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Background: Ferroptosis and cuproptosis play a crucial role in the progression and dissemination of 
hepatocellular carcinoma (HCC). The primary objective of this study was to develop a unique scoring system 
for predicting the prognosis and immunological landscape of HCC based on ferroptosis-related genes (FRGs) 
and cuproptosis-related genes (CRGs).
Methods: As the training cohort, we assembled a novel HCC cohort by merging gene expression data and 
clinical data from The Cancer Genome Atlas (TCGA) database, and Gene Expression Omnibus (GEO) 
database. The validation cohort consisted of 230 HCC cases taken from the International Cancer Genome 
Consortium (ICGC) database. Multiple genomic characteristics, such as tumor mutation burden (TMB), 
and copy number variations were analyzed concurrently. On the basis of the expression of CRGs and FRGs, 
patients were classified into cuproptosis and ferroptosis subtypes. Then, we constructed a risk model using 
least absolute shrinkage and selection operator (LASSO) analysis and Cox regression analysis based on 
ferroptosis and cuproptosis-related differentially expressed genes (DEGs). Patients were separated into two 
groups according to median risk score. We compared the immunophenotype, tumor microenvironment 
(TME), cancer stem cell index, and treatment sensitivity of two groups. 
Results: Three subtypes of ferroptosis and two subtypes of cuproptosis were identified among the patients. 
A greater likelihood of survival (P<0.05) was expected for patients in FRGcluster B and CRGcluster B. After 
that, a confirmed risk signature for ferroptosis and cuproptosis was developed and tested. Patients in the 
low-risk group had significantly higher survival rates than those in the high-risk group, according to our 
study (P<0.001). There was also a strong correlation between the signature and other variables including 
immunophenoscore, TMB, cancer stem cell index, immunological checkpoint genes, and sensitivity to 
chemotherapeutics.
Conclusions: Through this comprehensive research, we identified a unique risk signature associated with 
HCC patients’ treatment status and prognosis. Our findings highlight FRGs’ and CRGs’ significance in 
clinical practice and imply ferroptosis and cuproptosis may be therapeutic targets for HCC patients.
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Introduction

Primary liver cancer ranks seventh among all cancers 
worldwide and is the second leading cause of cancer-related 
death (1). Hepatocellular carcinoma (HCC) accounts for 
around 75% of all cases of liver cancer worldwide (2). The 
overall survival rate of HCC patients remains dismal despite 
the widespread use of surgical resection, interventional 
therapy, chemoradiotherapy, targeted therapy, and liver 
transplantation (3,4). Research is accumulating in favor of 
the multigene signature’s ability to aid in risk stratification 
and prognosis prediction in patients with HCC (5,6). 
As a result, there is a pressing need to define sensitive 
and implementable molecular markers for precise HCC 
diagnosis, tailored therapy, and prognostic evaluation. 

Ferroptosis is a novel kind of programmed cellular 
death marked by lipid peroxidation that is exceptionally 
iron-dependent (7). Ferroptosis has garnered substantial 
interest as a potential cancer treatment pathway since its 
introduction in 2012 (8). Extensive studies have shown that 
ferroptosis plays a crucial role in the elimination of tumor 
cells and the suppression of their growth (9,10). As a result, 
inducing ferroptosis has promise as a therapeutic strategy 
for accelerating cancer cell death (11). Numerous genes 
have been identified as having important functions in either 
controlling or detecting ferroptosis. For instance, tumor 
growth and proliferation are both encouraged by ACSL4 
up-regulation, but the cells become more susceptible to 
ferroptosis as a result (12). A crucial regulator of cancer 
formation, the P53 tumor suppressor is also associated with 
ferroptosis. Together, the metabolic processes of ferroptosis 
and lipids aid P53 in its role as a tumor suppressor (13,14).

