method uses the TVD second-order accurate 
solver and Woodward slope limiter. The solenoidal constraint on the magnetic field ∇ ⋅ =B( 0) is enforced using 
Powell’s scheme. The numerical domain (see Fig. 1), aimed to represent a thin elongated section of a coronal hole 
is × ×1 1 20 Mm in size, discretized uniformly with × ×512 512 128 numerical cells. This translates in cell 
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sizes in the x–y plane of ≈2 km, putting heavy constraints on the CFL timestep, and limiting the achievable reso-
lution to its present value. We consider a straight, homogeneous magnetic field of =B 5 G0  directed along the 
z-axis. Gravity is neglected, thus there is no stratification along the magnetic field. In this way, we eliminate pos-
sible reflections of unidirectionally propagating Alfvénic waves on equilibrium gradients along the magnetic field. 
Besides, having in mind the typical density scale height in a 1 MK corona (50 Mm), it is a good approximation for 
the present study. The plasma β = ≈ .0 15p2

B0
2

 is constant throughout the domain at t = 0. The large-scale gradient 
transverse to the magnetic field is given by inserting, on a uniform background density of ρ = ⋅ − −2 10 kg m0

13 3 
random (in amplitude, position, and width) Gaussian density enhancements in the x–y plane, uniform along the 
z-axis:
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tude, position, and Gaussian width, respectively, randomly chosen (uniform distribution) within their respective 
limits. These density enhancements aim to represent random perpendicular density variations in a coronal hole, 
in equilibrium. These kind of inhomogeneities, in reality, might arise for example from small localized heating 
events, leading to chromospheric evaporation. The structure is periodic in the x–y plane, as we set periodic 
boundaries laterally. Periodicity is ensured by letting the contribution of each Gaussian density enhancement 
‘pass’ through the closest x-axis and y-axis periodic boundaries. The resulting mean density is ≈ . ⋅ − −1 2 10 kgm12 3, 
while the peak value is ≈ ⋅ − −3 10 kgm12 3. At the top boundary, we use a Neumann-type zero-gradient ‘open’ 
boundary condition for all variables. This is essential, as we want to exclude or minimize as much as possible the 
generation of reflected, counterpropagating waves. Tests with homogeneous density runs show maximum .0 5% 
reflection of the incident wave energy on the top boundary. At the bottom, we employ a wave driver with proper-
ties intending to mimic observed Alfvénic waves in coronal holes23,30. In this sense, we use a superposition of 10 
sinusoidal waves:
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each with a definite angular frequency ωi, velocity amplitudes Ui and Vi , obtained randomly from the observed 
log-normal distributions23, and random direction in the −x y plane, resulting from the different random velocity 
amplitudes for x and y-axis components, leading to transverse, Alfvénic waves propagating upwards on the z
-axis. Note that the driver is time but not space-dependent, i.e. the whole boundary is driven equally. The result-
ing rms (root mean-square) velocity amplitude is ≈ −12 kms 1. Initially, in the simulation domain, the average 
sound speed µ=c k T ms B H  is ≈ −120 kms 1, while the average Alfvén speed ρ=V BA 0  is −440 kms 1. These 
values show us that we are in the weakly compressible, subsonic regime of flow ( < <c Vvrms s A ).

Results
We run the simulation for 1000 s. During this time, perturbations originating from the boundary driver propagate 
upwards (on the z-axis) and interact with the inhomogeneities. The initial (equilibrium) transverse structure is 
quickly destroyed by the propagating Alfvénic waves, and transformed into a cross-section presenting structures 
on a large range of scales, reminiscent of turbulence (see Fig. 2). This observation was at the basis of a previous 
study which doubts the existence of packed thin individual and dynamically independent magnetic elements in 
the solar corona, so-called ‘coronal strands’ or filaments, when perturbed by propagating Alfvénic waves31. The 

Figure 1.  Three-slice plot of the 3D numerical domain. Note that the inhomogeneity is in the −x y plane. The 
domain is uniform along the z-axis. The density color legend is shown in units of −10 12 kg m−3.