New research has shed light on the roles of cuproptosis 
in a wide variety of diseases, from heart failure and 
neurodegenerative disorders to metabolic syndrome and 
inherited disorders (15-17). Throughout the cell, copper 
plays a crucial role as a structural and catalytic cofactor 
for enzymes involved in processes as diverse as antioxidant 
defense, mitochondrial respiration, redox signaling, 
autophagy, kinase signaling, and many more (18-20). 
Furthermore, it can serve as a signal to enable responses to 
the heightened host defenses that immunological activation 
inevitably produces (21). Cuproptosis is the name given to 
the process of cell death brought on by copper, as described 
in a paper published in Science (22). Copper produces a 
cascade of toxic protein stress and, eventually, cell death 
by creating a covalent link with lipoacylated components 
of the tricarboxylic acid (TCA) cycle (23). These findings 

clarify the significance of cuproptosis in the maintenance, 
differentiation, and proliferation of cancer cells and shed 
light on the tumor copper and mitochondrial homeostasis 
linked with cuproptosis plasticity. 

Yet, the relationship between cuproptosis combined 
with ferroptosis-related genes (FRGs) and the tumor 
microenvironment (TME) is not fully understood. 
Consequently, this study intends to utilize integrative 
bioinformatics analysis to learn more about cuproptosis-
related genes (CRGs) and FRGs, such as their functions 
in HCC prognosis, TME infiltration, and therapeutic 
response. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-685/rc).

Methods

Data collection

Gene expression data and associated clinicopathological 
information were made available through the openly 
accessible databases Cancer Genome Atlas (TCGA), Gene 
Expression Omnibus (GEO), and International Cancer 
Genome Consortium (ICGC). In order to decrease the 
variability, patients who were lacking vital clinical data 
were discarded. Finally, 374 TCGA-HCC samples, 115 
GSE76427 samples, and 80 GSE10141 samples were 
involved in the TCGA-GEO cohort that was set as the 
training cohort. In order to create a new merging gene 
expression matrix, we first removed the batch effect, 
normalized the data, and corrected for batch variation. For 
further verification, we used the ICGC-LIRI-JP dataset, 
which contains clinical details and RNA expression data 
from 231 Japanese HCC patients. The 259 FRGs were 
retrieved from the FerrDb website and prior publications. 
The 19 CRGs were compiled from the best available 
research. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Multiomics landscape analysis based on DEGs in the 
TCGA-HCC dataset

A correlation analysis between CRGs and FRGs to 
determine which FRGs were most strongly linked with 
CRGs (corrfilter >0.30, P<0.05). Additionally, we looked 
for differentially expressed genes (DEGs) associated with 
ferroptosis and cuproptosis with the appropriate cut-
off criteria: |logFC| >1 and false discovery rate (FDR) 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-685/rc
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<0.05. The waterfall graphic illustrates the findings from 
the analysis and evaluation of somatic mutation data from 
these DEGs and the tumor mutation burden (TMB). 
Additionally, copy number variants (CNVs) were analyzed 
to determine their prevalence in DEGs. 

Identification of the ferroptosis subtypes and the ferroptosis-
related DEGs

Consensus clustering was used to classify TCGA-
GEO cohorts into distinct ferroptosis-related groups 
(FRGclusters) based on FRGs expression using the 
“ConsensusClusterPlus” R package (24) with reps =1,000 
and pItem =0.8. When determining the appropriate number 
of clusters, the cumulative distribution function (CDF), 
delta area plot, matrix heatmap, and tracking plot are taken 
into consideration. A principal component analysis was 
performed to illustrate the different ways in which CRGs 
can be grouped together. Subgroup OS data were analyzed 
using Kaplan-Meier survival analysis. The ferroptosis-
associated DEGs between the different subtypes were 
identified with |logFC| >1 and FDR <0.05.

Identification of the cuproptosis subtypes and the 
cuproptosis-related DEGs

Subjects were classified into separate cuproptosis-related 
groups (CRGclusters) based on their CRGs expression 
levels using a consensus unsupervised clustering analysis, 
and the parameters reps =1,000 and pItem =0.8. A 
principal component analysis was performed to visualize 
the distribution of subtypes. The differences in the overall 
survival among subtypes were compared using Kaplan-
Meier survival analysis. By employing the limma R package, 
we identified DEGs linked to cuproptosis across all 
subtypes, with FDR <0.05 and |logFC| >1 as the cutoffs for 
significant changes in expression.

Functional enrichment analysis

The differentially enriched pathways (adjusted P value <0.05) 
of the FRGclusters and CRGclusters were compared using 
gene set variation analysis (GSVA), with the help of the assisted 
gene set from the Molecular Signature Database (25). Then, 
a total of 355 ferroptosis- and cuproptosis-related DEGs 
were identified by analyzing the intersections between 
FRGclusters and CRGclusters. Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis were used to delve deeper into 
the enriched biological activities and pathways among these 
DEGs (26). 

Generation and validation prognostic signature related to 
ferroptosis and cuproptosis 

The prognostic signature was identified and validated using 
data from the TCGA-GEO cohort and the ICGC cohort. 
The prognostic significance of DEGs was evaluated using 
univariate Cox regression analysis. To avoid the overfitting 
problem, LASSO regression analysis was conducted. 
Finally, candidate genes for the predictive signature were 
then chosen using multivariate Cox analysis, yielding 
the following formula: 

1

n

i
risk score coefi Expi

=
= ×∑ .  The 

risk coefficient, denoted by coef, and the degree of gene 
expression, indicated by exp, are presented separately for 
each gene. Patients were categorized as high-risk or low-
risk based on the median risk score. Kaplan-Meier analysis 
was then performed using the “survminer” program. The 
effectiveness of the model was evaluated with the use of 
ROC curves. By including clinical features in the model, we 
were able to estimate each patient’s likelihood of surviving 
1-, 3-, and 5-year post-diagnosis using the “rms” R 
package to generate a nomogram and associated calibration 
plots. Better prognostic ability from the nomogram and 
a calibration curve closer to the 45° line led to a greater 
prediction effect. 

Correlations of the signature with TME

Cancer’s development and progression are both heavily 
influenced by the TME (27). By examining the levels 
of expression of critical biomarkers, the ESTIMATE 
algorithm implemented in the “estimate” R package can 
detect the existence of TME (28). Using the ssGSEA and 
CIBERSORT algorithms, we were able to confirm that 
the high-risk group and the low-risk group had distinct 
disparities in terms of their immune cells. Finally, we used 
information about the transcriptome and epigenome of the 
samples to evaluate the stem cell-like properties of tumors 
and perform correlation study into the link between the risk 
score and the cancer stem cell index.

Assessment of TMB, immunotherapy, and chemotherapy

The total number of mutations in each HCC sample was 
analyzed to evaluate the frequency of TMB between the 
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two groups. Spearman’s analysis revealed a correlation 
between the risk score and TMB. We also compared TMB 
between high- and low-risks groups as well as survival 
rates. After that, the expression of genes linked to immune 
checkpoint inhibitor (ICI), such as programmed cell death 1 
(PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic 
T lymphocyte associated antigen 4 (CTLA4), and others, 
was compared between the groups at low and high risk. 
The immunophenotype score (IPS) has been shown to be 
a reliable predictor of how well a patient will respond to 
immunotherapy (29). The effectiveness of immunotherapy 
was evaluated using IPS. Further, the “pRRophetic” R 
package was used to predict the IC50 values of drugs 
currently used to treat HCC in both high- and low-risk 
categories (30).

Comparison with published models

We compared the predictive ability of our model to that 
of other models already in circulation. In order to ensure 
that the samples were reliable, multivariate Cox regression 
analysis was utilized to generate a risk score for each. The 
samples were divided into high-risk and low-risk groups 
based on the median risk score. Following incorporation of 
the pertinent genes into each of the models, the ROC curve 
was generated. 

Statistical analysis

All statistical analyses were conducted in R, version 
4.2.1. Differences between the groups were examined 
using student t-tests and analysis of variance. Spearman’s 
correlation analysis was utilized to determine correlation 
coefficients between CRGs and FRGs expression and TME. 
The level of statistical significance used in this research was 
determined to be P<0.05.