www.nature.com/scientificreports/

4Scientific REPOrTS | 7: 14820  | DOI:10.1038/s41598-017-13660-1

current density shows the same turbulent structure in the cross-section with numerous current sheets forming 
(see Fig. 3) and getting dissipated by numerical resistivity. Note how the current in individual strong current 
sheets is more than an order of magnitude stronger than the average current density. The peak values in the cur-
rent density depend on the resolution and numerical resistivity (intrinsic to the numerical scheme, not set), but 
should ultimately saturate at sufficiently high resolutions. We estimate the Lundquist number in the simulation to 
be of the order −10 105 6. In test runs with half resolution, the peak values in the current density drop approxi-
mately to half as compared to the present setup, indicating that we did not reach the saturated state. The dissipa-
tion (heating) leads to an increase in the internal energy of the plasma. However, this represents only a ≈ .2 2% rise 
with respect to the equilibrium value of the internal energy at the end of the simulation time, being unable to 
change the plasma temperature significantly. The available energy flux from the driver is, on average, −50 Wm 2, 
in agreement with the estimated energy content of the observed transverse waves in coronal holes23. However, 
only a small part of this energy gets deposited in the domain, as waves propagate through the open top boundary. 
On average, the energy flux decreases ≈ .1 5% from its original value as it leaves the domain. This results in a heat-
ing rate of ≈ . × − − −3 1 10 erg cm s7 3 1, way below the ≈ − − −10 erg cm s4 3 1 that would be required to balance radi-
ative losses32. As we do not focus on the energetics (processes mainly parallel to the main magnetic field) but 
rather on the turbulent behavior (perpendicular to the main magnetic field) in this study, heat sources or sinks, 
thermal conduction or thin radiative losses are not included in the energy equation. The time and space-averaged 
transverse magnetic field fluctuation magnitude is ≈ .3 0% of B0.

We calculated the 1D power spectra of magnetic and kinetic energy, density, pressure (shown in Fig. 4), and 
±z  (not shown, for clarity) in a plane perpendicular to the mean magnetic field B0. Note that the small scale gen-

eration or cascade is purely perpendicular to the mean magnetic field B0. We use the fft routine of IDL to obtain 
fk k,

2
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while the calculation is similar for the other variables. Note, however, that EKM is not the total energy: in com-
pressible MHD the total energy contains also the internal energy16. The time-averaged EKM spectrum ( ⊥

− .k 2 54) is 
steeper than all well-known MHD inertial range spectra (e.g. ⊥

−k 5 3  or ⊥
−k 2 in strong or weak incompressible MHD 

turbulence, respectively). Lower resolution test simulation runs show similar spectral slopes, however, the inertial 

Figure 2.  Evolution of density in a 2D slice taken at =z 18 Mm, shown in steps of 250 s (to the right), the first 
plot showing the equilibrium transverse structure ( =t 0 s). The density color legend is shown in units of −10 12 
kg m−3.

Figure 3.  Absolute value of current density (user units) along the z-axis ( jz) in a 2D slice taken at =z 18 Mm 
and =t 500 s.
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range is shorter, due to enhanced numerical dissipation. However, the present inertial range length (less than a 
decade in wavenumber) and the high variability of its slope in time suggests that the slope values should be 
treated carefully. Still, the obtained inertial range slopes suggest new dynamics. Indeed, our dynamics resembles 
an unsteady, imbalanced weak MHD turbulence, with tempo-spatial varying energy ratio of the ±z  fields. We use 
the term ‘weak’ based on the observation that the cascade is essentially perpendicular to the background B0 field. 
Currently, there are no analytical or even phenomenological models describing this scenario in compressible 
MHD. No attempt is made here to develop such a model. The closest incompressible MHD turbulence description 
to the present scenario is that of imbalanced weak MHD turbulence33,34. Note, however, that there are still funda-
mental differences with respect to the latter: The nonlinear cascade in our system is not driven by counterpropa-
gating Alfvén waves, but by the mixed properties of unidirectionally propagating MHD waves in an 
inhomogeneous plasma, presenting self-deformation. The inertial range spectra changes in time due to the vary-
ing boundary driver, and the varying presence of +z  (see Fig. 5), thus the aforementioned varying − +E E  
( =± ±

⊥E kz ( ) 2) Elsässer energy ratio. In Fig. 4 we also show the energy spectrum at =t 500s, which presents 
an inertial range slope close to that in weak MHD turbulence9,35, −k 2. In imbalanced weak MHD turbulence36, 

∝ α±
⊥
− ±E k 2 , where α ≠ 0 and corresponds to different inertial range slopes for Elsässer energies. We get ≈ − .1 85 

and − .2 01 for the +E  and −E  inertial range slopes, respectively, at =t s500 . The time-average slopes are ≈ − .2 08 
and − .2 8, respectively. The pinning effect (converging ±E  spectra at the dissipation range, see33) of the Elsässer 
energies is observed, around = .⊥

−k 0 02 km 1. There is a striking difference in the inertial range slopes of pres-
sure and density: for a polytropic law, dimensional analysis leads us to similar −k 7 3 slopes for both variables, 
which should be valid even in weakly compressible cases, as the present one9. The deviation from this law comes 
from the use of a full energy equation instead of a polytopic relation, which allows us to set up a moderately inho-
mogeneous density profile while setting the pressure constant initially. In Fig. 5 the +z  field is shown, as well as the 

−z  contours. Note that these two fields do not represent two different, counterpropagating waves: they are the 
manifestations of MHD waves with mixed properties. The dominant component of the waves is the −z  field, 

Figure 4.  Spectra (power spectral density) of energy (‘EKM’ - time averaged over −200 1000s; ‘ tE ( )KM ’ - energy 
spectrum at =t 500 s), density, and pressure (‘ρ, p’ - time averaged over −200 1000s) calculated in a 
perpendicular slice at =z 18 Mm. Linear fits to the inertial range are also shown for each spectrum. Values for 
the slopes are also shown, in matching colors.