Results

Analysis of the TCGA-HCC multiomic landscape

The workflow of the study is outlined in Figure 1. Based 
on the analysis of the correlation, we discovered 199 FRGs 
and CRGs. The protein- protein interaction network of 
these genes indicates that FRGs and CRGs have substantial 
connections (Figure 2A). Compared to normal liver tissues, 
the TCGA-HCC dataset identifies 29 genes, 9 of which are 
down-regulated and 20 of which are up-regulated, as DEGs 

(Figure 2B). Then, we performed a comprehensive review of 
the somatic mutation status of these 29 DEGs (Figure 2C). 
Overall, there were 82 mutations found in 371 samples, for 
a somatic mutation incidence of 22.1%; ALB appeared to 
have the greatest mutation rate (13%). Figure 2D depicts 
the placements of these 29 DEGs along the rcircos of 
the chromosomes. Almost every gene experienced CNV, 
with some showing considerable increases (RPL8, MAFG, 
PCK2, and TFRC) and others showing significant decreases 
(STMN1, CDKN2A, and others) (Figure 2E).

Identification of FRGclusters in HCC

According to the expression of FRGs, the ConsensusClusterPlus 
R package was used to classify HCC samples into k groups  
(k=2–9). According to Figure 3A, when k=3, the clustering 
effect was shown to be the greatest. Disparities in 
ferroptosis transcription were found among the three 
FRGclusters, as determined by principal component analysis 
(Figure 3B). Kaplan-Meier analysis revealed that patients in 
FRGcluster B had the best chance of survival, while those in 
FRGcluster C had the worst (Figure 3C). Moreover, FRGs 
expression levels and clinicopathological features also varied 
significantly between subtypes (Figure S1). A further finding 
of the GSVA study was the identification of numerous 
additional differentially enriched KEGG pathways between 
FRGclusters. Enrichment levels for several metabolic 
activities were higher in FRGcluster C, while those for 
the basal transcription factors, spliceosome, and ribosome 
were higher in FRGcluster B. FRGcluster A was primarily 
abundant in Calcium signaling pathways and complement 
and coagulation cascades (Figure 3D,3E, Figure S1). Further 
comparison using ssGSEA revealed a substantial variation in 
the immune infiltration scores of these three FRGclusters. 
Activated B cell, activated CD4 T+ cell, gamma delta T 
cell, myeloid-derived suppressor cells (MDSC), and mast 
cell were all considerably concentrated in FRGcluster B 
(Figure S2A,S2B), making it the cluster with the highest 
amount of immune infiltration and associated functions 
overall. In addition, discrepancies in TME scores between 
the three FRGclusters were investigated, and the results 
are presented in Figure S2C-S2F, with reference to the 
“estimate” R program. Based on the boxplots, it was clear 
that patients in FRGcluster B had the highest stromal score 
and estimate score, whereas FRGcluster C had the highest 
tumor purity. This research provided more evidence that 
FRGcluster B was comparable to the “hot” tumor, which 
was more amenable to immunotherapy as a result of its 

https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf
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increased immune cell infiltration.

Identification of CRGclusters in HCC

The ConsensusClusterPlus R software was used to 
reclassify HCC samples into k groups (k=2–9) based on the 
expression of CRGs. The clustering effect was found to be 
greatest when k=2 (Figure 4A). Principal component analysis 
revealed discrepancies in cuproptosis transcription between 
the two CRG clusters (Figure 4B). As the Kaplan-Meier 
curve showed, the prognosis for cases in CRGcluster B 
was more favorable (Figure 4C). Gene clusters were plotted 
on a heatmap, which revealed associations between gene 
expression, CRGclusters, and clinical features (Figure 4D). 
The GSVA enrichment analysis showed that metabolism-
related processes were mainly enriched in CRGcluster B, 
while some cancer-related pathways were mainly enriched 
in CRGcluster A (Figure 4E). The bulk of immune cells 
were better at infiltration functions in CRGcluster B, 
as determined by further ssGSEA analysis of these two 
clusters (Figure S3A,S3B). In addition, we calculated TME 
scores for both CRGclusters, discovering that patients 

in cluster B had higher scores for Stromal and estimate  
(Figure S3C-S3F). Immunological characteristics allowed 
us to categorize CRGcluster B tumors as “hot” cancers.

Construction and evaluation of the ferroptosis- and 
cuproptosis-related prognostic signature

Using the “limma” R package, we identified 355 DEGs 
among CRG and FRG subgroups to create a prognostic 
signature (Figure 5A). GO and KEGG enrichment analysis 
revealed that these 355 DEGs were likely enriched in 
the RNA splicing, mRNA processing, cadherin binding, 
Spliceosome, Endocytosis, PI3K-Akt signaling pathway, 
Hippo signaling pathway (Figure 5B,5C). The prediction 
model was developed using univariate Cox, LASSO, 
and multivariate Cox regression on DEGs. In order to 
determine which genes contribute to HCC survival, a 
LASSO regression analysis was performed, and ten genes 
were chosen based on the lowest partial likelihood deviation. 
Finally, four genes were pinpointed using a multivariate 
Cox regression analysis (Figure S4). The following equation 
was used to determine a risk score for each of these genes: 

https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-685-Supplementary.pdf


Yang et al. Cuproptosis and ferroptosis-related signature in HCC3334

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(12):3327-3345 | https://dx.doi.org/10.21037/tcr-23-685

risk score = (−0.0012 * HMGCS2 expression) + (0.0331 
* PPM1G expression) + (-0.0037 * PON1 expression) + 
(0.0597 * GNL2 expression). The median threshold value 
for each patient was used to determine their risk category. 
The distribution of patients into three FRGclusters and two 
CRGclusters was depicted in Figure 5D. Meanwhile, the risk 
score in FRGclusters followed the pattern C > B > A, but in 
CRGclusters the order was B > A (Figure 5E,5F). Patients 
with low-risk had a better survival rate than those with 
higher scores in TCGA-GEO cohort and ICGC cohort 
(P<0.001). The area under the curves (AUCs) of the ROC 
curves related to survival rates in the TCGA-GEO cohort 
(1-, 3-, and 5-year AUCs: 0.730, 0.649, 0.608, respectively) 
and in the ICGC cohort (1-, 3-, and 5-year AUCs: 0.742, 
0.715, 0.599, respectively) were calculated (Figure 5G-5L). 
Heat map was used to display the differential expression 
of model genes between high- and low-risk groups in the 
TCGA-GEO and ICGC cohort (Figure S4).

We also investigated the expression of HMGCS2, 

PPM1G, PON1, and GNL2 in HCC and normal liver 
tissues using single-cell RNA-seq data. Higher expression 
of PPM1G and GNL2 was observed in carcinoma cells than 
in hepatocytes. More importantly, the single-cell RNA-
seq analysis results suggested that these genes were not 
only expressed in liver cells but also expressed in other 
types of cells, such as Kupffer cells, cDC2, and SAMs  
(Figure 6A-6D). Further analysis of these genes’ protein 
expression levels was performed utilizing the HPA database. 
Both PPM1G and GNL2 protein levels were found to be 
greater in HCC tissues compared to those of healthy liver 
tissues (Figure 6E).

Independent prognostic analysis and establishment of a 
nomogram

To further validate the signature’s predictive power, 
nomograms were generated utilizing clinical characteristics 
and risk scores to predict 1-, 3-, and 5-year OS in HCC. 
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There was considerable concordance between the data and 
calibration curves. From the decision curve analysis (DCA) 
curves, it appears that the nomogram may be more effective 
than the risk score and other clinical variables in predicting 
the prognosis of HCC patients (Figure S5).