Figure 5.  Time-distance map of −z  (greyscale contour plot) and +z  (color plot) along the segment 
 = x y z z( , , ) (0, 0, ). The step-like appearance of some wave-fronts is a visualization artifact, due to limited 

number of snapshots in time (100). Values are in user units.
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showing that the driven wave has a largely Alfvénic character37. The time and space-averaged amplitude of the +z  
field is ≈14% of −z , hence the imbalanced nature of the turbulence. We can see that the ±z  propagation directions 
coincide, and there appears to be no significant reflection on the top boundary (at =z 20 Mm). Performing a 

ω−k  diagram analysis shows a weak presence of reflected waves in +z , which originate either from the top bound-
ary or get reflected on density perturbations inside the domain, as a second-order effect. However, these are 
negligible when compared to the non-reflected, Alfvénic +z  component. Also, +z  displays a bursty, patchy evo-
lution, as expected from the high degree of perpendicular density inhomogeneity in the domain. This might 
explain the observed rapid variation of the calculated spectra. To further strengthen our point about the origin of 
the +z  field, we ran additional simulations, identical to the presented one, except removing the inhomogeneities 
in density for ≥z 10 Mm, i.e. a sudden transition to the constant background density. In Fig. 6, the resulting ±z  
fields are shown at =t 30 s, i.e. just before the first wavefront reaches the top z  boundary. We chose this early 
snapshot in order to partially exclude the waves reflected on the interface at =z 10 Mm, which otherwise would 
dominate the +z  field and hide the +z  contribution of the outward propagating Alfvénic waves. The waves 
reflected on the interface are counterpropagating2, and can be seen in Fig. 6 as the strong wavefronts in +z , orig-
inating from =z 10 Mm. Note how the +z  component is practically absent in the homogeneous region 

≥z 10 Mm, but there’s an even stronger −z , as a consequence of conservation of energy. In this sense, the +z  in 
the inhomogeneous region (excluding the contribution from the reflected counterpropagating waves at the inter-
face) is a manifestation of a unidirectionally propagating MHD wave with mixed properties in a perpendicularly 
inhomogeneous medium and cannot be associated with a different wave.

Conclusion
We performed a first, full 3D MHD simulation of a generalized phase mixing scenario, with the varying Alfvén 
speed in the domain given by a random density profile perpendicular to the uniform and straight equilibrium 
magnetic field. The equilibrium is perturbed by upward-travelling Alfvénic waves (along the magnetic field), 
which originate from a driver at the lower z-axis boundary, modeled after the observed properties of waves in 
coronal holes. The waves leave the domain at the top z-axis boundary, and as we consider an initially uniform 
plasma along the magnetic field, no significant wave reflections occur. Hence we study unidirectonally propagat-
ing Alfvénic waves in a perpendicularly inhomogeneous plasma. The resulting dynamics are complex and turbu-
lent in the cross-section, however the solution remains smooth parallel to the z-axis. Current sheets form in the 
process, displaying ribbon-like appearance along the main magnetic field, when viewed in 3D. These current 
sheets are dissipated due to numerical resistivity, and this leads to a small rise in the internal energy. This heating 
(at least in this setup) does not cause significant changes to the average temperature in the domain. The driven, 
propagating Alfvénic wave has mixed properties due to the inhomogeneities, which manifests as simultaneously 
nonzero ±z  fields, presenting nonlinear self-deformation, in this sense. This nature of the MHD waves with mixed 
properties is at the origin of the complex, turbulent behaviour observed in the cross section, allowing for nonlin-
ear cascade of wave energy to smaller scales of unidirectionally propagating waves. Let us emphasize the impor-
tance of the last sentence, as it is the main conclusion: nonlinear interactions, at the core of turbulent behaviour, 
are no longer restricted to counterpropagating waves in the scenario described in this paper. This study consti-
tutes a first numerical demonstration of the recently realized20 fact that the Alfvén effect is no longer valid in its 
current form in compressible MHD, but needs generalization. Thus, we simulated a potentially new type of MHD 
turbulence. The perpendicular spectrum of energy displays a power-law like appearance. This spectrum is highly 
variable in time, and its average slope for the inertial range is not in accordance with any presently available the-
ory, being steeper than the well-known power laws of MHD turbulence. However, there is a clear separation of 
inertial and dissipation ranges, and the pinning effect, observed in numerical simulations of imbalanced weak 
MHD turbulence, is present. These findings might relax the criteria for the existence of turbulence-like cascade in 
plasma with a mean magnetic field and large-scale inhomogeneities perpendicularly to it. As this scenario is likely 
frequently present in astrophysical context, it might make turbulent behavior nearly ubiquitous.

Figure 6.  : Snapshots of +z  (top) and −z  (bottom) in the x z( , 0, ) plane at =t 30 s, of the setup with 
homogeneous background density after ≥z 10 Mm, with corresponding color legends on the sides. Values are 
in user units.
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