Correlations of the signature with TME

In order to evaluate the differences between the biological 
processes of high- and low-risk populations, a GSEA was 
carried out (Figure 7A,7B). We observed that immune-
related activities, such as ECM receptor interaction, 
hematopoietic cell lineage, and leishmania infection, 
were most highly correlated with a high-risk score. Next, 
immunological infiltration was analyzed using ssGSEA, 
which revealed that high-risk individuals had a markedly 
enhanced population of activated CD4+ T cell, natural 
killer (NK) cell, and type II T helper cell (Figure 7C). M2 
macrophages were prevalent in the high-risk population, 
as determined by CIBERSORT. In addition, activated 
macrophages M2 and mast cells activated both positively 
correlated with risk score, while naïve B cells and resting 
mast cells negatively correlated (Figure 7D-7H). We 
determined the relationship between model genes and 
the amount of immune cells and discovered that several 
categories of immune cells, such as M2 macrophages, M1 
macrophages, and resting mast cells, were substantially 
connected with the genes (Figure 7I). We also examined the 
TME scores of these two groups and found that those at 
high risk had more immune cells (Figure 7J). In addition, 
there was a negative correlation between risk scores and 
stromal cells and tumor purity, and a positive correlation 
between risk scores and immune cells and estimated scores 
(Figure 7K-7N).

To better understand the distinctions between the 
two groups, the TCGA samples were separated into a 
variety of immunological subgroups. C3 and C4 were 
the two predominant subtypes. The risk scores for the 
C2 immunological subtype were lower than those for the 
C1 subtype but significantly higher than those for the 
C3 and C4 subtypes (Figure 8A,8B). Significantly higher 
immunogenicity prediction scores (IPS) were seen in the 
low-risk group (P<0.001) (Figure 8C, Figure S3). We found 
that the expression levels of 29 immunological checkpoints 
varied among risk groups when we correlated them with 
our model (Figure 8D). Several immunological checkpoints, 
including CD276, PDCD1, and CTLA4, had higher 
expression levels as the risk score increased. 

Relationships between the signature and tumor stem cells 
as well as TMB 

The waterfall plots of the TMB for the low-risk and high-
risk groups were depicted in Figure 8E,8F, respectively. The 
top 10 most mutated genes included TP53, CTNNB1, TTN, 
MUC16, PCLO, ALB, RYR2, APOB, XIRP2, and LRP1B. 
There was a positive relationship between the risk score and 
TMB (Figure 8G). Moreover, the patients in the highest 
TMB and highest risk cohorts had the worst prognosis 
(Figure 8H,8I). When analyzing samples with RNAss to 
establish the regulatory influence of risk score, a positive 
correlation was found between risk score and cancer stem 
cells (R=0.27, P<0.001), showing that samples with higher 
scores had more pronounced stem cell features and a lower 
degree of cell differentiation (Figure S5).

Drug sensitivity analysis

The low-risk and high-risk groups showed considerable 
disparities in drug sensitivity, as shown by our examination 
of IC50 values for a number of medications. The IC50 
values for drugs including doxorubicin, epothilone B, 
gemcitabine, IPA.3, mitomycin C, and paclitaxel were 
significantly lower in the high-risk group than in the low-
risk group, indicating that they were more sensitive to these 
drugs (Figure 9A-9F). We draw the conclusion that Axitinib, 
Vinorelbine, and Sorafenib are more efficacious in this 
population since their IC50 values were significantly lower 
in the low-risk group (Figure 9G-9I).

New model as a new predictor of HCC

We compared our own model to 12 other published 
HCC prognostic models to better highlight its predictive 
capability (31-42). Using multivariate analysis, we 
determined the risk value and prognosis evaluation for 
each dataset, making the 13 models comparable. Overall, 
the survival curves across all 13 models showed a grim 
outlook for those at high risk (Figure S6). The ROC curve 
demonstrates that the AUC values of competing models are 
less than that of our model (Figure 10A-10M). This alone 
illustrates the superior predictive ability of our model. We 
next determined the C-index for each prognostic factor 
by using the restricted mean survival (RMS) software 
tool. When compared to other models, ours has a higher 
C-index of 0.658 (Figure 10N). RMS can be used to assess 
the impact of gene features across time on prediction. Our 
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genetic traits were at their peak performance around the  
eighth year (Figure 10O). This demonstrates that, in 
comparison to competing models, ours provides the most 
accurate predictions.

Discussion

Homeostasis in biological systems, the evolution of 
complex tissues, and the prevention of cancer by means of 
regulated cell division are all dependent on programmed 
cell death (43). Cuproptosis, first recognized by Todd R. 
Golub, explains how mitochondrial malfunction and copper 
metabolism contribute to cell death. Since its introduction 

in 2012, ferroptosis has also gained considerable interest as 
a potential cancer treatment method. Numerous research 
has examined the significance of individual cuproptosis and 
ferroptosis regulator genes in cancer, but the combined 
effect of multiple CRGs and FRGs remains a mystery. 
Despite the large number of studies confirming that 
ferroptosis and cuproptosis are indeed associated with 
HCC prognosis, there is still a lack of a prognostic model 
for HCC that combines the characteristics of ferroptosis 
and cuproptosis (44-47). Therefore, the aim of this study 
was to determine to identify ferroptosis and cuproptosis 
subtypes in HCC and to determine whether ferroptosis and 
cuproptosis are associated with HCC and, if so, whether 
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they can be used to develop a new scoring system to predict 
prognosis and treatment outcome.

Multiomics study of the TCGA-HCC cohort yielded in-
depth descriptions of somatic mutations, CNV frequency, 
chromosome position, and interactions connected to 
CRGs and FRGs. The expression of FRGs and CRGs 
permitted the classification of HCC patients into three 
FRGclusters and two CRGclusters, with each cluster 
exhibiting significantly different survival, recurrence, and 
biological function activities. Tumors in FRGcluster B 
and CRGcluster B were deemed “hot” due to their high 
levels of immune cell infiltration, indicating that they will 
respond well to immunotherapy. GSVA analysis found that 

the majority of the divergent pathways across the three 
FRGclusters and two CRGclusters were connected to 
metabolism, a factor commonly recognized to be critical for 
the genesis and progression of tumors.

To better assess the cuproptosis and ferroptosis pattern 
in individual patients with HCC, we further constructed a 
predictive model incorporating HMGCS2, PPM1G, PON1, 
and GNL2. HMGCS2 is the rate-limiting enzyme in the 
ketogenesis pathway (48). HMGCS2 knockdown has been 
demonstrated to reduce ketone generation, promote cell 
proliferation, migration, and xenograft carcinogenesis in 
HCC via upregulating c-Myc/cyclinD1 and EMT signaling 
and downregulating caspase-dependent apoptotic pathways, 
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Figure 10 Comparison with other models. (A-M) The ROC curves of 13 models; (N) C-index of 13 models; (O) RMS of 13 models. AUC, 
area under the curve; ROC, receiver operating characteristic; C-index, concordance index; RMS, restricted mean survival.

and decrease ketone levels (49). Additionally, HMGCS2 
is implicated in metabolic pathways, and downregulation 
of HMGCS2 in tumors is related with poor OS in HCC 
patients (50). PPM1G is an essential member of the PP2C 
family of serine/threonine protein phosphatases and plays a 
crucial function in the regulation of cell cycle progression 
(51,52). Phosphorylation of the alternative splicing protein 
SRSF3 has recently been shown to be regulated by PPM1G, 
providing more evidence that this protein promotes HCC 
proliferation, invasion, and metastasis (53). Paraoxonase-1 
(PON1) gene polymorphisms are strongly linked to the 
development of advanced malignancies (54). Low PON1 
activity impairs its inherent functions and heightens 
oxidative stress (55,56), suggesting a worse prognosis in 

patients with cancer (57). Huang et al. (58) hypothesized 
that serum PON1 levels may serve as a biomarker for 
microvascular invasion. As a protein-encoding gene, G 
protein nucleolar 2 (GNL2) goes by several other names, 
including NGP1, Nog2, Nug2, Ngp-1, and HUMAUANTIG. 
Dong et al. (59) reported that HCC patients with high 
GNL2 expression had lower survival rates, and in vitro 
knockdown investigations demonstrated that decreasing 
GNL2 using siRNA inhibited HCC cell proliferation, 
migration, and invasion capabilities. Consequently, the 
model may be utilized to assess the prognosis of HCC.

TME, also known as the tumor microenvironment, 
is the environment that surrounds a tumor in the 
body and is thought to be the main driver of tumor  
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development (60). Given the abundant evidence that copper 
and iron are involved in immune modulation, it is possible 
that understanding the role of ferroptosis and cuproptosis 
in TME cell infiltration will aid in our understanding 
of the response to HCC anticancer therapy and guide 
the development of more effective immunotherapy 
techniques (61). In comparing high- and low-risk groups, 
immunological pathways were discovered to play a 
significant influence by GSEA enrichment analysis. Subjects 
in the high-risk group had higher levels of immune cells in 
their blood than those in the low-risk group, including M2 
macrophages, activated CD4+ T cells, NK cells, and Type 
II T helper cells. Macrophages play a variety of vital roles 
crucial to immune system function, normal development, 
and cancer progression (62). Tumor-associated macrophages 
(TAMs), also known as M2 macrophages, are an immune 
cell subset that infiltrates tumors and promotes their growth 
and metastasis. (63). Multiple pieces of evidence point 
to the role of TAMs in facilitating tumor angiogenesis, 
immunosuppressive actions, and the spread of tumor cells 
during tumor initiation and metastasis (64). Nearly half of 
the liver’s lymphocytes are NK cells, which possess cytotoxic 
capabilities that enable them to combat malignancies (65). 
NK cells’ primary purpose is to detect and destroy target 
cells, but they also regulate antiviral immune responses 
by secreting cytokines such as interferon-gamma (IFN-γ) 
and tumor necrosis factor-alpha (TNF-α) (66). Other 
immune-related evaluations have demonstrated that high-
risk groups have higher immunological scores, and as a 
result, high-risk individuals respond more favorably to 
immunotherapy. Tumors belonging to the high-risk group, 
FRGcluster B, and CRGcluster B are deemed “hot” because 
they exhibit substantial immune infiltration and activation 
and are therefore more likely to respond favorably to 
immunotherapy based on these findings.

Immunotherapy, specifically checkpoint inhibitors, 
has led to significant improvements in survival (67). The 
analysis suggests that CD276, PDCD1, TIGIT, and CTLA4 
were all more highly expressed in the high-risk patients. 
These four genes have been the subject of extensive 
research, establishing their viability as therapeutic targets 
(68,69). According to recent studies (70), TMB can be 
used to predict how well cancer patients would respond 
to immunotherapy. Our results are consistent with those 
of a large body of tumor cases that found a higher TMB 
score to be predictive of success with immunotherapy. 
Our findings are comparable to a substantial corpus of 
tumor cases showing that a higher TMB score is indicative 

of immunotherapy efficacy. Therefore, research offered 
more proof that immunotherapy may be more effective in 
high-risk groups. Paclitaxel, doxorubicin, epothilone B, 
gemcitabine, IPA.3, and mitomycin C were all discovered to 
be beneficial for patients in the high-risk group.

Finally, we selected 12 prognostic risk models for HCC 
from the literature and assessed their capacity to predict 
outcomes. Our model’s prediction performance was really 
excellent. However, current research is still hampered 
by significant limitations. To begin, there is a paucity 
of clinical data and experimental study to further verify 
the conclusions, and all inferences are made based on 
the processing and analysis of data available from public 
databases. To further validate the model’s efficacy in clinical 
settings, it will be necessary to gather additional HCC 
cases and conduct a large number of prospective clinical 
assessments in the future.

Conclusions

Our in-depth analysis of CRGs and FRGs confirmed their 
value for examining TME, clinical characteristics, and 
HCC prognosis. These findings emphasized the possible 
clinical relevance of CRGs and FRGs and suggested that 
ferroptosis and cuproptosis may be therapeutic targets for 
HCC patients. 
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